पानी का वाष्प दाब: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 151: | Line 151: | ||
{{HVAC}} | {{HVAC}} | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 23/05/2023]] | [[Category:Created On 23/05/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:थर्मोडायनामिक गुण]] | |||
[[Category:वायुमंडलीय ऊष्मप्रवैगिकी]] |
Latest revision as of 09:01, 15 June 2023
T, °C | T, °F | P, kPa | P, torr | P, atm |
---|---|---|---|---|
0 | 32 | 0.6113 | 4.5851 | 0.0060 |
5 | 41 | 0.8726 | 6.5450 | 0.0086 |
10 | 50 | 1.2281 | 9.2115 | 0.0121 |
15 | 59 | 1.7056 | 12.7931 | 0.0168 |
20 | 68 | 2.3388 | 17.5424 | 0.0231 |
25 | 77 | 3.1690 | 23.7695 | 0.0313 |
30 | 86 | 4.2455 | 31.8439 | 0.0419 |
35 | 95 | 5.6267 | 42.2037 | 0.0555 |
40 | 104 | 7.3814 | 55.3651 | 0.0728 |
45 | 113 | 9.5898 | 71.9294 | 0.0946 |
50 | 122 | 12.3440 | 92.5876 | 0.1218 |
55 | 131 | 15.7520 | 118.1497 | 0.1555 |
60 | 140 | 19.9320 | 149.5023 | 0.1967 |
65 | 149 | 25.0220 | 187.6804 | 0.2469 |
70 | 158 | 31.1760 | 233.8392 | 0.3077 |
75 | 167 | 38.5630 | 289.2463 | 0.3806 |
80 | 176 | 47.3730 | 355.3267 | 0.4675 |
85 | 185 | 57.8150 | 433.6482 | 0.5706 |
90 | 194 | 70.1170 | 525.9208 | 0.6920 |
95 | 203 | 84.5290 | 634.0196 | 0.8342 |
100 | 212 | 101.3200 | 759.9625 | 1.0000 |
जल का वाष्प दाब, जलवाष्प के अणुओं द्वारा गैसीय रूप में डाला गया दाब होता है। संतृप्ति वाष्प दबाव वह दबाव है जिस पर जल वाष्प संघनित अवस्था के साथ थर्मोडायनामिक संतुलन में होता है। वाष्प के दबाव से अधिक दबावों पर, पानी के गुण संघनित होंगे, जबकि न्यूनतम दबावों पर यह वाष्पित हो जाएगा या उर्ध्वपातन हो जाएगा। बढ़ते तापमान के साथ पानी का संतृप्त वाष्प दबाव बढ़ता है और क्लॉसियस-क्लैप्रोन संबंध के साथ निर्धारित किया जा सकता है। पानी का क्वथनांक वह तापमान होता है जिस पर संतृप्त वाष्प का दबाव परिवेश के दबाव के समान होता है।
पानी के वाष्प दबाव की गणना सामान्यतः मौसम विज्ञान में उपयोग की जाती है। तापमान-वाष्प दबाव संबंध पानी के क्वथनांक और दबाव के मध्य के संबंध को उलटा बताता है। यह उच्च ऊंचाई पर प्रेशर कुकिंग और कुकिंग दोनों के लिए प्रासंगिक है। उच्च ऊंचाई पर सांस लेने और गुहिकायन की व्याख्या करने में वाष्प दबाव की समझ भी प्रासंगिक होती है।
सन्निकटन सूत्र
पानी और बर्फ पर संतृप्त वाष्प दबाव की गणना के लिए कई प्रकाशित अनुमानित हैं। इनमें से कुछ निम्न हैं :
नाम | सूत्र | विवरण | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"समीकरण 1" (अगस्त समीकरण) | P mmHg में वाष्प दाब है और T केल्विन में तापमान है। स्थिरांक असंबद्ध होता हैं। | ||||||||||||||||
एंटोनी समीकरण | T डिग्री सेल्सियस (°C) में है और वाष्प दाब P mmHg में है। (अनएट्रिब्यूटेड) स्थिरांक के रूप में दिए गए हैं
| ||||||||||||||||
अगस्त-रोशे-मैग्नस या मैग्नस-टेटेंस या मैग्नस समीकरण | तापमान T °C में है और वाष्प दाब P किलोपास्कल (kPa) में है। यहाँ दिए गए गुणांक एल्डुचोव और एस्क्रिज (1996) में समीकरण 21 के अनुरूप होती हैं।[2]मौसम विज्ञान और जलवायु विज्ञान में उपयोग किए जाने वाले क्लॉसियस-क्लैपेरॉन सन्निकटन की चर्चा भी देखें। | ||||||||||||||||
टेटेंस समीकरण | T डिग्री सेल्सियस में है औरP kPa में है | ||||||||||||||||
बक समीकरण। | T डिग्री सेल्सियस में है और P kPa में है। | ||||||||||||||||
गोफ-ग्राच (1946) समीकरण।[3] | (लेख देखें; बहुत लंबा) |
विभिन्न योगों की सटीकता
यहाँ इन भिन्न-भिन्न स्पष्ट योगों की सटीकता की तुलना है, kPa में तरल पानी के लिए संतृप्ति वाष्प के दबावों को दर्शाते हुए, छह तापमानों पर उनकी प्रतिशत त्रुटि के साथ लिड (2005) के तालिका मूल्यों से गणना की जाती है:
T (डिग्री सेल्सियस) P (लाइड टेबल) P (Eq 1) P (एंटोनी) P (मैगनस) P (टेटेंस) P (बक) P (गोफ-ग्रेच) 0 0.6113 0.6593 (+7.85%) 0.6056 (-0.93%) 0.6109 (-0.06%) 0.6108 (-0.09%) 0.6112 (-0.01%) 0.6089 (-0.40%) 20 2.3388 2.3755 (+1.57%) 2.3296 (-0.39%) 2.3334 (-0.23%) 2.3382 (+0.05%) 2.3383 (-0.02%) 2.3355 (-0.14%) 35 5.6267 5.5696 (-1.01%) 5.6090 (-0.31%) 5.6176 (-0.16%) 5.6225 (+0.04%) 5.6268 (+0.00%) 5.6221 (-0.08%) 50 12.344 12.065 (-2.26%) 12.306 (-0.31%) 12.361 (+0.13%) 12.336 (+0.08%) 12.349 (+0.04%) 12.338 (-0.05%) 75 38.563 37.738 (-2.14%) 38.463 (-0.26%) 39.000 (+1.13%) 38.646 (+0.40%) 38.595 (+0.08%) 38.555 (-0.02%) 100 101.32 101.31 (-0.01%) 101.34 (+0.02%) 104.077 (+2.72%) 102.21 (+1.10%) 101.31 (-0.01%) 101.32 (0.00%)
एल्डुचोव और एस्क्रिज (1996) में तापमान मापन में अशुद्धि की सटीकता और विचारों की अधिक विस्तृत चर्चा प्रस्तुत की गई है। यहां विश्लेषण से पता चलता है कि सरल गैर-जिम्मेदार सूत्र और एंटोनी समीकरण 100 डिग्री सेल्सियस पर यथोचित रूप से सटीक हैं, परंतु ठंड से ऊपर न्यूनतम तापमान के लिए काफी खराब होता हैं। टेटेंस समीकरण 0 से 50 °C की सीमा पर अधिक सटीक है और 75 °C पर बहुत प्रतिस्पर्धी होता है, परंतु एंटोनी 75 °C और उससे अधिक श्रेष्ठतर होता है। एट्रिब्यूट बिना किए गए सूत्र में लगभग 26 °C पर शून्य त्रुटि होनी चाहिए, परंतु एक बहुत ही संकीर्ण सीमा के बाहय बहुत न्यूनतम सटीकता होती है। टेटेंस के समीकरण सामान्यतः अधिक सटीक होते हैं और रोजमर्रा के तापमान पर उपयोग के लिए यकीनन सरल होते हैं। जैसा कि अपेक्षित था, T > 0 डिग्री सेल्सियस के लिए बक का समीकरण टेटेन्स की तुलना में काफी अधिक सटीक है, और इसकी श्रेष्ठता 50 डिग्री सेल्सियस से ऊपर स्पष्ट रूप से बढ़ जाती है, यद्यपि इसका उपयोग करना अधिक जटिल है। डिग्री सेल्सियस के लिए बक का समीकरण टेटेन्स की तुलना में काफी अधिक सटीक है, और इसकी श्रेष्ठता 50 डिग्री सेल्सियस से ऊपर स्पष्ट रूप से बढ़ जाती है, यद्यपि इसका उपयोग करना अधिक जटिल है। व्यावहारिक मौसम विज्ञान के लिए आवश्यक सीमा पर बक समीकरण अधिक जटिल गोफ-ग्राच समीकरण से भी श्रेष्ठतर होता है।
संख्यात्मक सन्निकटन
गंभीर संगणना के लिए, लोव (1977)[4] ठंड से ऊपर और निम्न के तापमान के लिए सटीकता के विभिन्न स्तरों के साथ समीकरणों के दो जोड़े विकसित किए जाते है और वे सभी बहुत सटीक हैं परंतु बहुत कुशल संगणना के लिए नेस्टेड बहुपदों का उपयोग करते हैं। यद्यपि, संभवतः श्रेष्ठतर सूत्रीकरण की अधिक हालिया समीक्षाएं हैं, विशेष रूप से वेक्स्लर (1976, 1977),[5][6] फ्लैटौ एट अल (1992) द्वारा रिपोर्ट किया गया था।[7]
इन सूत्रों के आधुनिक उपयोग के उदाहरण नासा के जीआईएसएस मॉडल-ई और सेनफेल्ड और पंडिस (2006) में अतिरिक्त रूप से पाए जा सकते हैं। पूर्व एक अत्यंत सरल एंटोनी समीकरण होती है, जबकि उपरांत वाला एक बहुपद होता है।[8]
तापमान पर ग्राफिकल दबाव निर्भरता
यह भी देखें
- ओसांक
- गैस कानून
- ली-केसलर विधि
- मोलर द्रव्यमान
संदर्भ
- ↑ Lide, David R., ed. (2004). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. pp. 6–8. ISBN 978-0-8493-0485-9.
- ↑ Alduchov, O.A.; Eskridge, R.E. (1996). "बेहतर मैग्नस फॉर्म सन्निकटन संतृप्ति वाष्प दबाव". Journal of Applied Meteorology. 35 (4): 601–9. Bibcode:1996JApMe..35..601A. doi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.
- ↑ Goff, J.A., and Gratch, S. 1946. Low-pressure properties of water from −160 to 212 °F. In Transactions of the American Society of Heating and Ventilating Engineers, pp 95–122, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.
- ↑ Lowe, P.R. (1977). "संतृप्ति वाष्प दबाव की गणना के लिए एक अनुमानित बहुपद". Journal of Applied Meteorology. 16 (1): 100–4. Bibcode:1977JApMe..16..100L. doi:10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2.
- ↑ Wexler, A. (1976). "Vapor pressure formulation for water in range 0 to 100°C. A revision". Journal of Research of the National Bureau of Standards Section A. 80A (5–6): 775–785. doi:10.6028/jres.080a.071. PMC 5312760. PMID 32196299.
- ↑ Wexler, A. (1977). "बर्फ के लिए वाष्प दबाव सूत्रीकरण". Journal of Research of the National Bureau of Standards Section A. 81A (1): 5–20. doi:10.6028/jres.081a.003.
- ↑ Flatau, P.J.; Walko, R.L.; Cotton, W.R. (1992). "बहुपद संतृप्ति वाष्प दबाव के लिए फिट बैठता है". Journal of Applied Meteorology. 31 (12): 1507–13. Bibcode:1992JApMe..31.1507F. doi:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.
- ↑ Clemenzi, Robert. "जल वाष्प - सूत्र". mc-computing.com.
अग्रिम पठन
- "Thermophysical properties of seawater". Matlab, EES and Excel VBA library routines. MIT. 20 February 2017.
- Garnett, Pat; Anderton, John D; Garnett, Pamela J (1997). Chemistry Laboratory Manual For Senior Secondary School. Longman. ISBN 978-0-582-86764-2.
- Murphy, D.M.; Koop, T. (2005). "Review of the vapour pressures of ice and supercooled water for atmospheric applications". Quarterly Journal of the Royal Meteorological Society. 131 (608): 1539–65. Bibcode:2005QJRMS.131.1539M. doi:10.1256/qj.04.94. S2CID 122365938.
- Speight, James G. (2004). Lange's Handbook of Chemistry (16th ed.). McGraw-Hil. ISBN 978-0071432207.
बाहयी संबंध
- Vömel, Holger (2016). "Saturation vapor pressure formulations". Boulder CO: Earth Observing Laboratory, National Center for Atmospheric Research. Archived from the original on June 23, 2017.
- "Vapor Pressure Calculator". National Weather Service, National Oceanic and Atmospheric Administration.