प्रायिकता संभावना (कम्यूटिंग प्रोबेबिलिटी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 30: Line 30:
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
[[Category: परिमित समूह]]


[[Category: Machine Translated Page]]
[[Category:Created On 26/05/2023]]
[[Category:Created On 26/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:परिमित समूह]]

Latest revision as of 16:15, 14 June 2023

गणित में अधिक त्रुटिहीन रूप से समूह सिद्धांत में, परिमित समूह के आने की प्रायिकता (जिसे क्रमविनिमेयता या क्रमविनिमेयता डिग्री भी कहा जाता है) संभावना है कि दो अनियमित रूप से चयन किये गए तत्व क्रमचयी गुणधर्म हैं।[1][2]इसका उपयोग यह मापने के लिए किया जा सकता है कि परिमित समूह एबेलियन समूह के कितने निकट है। इसे उपयुक्त संभाव्यता माप से लैस अनंत समूह (गणित) के लिए सामान्यीकृत किया जा सकता है,[3]और अन्य बीजगणितीय संरचना जैसे रिंग (गणित) के लिए भी सामान्यीकृत किया जा सकता है।[4]


परिभाषा

परिमित समूह है। जिसे के तत्वों के जोड़े की औसत संख्या के रूप में द्वारा परिभाषित किया गया है:

जहाँ परिमित समुच्चय की प्रमुखता को दर्शाता है।

यदि कोई असतत समान वितरण , पर विचार करता है कि दो अनियमित रूप से चयन किये गए तत्व आने-जाने की संभावना होती है। इस प्रकार को पर आने वाली संभावना कहा जाता है।

परिणाम

  • परिमित समूह एबेलियन है यदि
  • किसी के पास
जहाँ के संयुग्मी वर्गों की संख्या है।
  • यदि एबेलियन नहीं है तो (इस परिणाम को कभी-कभी 5/8 प्रमेय कहा जाता है[5]) और ऊपरी सीमा स्पष्ट है: अनंत रूप से कई परिमित समूह हैं ऐसा है कि , सबसे छोटा डायहेड्रल समूह है।
  • कोई समान निचली सीमा नहीं है तो वास्तव में, प्रत्येक सकारात्मक पूर्णांक के लिए परिमित समूह उपस्तिथ है ऐसा है कि .
  • यदि एबेलियन नहीं अन्यथा सरल समूह है, फिर (ऊपरी सीमा द्वारा प्राप्त की जाती है, डिग्री 5 वैकल्पिक समूह) है।
  • परिमित समूहों की आने-जाने की संभावनाओं का समुच्चय रिवर्स-वेल-ऑर्डर है, और इसके ऑर्डर प्रकार के रिवर्स को या तो या द्वारा जाना जाता है [6]


सामान्यीकरण

  • आने-जाने की संभावना को अन्य बीजगणितीय संरचनाओं जैसे परिमित वलय के लिए परिभाषित किया जा सकता है।[4]
  • आने-जाने की संभावना को अनंत कॉम्पैक्ट समूहों के लिए परिभाषित किया जा सकता है; संभाव्यता माप तब, पुनर्सामान्यीकरण के पश्चात, हार उपाय है।[3]


संदर्भ

  1. Gustafson, W. H. (1973). "What is the Probability that Two Group Elements Commute?". The American Mathematical Monthly. 80 (9): 1031–1034. doi:10.1080/00029890.1973.11993437.
  2. Das, A. K.; Nath, R. K.; Pournaki, M. R. (2013). "परिमित समूहों में क्रमविनिमेयता के आकलन पर एक सर्वेक्षण". Southeast Asian Bulletin of Mathematics. 37 (2): 161–180.
  3. 3.0 3.1 Hofmann, Karl H.; Russo, Francesco G. (2012). "संभावना है कि एक्स और वाई एक कॉम्पैक्ट समूह में यात्रा करते हैं". Mathematical Proceedings of the Cambridge Philosophical Society. 153 (3): 557–571. arXiv:1001.4856. doi:10.1017/S0305004112000308.
  4. 4.0 4.1 Machale, Desmond (1976). "परिमित रिंगों में क्रमविनिमेयता". The American Mathematical Monthly. 83: 30–32. doi:10.1080/00029890.1976.11994032.
  5. Baez, John C. (2018-09-16). "The 5/8 Theorem". Azimut.
  6. Eberhard, Sean (2015). "परिमित समूहों की कम्यूटिंग संभावनाएं". Bulletin of the London Mathematical Society. 47 (5): 796–808. arXiv:1411.0848.