थर्मल डी ब्रोगली तरंग दैर्ध्य: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 55: Line 55:
{{cite web |url=http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_(statistical_mechanics) |title=Configuration_integral_(statistical_mechanics) |accessdate=2008-10-12 |last=Vu-Quoc |first=Loc  }}
{{cite web |url=http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_(statistical_mechanics) |title=Configuration_integral_(statistical_mechanics) |accessdate=2008-10-12 |last=Vu-Quoc |first=Loc  }}
--->
--->
[[Category: सांख्यिकीय यांत्रिकी]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/05/2023]]
[[Category:Created On 23/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सांख्यिकीय यांत्रिकी]]

Latest revision as of 09:21, 13 June 2023

भौतिकी में, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य (, जिसे कभी-कभी द्वारा भी निरूपित किया जाता है ) मोटे तौर पर निर्दिष्ट तापमान पर एक आदर्श गैस में कणों की औसत डी ब्रोगली तरंग दैर्ध्य है। हम गैस में माध्य अंतर-कण दूरी को लगभग (V/N)1/3 मान सकते हैं जहां V आयतन है और N कणों की संख्या है। जब ऊष्मीय डी ब्रोगली तरंगदैर्घ्य कणांतर दूरी की तुलना में बहुत छोटा होता है, तो गैस को क्लासिकल या मैक्सवेल-बोल्ट्जमैन गैस माना जा सकता है। दूसरी ओर, जब ऊष्मीय डी ब्रोगली तरंग कणांतर दूरी के क्रम में या उससे बड़ा होता है, तो क्वांटम प्रभाव हावी होगा और गैस को फर्मी गैस या बोस गैस के रूप में माना जाना चाहिए, जो गैस के कणों की प्रकृति पर निर्भर करता है। महत्वपूर्ण तापमान इन दो शासनों के बीच संक्रमण बिंदु है, और इस महत्वपूर्ण तापमान पर, ऊष्मीय तरंग दैर्ध्य कणांतर दूरी के लगभग बराबर होगा। अर्थात्, गैस की क्वांटम प्रकृति

के लिए स्पष्ट होगी, अर्थात, जब कणांतर दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से कम हो, तब इस स्थिति में गैस बोस-आइंस्टीन आँकड़ों या फर्मी-डिराक आँकड़ों का पालन करेगी, जो भी उपयुक्त हो। यह उदाहरण के लिए T = 300 केल्विन पर एक विशिष्ट धातु में इलेक्ट्रॉनों की स्थिति है, जहां इलेक्ट्रॉन गैस फर्मी-डिराक आंकड़ों या बोस-आइंस्टीन संघनित का पालन करती है। दूसरी ओर,
के लिए, जब कणांतर दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से बहुत बड़ी होती है, तो गैस मैक्सवेल-बोल्ट्जमैन सांख्यिकी का पालन करेगी।[1] कमरे के तापमान पर आणविक या परमाणु गैसों और न्यूट्रॉन स्रोत द्वारा उत्पादित तापीय न्यूट्रॉन की स्थिति में ऐसा ही है।

भारी कण

बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य को विभाजन फलन की गणना से प्राप्त किया जा सकता है। लंबाई L के एक 1-आयामी बॉक्स को मानते हुए , विभाजन फलन (एक बॉक्स में 1 डी कण की ऊर्जा अवस्थाओं का उपयोग करके)

है।


चूंकि ऊर्जा के स्तर एक साथ बहुत करीब हैं, इसलिए हम इस योग को एक अभिन्न के रूप में अनुमानित कर सकते हैं,[2]

इस तरह,
जहाँ प्लैंक स्थिरांक है, m गैस कण का द्रव्यमान है, बोल्ट्जमैन स्थिरांक है, और T गैस का तापमान है।[1] इसे घटे हुए प्लैंक स्थिरांक का उपयोग करके
के रूप में भी व्यक्त किया जा सकता है।

द्रव्यमान रहित कण

द्रव्यमान रहित (या अत्यधिक आपेक्षिकीय) कणों के लिए, तापीय तरंग दैर्ध्य को

के रूप में परिभाषित किया जाता है जहाँ c प्रकाश की गति है। बड़े पैमाने पर कणों के लिए ऊष्मीय तरंग दैर्ध्य के साथ, यह गैस में कणों के औसत तरंग दैर्ध्य के क्रम का है और एक महत्वपूर्ण बिंदु को परिभाषित करता है जिस पर क्वांटम प्रभाव हावी होने लगते हैं। उदाहरण के लिए, काले शरीर के विकिरण के लंबे-तरंग दैर्ध्य स्पेक्ट्रम का अवलोकन करते समय, प्राचीन रेले-जीन्स कानून लागू किया जा सकता है, लेकिन जब प्रेक्षित तरंग दैर्ध्य काले शरीर के विकिरण में फोटॉनों के ऊष्मीय तरंग दैर्ध्य तक पहुंचते हैं, तो क्वांटम प्लैंक के नियम का उपयोग किया जाना चाहिए।

सामान्य परिभाषा

कणों की एक आदर्श गैस के लिए ऊष्मीय तरंग दैर्ध्य की एक सामान्य परिभाषा, ऊर्जा और संवेग (परिक्षेपण संबंध) के बीच यादृच्छिक शक्ति-कानून संबंध, किसी भी संख्या के आयामों में पेश की जा सकती है।[3] अगर n आयामों की संख्या है, और ऊर्जा  (E) और संवेग (p) के बीच संबंध

(a और s स्थिरांक साथ) द्वारा दिया जाता है, तो तापीय तरंगदैर्घ्य को
के रूप में परिभाषित किया जाता है, जहां Γ गामा फलन है। विशेष रूप से, 3-डी (n = 3) द्रव्यमान या द्रव्यमान रहित कणों की गैस के लिए हमारे पास क्रमशः E = p2/2m (a = 1/2m, s = 2) और E = pc (a = c, s = 1)होते हैं, जो पिछले अनुभागों में सूचीबद्ध व्यंजकों को प्रस्तुतकरते हैं। ध्यान दें कि भारी गैर-सापेक्ष कणों (s = 2) के लिए व्यंजक n पर निर्भर नहीं करता है। यह बताता है कि उपरोक्त 1-डी व्युत्पत्ति 3-डी स्थिति से सहमत क्यों है।

उदाहरण

298 K पर ऊष्मीय डी ब्रोगली तरंग दैर्ध्य के कुछ उदाहरण नीचे दिए गए हैं।

प्रकार मास (किग्रा) (m)
अतिसूक्ष्म परमाणु 9.1094×10−31 4.3179×10−9
फोटॉन 0 1.6483×10−5
H2 3.3474×10−27 7.1228×10−11
O2 5.3135×10−26 1.7878×10−11

संदर्भ

  1. 1.0 1.1 Charles Kittel; Herbert Kroemer (1980). ऊष्मीय भौतिकी (2 ed.). W. H. Freeman. p. 73. ISBN 978-0716710882.
  2. Schroeder, Daniel (2000). थर्मल भौतिकी का एक परिचय. United States: Addison Wesley Longman. pp. 253. ISBN 0-201-38027-7.
  3. Yan, Zijun (2000). "सामान्य तापीय तरंग दैर्ध्य और इसके अनुप्रयोग". European Journal of Physics. 21 (6): 625–631. Bibcode:2000EJPh...21..625Y. doi:10.1088/0143-0807/21/6/314. ISSN 0143-0807. S2CID 250870934. Retrieved 2021-08-17.