फ्रॉस्ट आरेख: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Graph showing the free energy vs oxidation state of a chemical species}} | {{Short description|Graph showing the free energy vs oxidation state of a chemical species}} | ||
{{distinguish|text={{ill|फ्रॉस्ट घेरा|de|Frost-Musulin-Kreis}}, उसी व्यक्ति द्वारा आविष्कार और नाम दिया गया}} | {{distinguish|text={{ill|फ्रॉस्ट घेरा|de|Frost-Musulin-Kreis}}, उसी व्यक्ति द्वारा आविष्कार और नाम दिया गया}} | ||
[[File:Frost Diagram.png|thumb|upright=1.75|[[मैंगनीज]] प्रजातियों के लिए फ्रॉस्ट आरेख का उदाहरण]] | [[File:Frost Diagram.png|thumb|upright=1.75|[[मैंगनीज]] प्रजातियों के लिए फ्रॉस्ट आरेख का उदाहरण]]फ्रॉस्ट आरेख या फ्रॉस्ट-एब्सवर्थ आरेख, विशेष पदार्थ के विभिन्न ऑक्सीकरण अवस्थाओं की सापेक्ष स्थिरता को दर्शाने के लिए [[इलेक्ट्रोकैमिस्ट्री]] में अकार्बनिक रसायनज्ञों द्वारा उपयोग किया जाने वाला एक प्रकार का ग्राफ है। ग्राफ रासायनिक प्रजाति के [[गिब्स मुक्त ऊर्जा]] के विपरीत [[ऑक्सीकरण अवस्था]] को दिखाता है। यह प्रभाव [[पीएच]] पर निर्भर है, इसलिए यह पैरामीटर भी सम्मिलित होना चाहिए। मुक्त ऊर्जा ऑक्सीकरण-कमी अर्ध-प्रतिक्रियाओं द्वारा निर्धारित की जाती है। फ्रॉस्ट आरेख पहले से डिज़ाइन किए गए लेटिमर आरेख की तुलना में इन कमी की संभावनाओं को सरलता से समझने की अनुमति देता है, क्योंकि "संभावनाओं की एडिटिविटी की कमी" भ्रामक थी।<ref name="Frost, Paper">{{cite journal |last=Frost |first=Arthur |title=Oxidation Potential–Free Energy Diagrams |journal=Journal of the American Chemical Society |year=1951 |volume=73 |pages=2680–2682 |doi=10.1021/ja01150a074 |issue=6}}</ref> मुक्त ऊर्जा ΔG° सूत्र द्वारा ग्राफ़ में दिखाए गए कमी क्षमता E से संबंधित है: {{nowrap|Δ''G''° {{=}} −''nFE''°}} या {{nowrap|''nE''° {{=}} −Δ''G''°/''F''}}, जहाँ n स्थानान्तरित इलेक्ट्रॉनों की संख्या है, और F [[फैराडे स्थिरांक]] {{nowrap|(''F'' {{=}} 96,485 J/(V·mol)}} {{nowrap|{{=}} 96,485 कूलम्ब}}) है।<ref name="Class book">{{cite book|last=Shriver|title=अकार्बनिक रसायन शास्त्र|year=2010|publisher=W. H. Freeman & Co.}}</ref> फ्रॉस्ट आरेख का नाम {{ill|आर्थर एटवाटर फ्रॉस्ट|de}} नाम पर रखा गया है, जिन्होंने मूल रूप से 1951 के पेपर में मुक्त ऊर्जा और ऑक्सीकरण संभावित डेटा दोनों को सरलता से दिखाने की विधियों के रूप में इसका आविष्कार किया था।<ref name="Frost, Paper" /> | ||
== पीएच निर्भरता == | == पीएच निर्भरता == | ||
[[File:Frost azoto smallsize.gif|upright=1.7|thumb|दो चरम पीएच मान (0 और 14) पर नाइट्रोजन के लिए पाला आरेख]]पीएच निर्भरता कारक -0.059m/n प्रति पीएच इकाई द्वारा दी गई है, जहाँ m समीकरण में प्रोटॉन की संख्या से संबंधित है, और n [[इलेक्ट्रॉनों]] की संख्या का आदान-प्रदान होता है। इलेक्ट्रोकैमिस्ट्री में सदैव इलेक्ट्रॉनों का आदान-प्रदान होता है, लेकिन आवश्यक नहीं कि प्रोटॉन हों। यदि प्रतिक्रिया संतुलन में कोई प्रोटॉन विनिमय नहीं होता है, तो प्रतिक्रिया को पीएच-स्वतंत्र कहा जाता है। इसका अर्थ यह है कि | [[File:Frost azoto smallsize.gif|upright=1.7|thumb|दो चरम पीएच मान (0 और 14) पर नाइट्रोजन के लिए पाला आरेख]]पीएच निर्भरता कारक -0.059m/n प्रति पीएच इकाई द्वारा दी गई है, जहाँ m समीकरण में प्रोटॉन की संख्या से संबंधित है, और n [[इलेक्ट्रॉनों]] की संख्या का आदान-प्रदान होता है। इलेक्ट्रोकैमिस्ट्री में सदैव इलेक्ट्रॉनों का आदान-प्रदान होता है, लेकिन आवश्यक नहीं कि प्रोटॉन हों। यदि प्रतिक्रिया संतुलन में कोई प्रोटॉन विनिमय नहीं होता है, तो प्रतिक्रिया को पीएच-स्वतंत्र कहा जाता है। इसका अर्थ यह है कि रेडॉक्स अर्ध-प्रतिक्रिया में प्रदान की गई विद्युत रासायनिक क्षमता के मान, जिससे प्रश्न में [[रासायनिक तत्व]] ऑक्सीकरण अवस्थाओं को परिवर्तित करते हैं, पीएच की अवस्था जो भी होती है, जिसके अनुसार प्रक्रिया की जाती है। | ||
फ्रॉस्ट आरेख भी अम्लीय और मूलभूत समाधानों की मानक क्षमता (ढलान) के रुझानों की तुलना करने के लिए | फ्रॉस्ट आरेख भी अम्लीय और मूलभूत समाधानों की मानक क्षमता (ढलान) के रुझानों की तुलना करने के लिए उपयोगी उपकरण है। शुद्ध, तटस्थ तत्व अलग-अलग यौगिकों में संक्रमण करता है, यह इस बात पर निर्भर करता है कि प्रजाति अम्लीय और मूलभूत पीएच में है या नहीं। चूँकि ऑक्सीकरण अवस्थाओं का मूल्य और मात्रा अपरिवर्तित रहती है, मुक्त ऊर्जा बहुत भिन्न हो सकती है। फ़्रॉस्ट आरेख सरल और सुविधाजनक तुलना के लिए अम्लीय और मूल ग्राफ़ के अध्यारोपण की अनुमति देता है। | ||
== इकाई और पैमाना == | == इकाई और पैमाना == | ||
मानक मुक्त-ऊर्जा पैमाने को इलेक्ट्रॉन-वोल्ट में मापा जाता है,<ref name="Frost, Paper" />और ''nE''° = 0 मान सामान्यतः शुद्ध, तटस्थ तत्व होता है। फ़्रॉस्ट आरेख सामान्यतः ''nE''° = 0 के ऊपर और नीचे मुक्त-ऊर्जा मान दिखाता है और इसे पूर्णांकों में पैमानित किया जाता है। ग्राफ का y-अक्ष मुक्त ऊर्जा प्रदर्शित करता है। बढ़ती स्थिरता (कम मुक्त ऊर्जा) ग्राफ पर कम है, इसलिए उच्च मुक्त ऊर्जा और ग्राफ पर उच्च | मानक मुक्त-ऊर्जा पैमाने को इलेक्ट्रॉन-वोल्ट में मापा जाता है,<ref name="Frost, Paper" />और ''nE''° = 0 मान सामान्यतः शुद्ध, तटस्थ तत्व होता है। फ़्रॉस्ट आरेख सामान्यतः ''nE''° = 0 के ऊपर और नीचे मुक्त-ऊर्जा मान दिखाता है और इसे पूर्णांकों में पैमानित किया जाता है। ग्राफ का y-अक्ष मुक्त ऊर्जा प्रदर्शित करता है। बढ़ती स्थिरता (कम मुक्त ऊर्जा) ग्राफ पर कम है, इसलिए उच्च मुक्त ऊर्जा और ग्राफ पर उच्च तत्व है, यह अधिक अस्थिर और प्रतिक्रियाशील है।<ref name="Class book" /> | ||
फ्रॉस्ट आरेख के x-अक्ष पर तत्व का ऑक्सीकरण अवस्था दिखाया गया है। ऑक्सीकरण अवस्था इकाई रहित होती हैं और सकारात्मक और नकारात्मक पूर्णांकों में भी मापी जाती हैं। अधिकांशतः, फ्रॉस्ट आरेख ऑक्सीकरण संख्या को बढ़ते क्रम में प्रदर्शित करता है, लेकिन कुछ स्थितियों में यह घटते क्रम में प्रदर्शित होता है। शून्य (''nE''° = 0) की मुक्त ऊर्जा वाले तटस्थ, शुद्ध तत्व में भी ऑक्सीकरण अवस्था शून्य के बराबर होती है।<ref name="Class book" /> चूँकि, कुछ अलॉट्रोप्स की ऊर्जा शून्य नहीं हो सकती है।<ref>{{cite journal |last1=Villafañe |first1=F. |title=Where Is Ozone in the Frost Diagram? |journal=Journal of Chemical Education |date=2009 |volume=86 |issue=4 |page=432 |doi=10.1021/ed086p432 |url=https://pubs.acs.org/doi/10.1021/ed086p432 |access-date=24 February 2022}}</ref> | फ्रॉस्ट आरेख के x-अक्ष पर तत्व का ऑक्सीकरण अवस्था दिखाया गया है। ऑक्सीकरण अवस्था इकाई रहित होती हैं और सकारात्मक और नकारात्मक पूर्णांकों में भी मापी जाती हैं। अधिकांशतः, फ्रॉस्ट आरेख ऑक्सीकरण संख्या को बढ़ते क्रम में प्रदर्शित करता है, लेकिन कुछ स्थितियों में यह घटते क्रम में प्रदर्शित होता है। शून्य (''nE''° = 0) की मुक्त ऊर्जा वाले तटस्थ, शुद्ध तत्व में भी ऑक्सीकरण अवस्था शून्य के बराबर होती है।<ref name="Class book" /> चूँकि, कुछ अलॉट्रोप्स की ऊर्जा शून्य नहीं हो सकती है।<ref>{{cite journal |last1=Villafañe |first1=F. |title=Where Is Ozone in the Frost Diagram? |journal=Journal of Chemical Education |date=2009 |volume=86 |issue=4 |page=432 |doi=10.1021/ed086p432 |url=https://pubs.acs.org/doi/10.1021/ed086p432 |access-date=24 February 2022}}</ref> | ||
रेखा का ढलान इसलिए दो ऑक्सीकरण अवस्थाओं के बीच मानक क्षमता का प्रतिनिधित्व करता है। दूसरे शब्दों में, रेखा की ढलान उन दो अभिकारकों की प्रतिक्रिया करने और सबसे कम ऊर्जा वाले उत्पाद बनाने की प्रवृत्ति को दर्शाती है।<ref name="Frost, Paper" /> सकारात्मक या नकारात्मक ढलान होने की संभावना है। दो प्रजातियों के बीच | रेखा का ढलान इसलिए दो ऑक्सीकरण अवस्थाओं के बीच मानक क्षमता का प्रतिनिधित्व करता है। दूसरे शब्दों में, रेखा की ढलान उन दो अभिकारकों की प्रतिक्रिया करने और सबसे कम ऊर्जा वाले उत्पाद बनाने की प्रवृत्ति को दर्शाती है।<ref name="Frost, Paper" /> सकारात्मक या नकारात्मक ढलान होने की संभावना है। दो प्रजातियों के बीच सकारात्मक ढलान ऑक्सीकरण प्रतिक्रिया की प्रवृत्ति को इंगित करता है, जबकि दो प्रजातियों के बीच नकारात्मक ढलान कमी की प्रवृत्ति को इंगित करता है। उदाहरण के लिए, यदि [HMnO<sub>4</sub>]<sup>−</sup> में मैंगनीज की ऑक्सीकरण अवस्था +6 और ''nE''° = 4 है, और MnO<sub>2</sub> में ऑक्सीकरण अवस्था +4 और ''nE° = 0'' है, तो ढलान Δy/Δx 4/2 = 2 है, जो +2 की मानक क्षमता प्रदान करता है। इसी प्रकार इस ग्राफ द्वारा किसी भी पद की स्थिरता का पता लगाया जा सकता है। | ||
== ग्रेडिएंट == | == ग्रेडिएंट == | ||
फ्रॉस्ट आरेख पर किन्हीं दो बिंदुओं के बीच की रेखा का ढाल प्रतिक्रिया की क्षमता देता है। | फ्रॉस्ट आरेख पर किन्हीं दो बिंदुओं के बीच की रेखा का ढाल प्रतिक्रिया की क्षमता देता है। प्रजाति जो किसी भी तरफ दो बिंदुओं के ढाल के ऊपर चोटी में स्थित है, असमानता के संबंध में अस्थिर प्रजाति को दर्शाती है, और बिंदु जो रेखा के ढाल से नीचे गिरती है, जो इसके दो आसन्न बिंदुओं में सम्मिलित होती है, [[ thermodynamic |थर्मोडायनामिक]] सिंक में होती है, और आंतरिक रूप से स्थिर है। | ||
== अक्ष == | == अक्ष == | ||
Line 23: | Line 23: | ||
== [[अनुपात]]हीनता और अनुपातहीनता == | == [[अनुपात]]हीनता और अनुपातहीनता == | ||
इलेक्ट्रोकेमिकल प्रतिक्रियाओं के संबंध में, फ्रॉस्ट आरेख का उपयोग करके दो मुख्य प्रकार की प्रतिक्रियाओं की कल्पना की जा सकती है। समनुपात तब होता है जब | इलेक्ट्रोकेमिकल प्रतिक्रियाओं के संबंध में, फ्रॉस्ट आरेख का उपयोग करके दो मुख्य प्रकार की प्रतिक्रियाओं की कल्पना की जा सकती है। समनुपात तब होता है जब तत्व के दो समकक्ष, [[ऑक्सीकरण संख्या]] में भिन्न होते हैं, मध्यवर्ती ऑक्सीकरण संख्या के साथ उत्पाद बनाने के लिए गठबंधन करते हैं। अनुपातहीनता विपरीत प्रतिक्रिया है, जिसमें तत्व के दो समकक्ष, ऑक्सीकरण संख्या में समान होते हैं, अलग-अलग ऑक्सीकरण संख्या के दो उत्पाद बनाने के लिए प्रतिक्रिया करते हैं।<ref name="Class book" /> | ||
अनुपातहीनता: 2 M<sub>''n''</sub><sup>+</sup> → M<sub>''m''</sub><sup>+</sup> + M<sub>''p''</sub><sup>+</sup> | अनुपातहीनता: 2 M<sub>''n''</sub><sup>+</sup> → M<sub>''m''</sub><sup>+</sup> + M<sub>''p''</sub><sup>+</sup> | ||
अनुपात: M<sub>''m''</sub><sup>+</sup> + M<sub>''p''</sub><sup>+</sup> → 2 M<sub>''n''</sub><sup>+</sup> | अनुपात: M<sub>''m''</sub><sup>+</sup> + M<sub>''p''</sub><sup>+</sup> → 2 M<sub>''n''</sub><sup>+</sup> | ||
2 ''n'' = ''m'' + ''p'' दोनों उदाहरणों | 2 ''n'' = ''m'' + ''p'' दोनों उदाहरणों में<ref name="Class book" /> | ||
फ्रॉस्ट आरेख का उपयोग करके, यह अनुमान लगाया जा सकता है कि क्या | फ्रॉस्ट आरेख का उपयोग करके, यह अनुमान लगाया जा सकता है कि क्या ऑक्सीकरण संख्या अनुपातहीनता से निकलेंगी या दो ऑक्सीकरण संख्याएं अनुपातहीनता से निकलेंगी। आरेख पर तीन ऑक्सीकरण संख्याओं के सेट के बीच दो ढलानों को देखते हुए, दो मानक क्षमता (ढलान) समान नहीं हैं, मध्य ऑक्सीकरण या तो "पहाड़ी" या "घाटी" रूप में होगा। पहाड़ी का निर्माण तब होता है जब बायाँ ढलान दाएँ से अधिक तीव्र होता है, और घाटी का निर्माण होता है जब दायाँ ढलान बाएँ से अधिक तीव्र होता है। ऑक्सीकरण संख्या जो "पहाड़ी की चोटी" पर है, आसन्न ऑक्सीकरण अवस्थाओं में अनुपातहीनता का पक्ष लेती है।<ref name="Frost, Paper" /><ref name="Class book" /> आसन्न ऑक्सीकरण अवस्था, तथापि, यदि मध्य ऑक्सीकरण अवस्था "घाटी के तल" में है, तो अनुपातीकरण का पक्ष लेंगे।<ref name="Class book" /> | ||
== आलोचना/विसंगतियां == | == आलोचना/विसंगतियां == | ||
आर्थर फ्रॉस्ट ने अपने स्वयं के मूल प्रकाशन में कहा कि उनके फ्रॉस्ट आरेख के लिए संभावित आलोचना हो सकती है। वह भविष्यवाणी करता है कि "ढलानों को सरलता से या स्पष्ट' रूप से पहचाना नहीं जा सकता क्योंकि वे ऑक्सीकरण क्षमता के प्रत्यक्ष संख्यात्मक मान हैं [लैटिमर आरेख के]" | आर्थर फ्रॉस्ट ने अपने स्वयं के मूल प्रकाशन में कहा कि उनके फ्रॉस्ट आरेख के लिए संभावित आलोचना हो सकती है। वह भविष्यवाणी करता है कि "ढलानों को सरलता से या स्पष्ट' रूप से पहचाना नहीं जा सकता क्योंकि वे ऑक्सीकरण क्षमता के प्रत्यक्ष संख्यात्मक मान हैं [लैटिमर आरेख के]"<ref name="Frost, Paper" /> कई अकार्बनिक रसायनज्ञ मात्रात्मक डेटा के लिए लैटिमर का उपयोग करते हुए लैटीमर और फ्रॉस्ट आरेख दोनों का उपयोग करते हैं, और फिर उन डेटा को विज़ुअलाइज़ेशन के लिए फ्रॉस्ट आरेख में परिवर्तित करते हैं। फ्रॉस्ट ने सुझाव दिया कि पूरक जानकारी प्रदान करने के लिए ढलानों के निकट में मानक क्षमता के संख्यात्मक मान जोड़े जा सकते हैं।<ref name="Frost, Paper" /> | ||
[[जर्नल ऑफ केमिकल एजुकेशन]] में प्रकाशित | [[जर्नल ऑफ केमिकल एजुकेशन]] में प्रकाशित पेपर में, मार्टिनेज डी इलारडुआ और विलफाने (1994)<ref name=JesusWarning /> ने फ्रॉस्ट आरेखों के उपयोगकर्ताओं को आरेखों के निर्माण के लिए उपयोग की जाने वाली मुक्त ऊर्जा की परिभाषा से अवगत होने के लिए चेतावनी दी थी। अम्ल-विलयन ग्राफ़ में, मानक ''nE''° = −Δ''G''/''F'' सार्वभौमिक रूप से उपयोग किया जाता है; इसलिए सभी स्रोतों के एसिड-सॉल्यूशन फ्रॉस्ट आरेख समान होंगे। चूँकि, विभिन्न पाठ्यपुस्तकें ऊर्जा के संबंध में तत्व के फ्रॉस्ट आरेख में विसंगतियां दिखाती हैं। कुछ पाठ्यपुस्तकें अपचयन क्षमता का उपयोग करती हैं, ''E''°(2 {{H+}} + 2 ''e''<sup>−</sup>/H<sub>2</sub>), मूल-समाधान के लिए एसिड-समाधान में परिभाषित है। फिलिप्स और विलियम्स अकार्बनिक रसायन विज्ञान की पाठ्यपुस्तक में, चूँकि, निम्न सूत्र द्वारा दिए गए मूलभूत समाधानों के लिए एक और कमी क्षमता का उपयोग किया जाता है: ''E''° (OH) = ''E''°<sub>b</sub> − ''E''°(2 H<sub>2</sub>O + 2 ''e''<sup>−</sup>/H<sub>2</sub> + 2 OH<sup>−</sup>) = ''E''°<sub>b</sub> + 0.828 V<ref>{{cite book|last=Phillips|first=C. S. G.|title=अकार्बनिक रसायन शास्त्र|url=https://archive.org/details/inorganicchemist0002phil|url-access=registration|year=1965|location=Oxford University|pages=[https://archive.org/details/inorganicchemist0002phil/page/314 314–321]}}</ref> कटौती क्षमता को प्रस्तुत करने की यह दूसरी विधि' कुछ पाठ्यपुस्तकों में उपयोग की जाती है और दूसरों में नहीं, लेकिन सदैव ग्राफ़ पर स्पष्ट रूप से इंगित नहीं की जाती है, जिससे पाठक के लिए भ्रम उत्पन्न होता है। इसलिए, फ्रॉस्ट आरेख के उपयोगकर्ताओं को समस्या के बारे में पता होना चाहिए, और सदैव स्पष्ट रूप से सूचित किया जाना चाहिए कि उनके आरेख किस मुक्त-ऊर्जा पैमाने पर आधारित हैं।<ref name=JesusWarning>{{cite journal|last1=Martínez de Illarduya|first1=Jesús M.|last2=Villafane|first2=Fernando|title=फ्रॉस्ट आरेख उपयोगकर्ताओं के लिए एक चेतावनी|journal=Journal of Chemical Education|date=June 1994|volume=71|pages=480–482|doi=10.1021/ed071p480|issue=6|bibcode=1994JChEd..71..480M}}</ref> | ||
Line 50: | Line 50: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://www.wou.edu/las/physci/ch462/redox.htm Diagrams That Provide Useful Oxidation-Reduction Information] | *[http://www.wou.edu/las/physci/ch462/redox.htm Diagrams That Provide Useful Oxidation-Reduction Information] | ||
[[Category:Created On 16/05/2023]] | [[Category:Created On 16/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:इलेक्ट्रोकैमिस्ट्री]] |
Latest revision as of 16:24, 14 June 2023
फ्रॉस्ट आरेख या फ्रॉस्ट-एब्सवर्थ आरेख, विशेष पदार्थ के विभिन्न ऑक्सीकरण अवस्थाओं की सापेक्ष स्थिरता को दर्शाने के लिए इलेक्ट्रोकैमिस्ट्री में अकार्बनिक रसायनज्ञों द्वारा उपयोग किया जाने वाला एक प्रकार का ग्राफ है। ग्राफ रासायनिक प्रजाति के गिब्स मुक्त ऊर्जा के विपरीत ऑक्सीकरण अवस्था को दिखाता है। यह प्रभाव पीएच पर निर्भर है, इसलिए यह पैरामीटर भी सम्मिलित होना चाहिए। मुक्त ऊर्जा ऑक्सीकरण-कमी अर्ध-प्रतिक्रियाओं द्वारा निर्धारित की जाती है। फ्रॉस्ट आरेख पहले से डिज़ाइन किए गए लेटिमर आरेख की तुलना में इन कमी की संभावनाओं को सरलता से समझने की अनुमति देता है, क्योंकि "संभावनाओं की एडिटिविटी की कमी" भ्रामक थी।[1] मुक्त ऊर्जा ΔG° सूत्र द्वारा ग्राफ़ में दिखाए गए कमी क्षमता E से संबंधित है: ΔG° = −nFE° या nE° = −ΔG°/F, जहाँ n स्थानान्तरित इलेक्ट्रॉनों की संख्या है, और F फैराडे स्थिरांक (F = 96,485 J/(V·mol) = 96,485 कूलम्ब) है।[2] फ्रॉस्ट आरेख का नाम आर्थर एटवाटर फ्रॉस्ट नाम पर रखा गया है, जिन्होंने मूल रूप से 1951 के पेपर में मुक्त ऊर्जा और ऑक्सीकरण संभावित डेटा दोनों को सरलता से दिखाने की विधियों के रूप में इसका आविष्कार किया था।[1]
पीएच निर्भरता
पीएच निर्भरता कारक -0.059m/n प्रति पीएच इकाई द्वारा दी गई है, जहाँ m समीकरण में प्रोटॉन की संख्या से संबंधित है, और n इलेक्ट्रॉनों की संख्या का आदान-प्रदान होता है। इलेक्ट्रोकैमिस्ट्री में सदैव इलेक्ट्रॉनों का आदान-प्रदान होता है, लेकिन आवश्यक नहीं कि प्रोटॉन हों। यदि प्रतिक्रिया संतुलन में कोई प्रोटॉन विनिमय नहीं होता है, तो प्रतिक्रिया को पीएच-स्वतंत्र कहा जाता है। इसका अर्थ यह है कि रेडॉक्स अर्ध-प्रतिक्रिया में प्रदान की गई विद्युत रासायनिक क्षमता के मान, जिससे प्रश्न में रासायनिक तत्व ऑक्सीकरण अवस्थाओं को परिवर्तित करते हैं, पीएच की अवस्था जो भी होती है, जिसके अनुसार प्रक्रिया की जाती है।
फ्रॉस्ट आरेख भी अम्लीय और मूलभूत समाधानों की मानक क्षमता (ढलान) के रुझानों की तुलना करने के लिए उपयोगी उपकरण है। शुद्ध, तटस्थ तत्व अलग-अलग यौगिकों में संक्रमण करता है, यह इस बात पर निर्भर करता है कि प्रजाति अम्लीय और मूलभूत पीएच में है या नहीं। चूँकि ऑक्सीकरण अवस्थाओं का मूल्य और मात्रा अपरिवर्तित रहती है, मुक्त ऊर्जा बहुत भिन्न हो सकती है। फ़्रॉस्ट आरेख सरल और सुविधाजनक तुलना के लिए अम्लीय और मूल ग्राफ़ के अध्यारोपण की अनुमति देता है।
इकाई और पैमाना
मानक मुक्त-ऊर्जा पैमाने को इलेक्ट्रॉन-वोल्ट में मापा जाता है,[1]और nE° = 0 मान सामान्यतः शुद्ध, तटस्थ तत्व होता है। फ़्रॉस्ट आरेख सामान्यतः nE° = 0 के ऊपर और नीचे मुक्त-ऊर्जा मान दिखाता है और इसे पूर्णांकों में पैमानित किया जाता है। ग्राफ का y-अक्ष मुक्त ऊर्जा प्रदर्शित करता है। बढ़ती स्थिरता (कम मुक्त ऊर्जा) ग्राफ पर कम है, इसलिए उच्च मुक्त ऊर्जा और ग्राफ पर उच्च तत्व है, यह अधिक अस्थिर और प्रतिक्रियाशील है।[2]
फ्रॉस्ट आरेख के x-अक्ष पर तत्व का ऑक्सीकरण अवस्था दिखाया गया है। ऑक्सीकरण अवस्था इकाई रहित होती हैं और सकारात्मक और नकारात्मक पूर्णांकों में भी मापी जाती हैं। अधिकांशतः, फ्रॉस्ट आरेख ऑक्सीकरण संख्या को बढ़ते क्रम में प्रदर्शित करता है, लेकिन कुछ स्थितियों में यह घटते क्रम में प्रदर्शित होता है। शून्य (nE° = 0) की मुक्त ऊर्जा वाले तटस्थ, शुद्ध तत्व में भी ऑक्सीकरण अवस्था शून्य के बराबर होती है।[2] चूँकि, कुछ अलॉट्रोप्स की ऊर्जा शून्य नहीं हो सकती है।[3]
रेखा का ढलान इसलिए दो ऑक्सीकरण अवस्थाओं के बीच मानक क्षमता का प्रतिनिधित्व करता है। दूसरे शब्दों में, रेखा की ढलान उन दो अभिकारकों की प्रतिक्रिया करने और सबसे कम ऊर्जा वाले उत्पाद बनाने की प्रवृत्ति को दर्शाती है।[1] सकारात्मक या नकारात्मक ढलान होने की संभावना है। दो प्रजातियों के बीच सकारात्मक ढलान ऑक्सीकरण प्रतिक्रिया की प्रवृत्ति को इंगित करता है, जबकि दो प्रजातियों के बीच नकारात्मक ढलान कमी की प्रवृत्ति को इंगित करता है। उदाहरण के लिए, यदि [HMnO4]− में मैंगनीज की ऑक्सीकरण अवस्था +6 और nE° = 4 है, और MnO2 में ऑक्सीकरण अवस्था +4 और nE° = 0 है, तो ढलान Δy/Δx 4/2 = 2 है, जो +2 की मानक क्षमता प्रदान करता है। इसी प्रकार इस ग्राफ द्वारा किसी भी पद की स्थिरता का पता लगाया जा सकता है।
ग्रेडिएंट
फ्रॉस्ट आरेख पर किन्हीं दो बिंदुओं के बीच की रेखा का ढाल प्रतिक्रिया की क्षमता देता है। प्रजाति जो किसी भी तरफ दो बिंदुओं के ढाल के ऊपर चोटी में स्थित है, असमानता के संबंध में अस्थिर प्रजाति को दर्शाती है, और बिंदु जो रेखा के ढाल से नीचे गिरती है, जो इसके दो आसन्न बिंदुओं में सम्मिलित होती है, थर्मोडायनामिक सिंक में होती है, और आंतरिक रूप से स्थिर है।
अक्ष
फ्रॉस्ट आरेख के अक्ष (क्षैतिज रूप से) प्रश्न में प्रजातियों के ऑक्सीकरण अवस्था और (लंबवत) इलेक्ट्रॉन विनिमय संख्या को वोल्टेज (nE) या फैराडे स्थिरांक की प्रति इकाई गिब्स मुक्त ऊर्जा, ΔG/F से गुणा करते हैं।
अनुपातहीनता और अनुपातहीनता
इलेक्ट्रोकेमिकल प्रतिक्रियाओं के संबंध में, फ्रॉस्ट आरेख का उपयोग करके दो मुख्य प्रकार की प्रतिक्रियाओं की कल्पना की जा सकती है। समनुपात तब होता है जब तत्व के दो समकक्ष, ऑक्सीकरण संख्या में भिन्न होते हैं, मध्यवर्ती ऑक्सीकरण संख्या के साथ उत्पाद बनाने के लिए गठबंधन करते हैं। अनुपातहीनता विपरीत प्रतिक्रिया है, जिसमें तत्व के दो समकक्ष, ऑक्सीकरण संख्या में समान होते हैं, अलग-अलग ऑक्सीकरण संख्या के दो उत्पाद बनाने के लिए प्रतिक्रिया करते हैं।[2]
अनुपातहीनता: 2 Mn+ → Mm+ + Mp+
अनुपात: Mm+ + Mp+ → 2 Mn+
2 n = m + p दोनों उदाहरणों में[2]
फ्रॉस्ट आरेख का उपयोग करके, यह अनुमान लगाया जा सकता है कि क्या ऑक्सीकरण संख्या अनुपातहीनता से निकलेंगी या दो ऑक्सीकरण संख्याएं अनुपातहीनता से निकलेंगी। आरेख पर तीन ऑक्सीकरण संख्याओं के सेट के बीच दो ढलानों को देखते हुए, दो मानक क्षमता (ढलान) समान नहीं हैं, मध्य ऑक्सीकरण या तो "पहाड़ी" या "घाटी" रूप में होगा। पहाड़ी का निर्माण तब होता है जब बायाँ ढलान दाएँ से अधिक तीव्र होता है, और घाटी का निर्माण होता है जब दायाँ ढलान बाएँ से अधिक तीव्र होता है। ऑक्सीकरण संख्या जो "पहाड़ी की चोटी" पर है, आसन्न ऑक्सीकरण अवस्थाओं में अनुपातहीनता का पक्ष लेती है।[1][2] आसन्न ऑक्सीकरण अवस्था, तथापि, यदि मध्य ऑक्सीकरण अवस्था "घाटी के तल" में है, तो अनुपातीकरण का पक्ष लेंगे।[2]
आलोचना/विसंगतियां
आर्थर फ्रॉस्ट ने अपने स्वयं के मूल प्रकाशन में कहा कि उनके फ्रॉस्ट आरेख के लिए संभावित आलोचना हो सकती है। वह भविष्यवाणी करता है कि "ढलानों को सरलता से या स्पष्ट' रूप से पहचाना नहीं जा सकता क्योंकि वे ऑक्सीकरण क्षमता के प्रत्यक्ष संख्यात्मक मान हैं [लैटिमर आरेख के]"[1] कई अकार्बनिक रसायनज्ञ मात्रात्मक डेटा के लिए लैटिमर का उपयोग करते हुए लैटीमर और फ्रॉस्ट आरेख दोनों का उपयोग करते हैं, और फिर उन डेटा को विज़ुअलाइज़ेशन के लिए फ्रॉस्ट आरेख में परिवर्तित करते हैं। फ्रॉस्ट ने सुझाव दिया कि पूरक जानकारी प्रदान करने के लिए ढलानों के निकट में मानक क्षमता के संख्यात्मक मान जोड़े जा सकते हैं।[1]
जर्नल ऑफ केमिकल एजुकेशन में प्रकाशित पेपर में, मार्टिनेज डी इलारडुआ और विलफाने (1994)[4] ने फ्रॉस्ट आरेखों के उपयोगकर्ताओं को आरेखों के निर्माण के लिए उपयोग की जाने वाली मुक्त ऊर्जा की परिभाषा से अवगत होने के लिए चेतावनी दी थी। अम्ल-विलयन ग्राफ़ में, मानक nE° = −ΔG/F सार्वभौमिक रूप से उपयोग किया जाता है; इसलिए सभी स्रोतों के एसिड-सॉल्यूशन फ्रॉस्ट आरेख समान होंगे। चूँकि, विभिन्न पाठ्यपुस्तकें ऊर्जा के संबंध में तत्व के फ्रॉस्ट आरेख में विसंगतियां दिखाती हैं। कुछ पाठ्यपुस्तकें अपचयन क्षमता का उपयोग करती हैं, E°(2 H+ + 2 e−/H2), मूल-समाधान के लिए एसिड-समाधान में परिभाषित है। फिलिप्स और विलियम्स अकार्बनिक रसायन विज्ञान की पाठ्यपुस्तक में, चूँकि, निम्न सूत्र द्वारा दिए गए मूलभूत समाधानों के लिए एक और कमी क्षमता का उपयोग किया जाता है: E° (OH) = E°b − E°(2 H2O + 2 e−/H2 + 2 OH−) = E°b + 0.828 V[5] कटौती क्षमता को प्रस्तुत करने की यह दूसरी विधि' कुछ पाठ्यपुस्तकों में उपयोग की जाती है और दूसरों में नहीं, लेकिन सदैव ग्राफ़ पर स्पष्ट रूप से इंगित नहीं की जाती है, जिससे पाठक के लिए भ्रम उत्पन्न होता है। इसलिए, फ्रॉस्ट आरेख के उपयोगकर्ताओं को समस्या के बारे में पता होना चाहिए, और सदैव स्पष्ट रूप से सूचित किया जाना चाहिए कि उनके आरेख किस मुक्त-ऊर्जा पैमाने पर आधारित हैं।[4]
यह भी देखें
- पौरबाइक्स आरेख
- एलिंघम आरेख
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Frost, Arthur (1951). "Oxidation Potential–Free Energy Diagrams". Journal of the American Chemical Society. 73 (6): 2680–2682. doi:10.1021/ja01150a074.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Shriver (2010). अकार्बनिक रसायन शास्त्र. W. H. Freeman & Co.
- ↑ Villafañe, F. (2009). "Where Is Ozone in the Frost Diagram?". Journal of Chemical Education. 86 (4): 432. doi:10.1021/ed086p432. Retrieved 24 February 2022.
- ↑ 4.0 4.1 Martínez de Illarduya, Jesús M.; Villafane, Fernando (June 1994). "फ्रॉस्ट आरेख उपयोगकर्ताओं के लिए एक चेतावनी". Journal of Chemical Education. 71 (6): 480–482. Bibcode:1994JChEd..71..480M. doi:10.1021/ed071p480.
- ↑ Phillips, C. S. G. (1965). अकार्बनिक रसायन शास्त्र. Oxford University. pp. 314–321.
{{cite book}}
: CS1 maint: location missing publisher (link)