शून्य आकारिता: Difference between revisions
m (Arti moved page शून्य रूपवाद to शून्य आकारिता without leaving a redirect) |
|
(3 intermediate revisions by 3 users not shown) | |
(No difference)
|
Latest revision as of 16:47, 30 October 2023
गणित की शाखा के रूप में श्रेणी सिद्धांत में, शून्य सारूप एक विशेष प्रकार का सारूप है जो शून्य वस्तु से परिभाषित आकारिता के समान और उनसे होने वाली गुणधर्म को प्रदर्शित करता है।
परिभाषाएँ
मान लीजिए C एक श्रेणी है, और f : X → Y, C में एक सारूप है। सारूप f को एक स्थिर सारूप या कभी-कभी वाम शून्य सारूप कहा जाता है यदि C में किसी भी वस्तु W और किसी भी g, h: W → X के लिए fg = fh हो। उलट रूप से, f को एक समकालीन सारूप या कभी-कभी दायीं शून्य सारूप कहा जाता है यदि C में किसी भी वस्तु Z और किसी भी g, h: Y → Z के लिए gf = hf हो। शून्य सारूप वह सारूप होता है जो स्थिर सारूप तथा समकालीन सारूप दोनों होता है।
शून्य सारूपों वाली एक श्रेणी में, हर दो वस्तुओं A और B के लिए, एक निर्दिष्ट सारूप 0AB: A → B होता है, और इस सारूप का संग्रह ऐसा होता है कि सभी वस्तुओं X, Y, Z और सभी सारूप f: Y → Z, g: X → Y के लिए, निम्न आरेख विज्ञान यात्रा को समाप्त करती है:
आकारिकी 0XY आवश्यक रूप से शून्य आकारिकी हैं और शून्य आकारिकी की संगत प्रणाली बनाते हैं।
यदि C शून्य सारूपों वाली श्रेणी है, तो 0XY का संग्रह अद्वितीय है।[1]
एक "शून्य सारूप" को परिभाषित करने और वाक्य "शून्य सारूपों वाली श्रेणी" को अलग-अलग परिभाषित करने की विधि अद्वितीय है, परन्तु यदि प्रत्येक होम-समुच्चय में एक "शून्य सारूप" होता है, तो श्रेणी "शून्य सारूपों वाली होती है।
उदाहरण
- समूहों की श्रेणी (मॉड्यूल) में, शून्य सारूप एक सारूप f: G → H होता है जो सभी G को H के पहचान तत्व में चित्रित करता है। समूहों की श्रेणी में शून्य वस्तु 1 = {1} होती है, जो खाली समूह है और यथार्थ समतावधि तक अद्वितीय है। प्रत्येक शून्य सारूप को 1 के माध्यम से अंशीकृत किया जा सकता है, अर्थात्, f: G → 1 → H।
- और अधिक सामान्य रूप से कहें तो मान लें C एक शून्य वस्तु 0 के साथ कोई भी श्रेणी है। तब सभी वस्तुओं X और Y के लिए एक अद्वितीय सारूप अनुक्रम होता है:
- 0XY : X → 0 → Y
- यदि C एक पूर्वसंयोज्य श्रेणी है, तो प्रत्येक होम-समूह होम(X,Y) एक अभेदी समूह होता है और इसलिए शून्य तत्व होता है। ये शून्य तत्व एक संगत समूह के रूप में शून्य सारूपों की गणना करते हैं, जो C को शून्य सारूपों वाली एक श्रेणी में निर्मित होतें हैं।
- समुच्चयों की श्रेणी में कोई शून्य वस्तु नहीं होती है, परन्तु इसमें एक प्रारंभिक वस्तु, रिक्त समुच्चय (∅) होता है। Set में केवल दायीं शून्य सारूप फलन ∅ → X होती हैं, जहां X एक समुच्चय है।
संबंधित अवधारणाएं
यदि सी में एक शून्य वस्तु 0 होती है, तो दो वस्तुओं X और Y के लिए, विहित सारूप f: X → 0 और g: 0 → Y होते हैं। फिर, gf MorC(X, Y) में एक शून्य सारूप होता है। इस प्रकार, हर एक शून्य वस्तु वाली श्रेणी MorC(X, Y) को शून्य सारूपों वाली श्रेणी बना देती है, जो 0XY: X → 0 → Y समीकरण द्वारा प्रदर्शित की जाती है।
यदि किसी श्रेणी में शून्य आकारिकी है, तो उस श्रेणी में किसी भी आकृतिवाद के लिए कर्नेल और उप-कर्नेल की धारणा को परिभाषित किया जा सकता है।
संदर्भ
- Section 1.7 of Pareigis, Bodo (1970), Categories and functors, Pure and applied mathematics, vol. 39, Academic Press, ISBN 978-0-12-545150-5
- Herrlich, Horst; Strecker, George E. (2007), Category Theory, Heldermann Verlag.
टिप्पणियाँ
- ↑ "शून्य आकारिकी वाली श्रेणी". Math.stackexchange.com. 2015-01-17. Retrieved 2016-03-30.