प्रोजेक्टिव रेंज: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 13: | Line 13: | ||
{{Reflist}} | {{Reflist}} | ||
* [[H. S. M. Coxeter]] (1955) ''The Real Projective Plane'', [[University of Toronto Press]], p 20 for line, p 101 for conic. | * [[H. S. M. Coxeter]] (1955) ''The Real Projective Plane'', [[University of Toronto Press]], p 20 for line, p 101 for conic. | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with unsourced statements from August 2016]] | |||
[[Category: | |||
[[Category:Created On 19/05/2023]] | [[Category:Created On 19/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:प्रक्षेपी ज्यामिति]] |
Latest revision as of 16:14, 14 June 2023
गणित में, प्रोजेक्टिव रेंज एकीकृत कार्य प्रणाली में माने जाने वाले प्रोजेक्टिव ज्योमेट्री में बिंदुओं का एक सेट है। एक प्रोजेक्टिव रेंज वास्तविक प्रक्षेपण रेखा या शंकु खंड हो सकती है। एक प्रोजेक्टिव रेंज किसी दिए गए बिंदु पर रेखाओं की एक पेंसिल की दोहरी सतह होती है। उदाहरण के लिए, एक सहसंबंध एक प्रोजेक्टिव रेंज के बिंदुओं को एक पेंसिल की रेखाओं के साथ बदल देता है। प्रोजेक्टिविटी को एक श्रेणी से दूसरी श्रेणी में कार्य करने के लिए कहा जाता है, हालांकि दो श्रेणियां समुच्य के रूप में समान हो सकती हैं।
एक प्रोजेक्टिव रेंज प्रक्षेपी हार्मोनिक संयुग्म के संबध को प्रोजेक्टिव अपरिवर्तनीयता में व्यक्त करता है। वास्तव में प्रक्षेपी रेखा पर तीन बिंदु इस संबंध से एक चौथाई को निर्धारित करते हैं। इस चतुर्भुज के लिए एक प्रोजेक्टिविटी के आवेदन के परिणामस्वरूप हार्मोनिक संबंध में इसी तरह चार बिंदु होते हैं। इस तरह के चौगुने बिंदुओं को हार्मोनिक रेंज कहा जाता है। 1940 में जूलियन कूलिज ने इस संरचना का वर्णन किया और इसके प्रवर्तक की पहचान की:[1]
- दो मूलभूत एक-आयामी रूपों जैसे बिंदु श्रेणी, रेखाओं के पेंसिल, या विमानों को प्रोजेक्टिव के रूप में परिभाषित किया जाता है, जब उनके सदस्य एक-से-एक संबध में होते हैं, और एक का हार्मोनिक सेट ... दूसरे के हार्मोनिक सेट के सामान होता है। ... यदि दो एक आयामी रूपों को अनुमानों और चौराहों की एक ट्रेन से जोड़ा जाता है, तो हार्मोनिक तत्व हार्मोनिक तत्वों के अनुरूप होंगे, और वे वॉन स्टॉड्ट के अर्थ में प्रक्षेपी हैं।
शंक्वाकार पर्वतमाला
जब एक प्रक्षेप्य श्रेणी के लिए एक शांकव चुना जाता है, और शंकु पर एक विशेष बिंदु E मूल के रूप में चुना जाता है, तो बिंदुओं के योग को निम्नानुसार परिभाषित किया जा सकता है:[2]
- मान लीजिए A और B श्रेणी (शंकु) में हैं और AB उन्हें जोड़ने वाली रेखा है। मान लीजिए L, E से होकर जाने वाली और AB के समांतर रेखा है। बिंदुओं A और B का योग, A + B, सीमा के साथ L का प्रतिच्छेदन है।[citation needed]
वृत्त और अतिपरवलय एक शंकु के उदाहरण हैं और कोणों का योग या तो "बिंदुओं के योग" की विधि से उत्पन्न किया जा सकता है, लेकिन बिंदु वृत्त पर कोणों और अतिपरवलयिक कोणों से जुड़े हों।
संदर्भ
- ↑ J. L. Coolidge (1940) A History of Geometrical Methods, page 98, Oxford University Press (Dover Publications 2003)
- ↑ Viktor Prasolov & Yuri Solovyev (1997) Elliptic Functions and Elliptic Integrals, page one, Translations of Mathematical Monographs volume 170, American Mathematical Society
- H. S. M. Coxeter (1955) The Real Projective Plane, University of Toronto Press, p 20 for line, p 101 for conic.