सैमन की मैपिंग: Difference between revisions
(Created page with "सैममोन मैपिंग या सैममोन प्रोजेक्शन एक एल्गोरिद्म है जो निम्न-आयाम...") |
No edit summary |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
'''सैमन की मैपिंग''' या सैममोन प्रक्षेपण एल्गोरिद्म है, जो निम्न-आयाम प्रक्षेपण को उच्च-आयामी स्थान में अंतर-बिंदु दूरी की संरचना को संरक्षित करने का प्रयत्न करके निम्न आयामी स्थान ([[बहुआयामी स्केलिंग]] देखें) के लिए उच्च-आयामी स्थान को मैप (गणित) करता है।<ref>{{cite web|first=Nivash|last=Jeevanandam|date=2021-09-13 | |||
|title=Underrated But Fascinating ML Concepts #5 – CST, PBWM, SARSA, & Sammon Mapping | |title=Underrated But Fascinating ML Concepts #5 – CST, PBWM, SARSA, & Sammon Mapping | ||
|url=https://analyticsindiamag.com/underrated-but-fascinating-ml-concepts-5-cst-pbwm-sarsa-sammon-mapping/ | |url=https://analyticsindiamag.com/underrated-but-fascinating-ml-concepts-5-cst-pbwm-sarsa-sammon-mapping/ | ||
Line 5: | Line 5: | ||
|website=Analytics India Magazine | |website=Analytics India Magazine | ||
|language=en}}</ref> | |language=en}}</ref> | ||
यह समन्वेशी डेटा विश्लेषण में उपयोग के लिए विशेष रूप से अनुकूल है। | |||
यह विधि 1969 में जॉन डब्ल्यू सैमन द्वारा प्रस्तावित की गई थी।<ref>{{cite journal|author=Sammon JW|title=डेटा संरचना विश्लेषण के लिए एक अरेखीय मानचित्रण|journal=IEEE Transactions on Computers| volume=18|issue=5|year=1969|pages=401,402 (missing in PDF),403–409|url=http://theoval.cmp.uea.ac.uk/~gcc/matlab/sammon/sammon.pdf|doi=10.1109/t-c.1969.222678 |s2cid=43151050 }}</ref> इसे अरैखिक दृष्टिकोण माना जाता है क्योंकि मानचित्रण को मुख्य घटक विश्लेषण जैसी तकनीकों में यथासंभव मूल चर के रैखिक संयोजन के रूप में प्रदर्शित नहीं किया जा सकता है, जिससे वर्गीकरण अनुप्रयोगों के लिए उपयोग करना अधिक कठिन हो जाता है।<ref>{{cite journal|author=Lerner, B; Hugo Guterman, Mayer Aladjem, Itshak Dinsteint, Yitzhak Romem|title= सैमन के नॉनलाइनियर मैपिंग के साथ पैटर्न वर्गीकरण पर एक प्रायोगिक अध्ययन|journal= Pattern Recognition|volume=31|issue=4|year=1998|pages=371–381| doi=10.1016/S0031-3203(97)00064-2|bibcode= 1998PatRe..31..371L}}</ref> | |||
मूल स्थान में iवीं और jवीं वस्तुओं के मध्य की दूरी को <math>\scriptstyle d^{*}_{ij}</math> से और उनके प्रक्षेपणों के मध्य की दूरी को <math>\scriptstyle d^{}_{ij}</math> से निरूपित करें। | |||
सैमन की मैपिंग का उद्देश्य निम्न त्रुटि फलन को अल्प करना है, जिसे अधिकांशतः सैमॉन का तनाव या सैममोन की त्रुटि कहा जाता है: | |||
:<math>E = \frac{1}{\sum\limits_{i<j}d^{*}_{ij}}\sum_{i<j}\frac{(d^{*}_{ij}-d_{ij})^2}{d^{*}_{ij}}.</math> | :<math>E = \frac{1}{\sum\limits_{i<j}d^{*}_{ij}}\sum_{i<j}\frac{(d^{*}_{ij}-d_{ij})^2}{d^{*}_{ij}}.</math> | ||
न्यूनीकरण या तो [[ ढतला हुआ वंश ]] द्वारा किया जा सकता है | न्यूनीकरण या तो प्रारंभिक रूप से प्रस्तावित [[ ढतला हुआ वंश |ग्रेडिएंट डिसेंट]] द्वारा किया जा सकता है, या अन्य माध्यमों से, जिसमें सामान्यतः पुनरावृत्त विधियों को सम्मिलित किया जा सकता है। | ||
पुनरावृत्तियों की संख्या को प्रयोगात्मक रूप से निर्धारित करने की आवश्यकता होती है और अभिसरण समाधानों की सदैव प्रत्याभूति नहीं होती है। | |||
कई कार्यान्वयन प्रारंभिक कॉन्फ़िगरेशन के रूप में प्रथम प्रमुख घटकों का उपयोग लोकप्रिय है।<ref>{{cite journal|journal=Pattern Analysis and Applications|volume=3|issue=2|pages=61–68|doi=10.1007/s100440050006|title= सैमन के नॉनलाइनियर मैपिंग की शुरूआत पर|author=Lerner, B; H. Guterman, M. Aladjem and I. Dinstein|year=2000|citeseerx=10.1.1.579.8935|s2cid=2055054}}</ref> | |||
1969 में अपने आगमन के पश्चात, सैमन की मैपिंग सबसे सफल अरैखिक मीट्रिक बहुआयामी स्केलिंग विधि रही है, किन्तु प्रतिबल-फलन के अतिरिक्त एल्गोरिथम सुधार पर ध्यान केंद्रित किया गया है। | |||
बाएं [[ब्रेगमैन विचलन]]<ref>{{cite journal|journal=Pattern Recognition|volume=44|issue=5|pages=1137–1154|title= ब्रेगमैन डायवर्जेंस के साथ मीट्रिक बहुआयामी स्केलिंग का विस्तार|author=J. Sun, M. Crowe, C. Fyfe|date=May 2011|doi=10.1016/j.patcog.2010.11.013|bibcode=2011PatRe..44.1137S }}</ref> और दाएं ब्रेगमैन विचलन<ref>{{cite journal|journal=Information Sciences|title= ब्रेगमैन डायवर्जेंस के साथ सैमन मैपिंग का विस्तार|author=J. Sun, C. Fyfe, M. Crowe|year=2011|doi= 10.1016/j.ins.2011.10.013|volume=187|pages=72–92}}</ref> का उपयोग करके और इसके प्रतिबल-फलन को विस्तारित करके सैमन की मैपिंग के प्रदर्शन में सुधार किया गया है। | |||
Line 37: | Line 40: | ||
* [http://www.codeproject.com/KB/recipes/SammonProjection.aspx A C# based program with code on CodeProject]. | * [http://www.codeproject.com/KB/recipes/SammonProjection.aspx A C# based program with code on CodeProject]. | ||
* [http://theoval.cmp.uea.ac.uk/~gcc/matlab/default.html#sammon Matlab code and method introduction] | * [http://theoval.cmp.uea.ac.uk/~gcc/matlab/default.html#sammon Matlab code and method introduction] | ||
[[Category: | [[Category:All stub articles]] | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 maint]] | |||
[[Category:Created On 24/05/2023]] | [[Category:Created On 24/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Statistics stubs]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:आयाम में कमी]] | |||
[[Category:कार्य और मानचित्रण]] |
Latest revision as of 12:39, 31 October 2023
सैमन की मैपिंग या सैममोन प्रक्षेपण एल्गोरिद्म है, जो निम्न-आयाम प्रक्षेपण को उच्च-आयामी स्थान में अंतर-बिंदु दूरी की संरचना को संरक्षित करने का प्रयत्न करके निम्न आयामी स्थान (बहुआयामी स्केलिंग देखें) के लिए उच्च-आयामी स्थान को मैप (गणित) करता है।[1]
यह समन्वेशी डेटा विश्लेषण में उपयोग के लिए विशेष रूप से अनुकूल है।
यह विधि 1969 में जॉन डब्ल्यू सैमन द्वारा प्रस्तावित की गई थी।[2] इसे अरैखिक दृष्टिकोण माना जाता है क्योंकि मानचित्रण को मुख्य घटक विश्लेषण जैसी तकनीकों में यथासंभव मूल चर के रैखिक संयोजन के रूप में प्रदर्शित नहीं किया जा सकता है, जिससे वर्गीकरण अनुप्रयोगों के लिए उपयोग करना अधिक कठिन हो जाता है।[3]
मूल स्थान में iवीं और jवीं वस्तुओं के मध्य की दूरी को से और उनके प्रक्षेपणों के मध्य की दूरी को से निरूपित करें।
सैमन की मैपिंग का उद्देश्य निम्न त्रुटि फलन को अल्प करना है, जिसे अधिकांशतः सैमॉन का तनाव या सैममोन की त्रुटि कहा जाता है:
न्यूनीकरण या तो प्रारंभिक रूप से प्रस्तावित ग्रेडिएंट डिसेंट द्वारा किया जा सकता है, या अन्य माध्यमों से, जिसमें सामान्यतः पुनरावृत्त विधियों को सम्मिलित किया जा सकता है।
पुनरावृत्तियों की संख्या को प्रयोगात्मक रूप से निर्धारित करने की आवश्यकता होती है और अभिसरण समाधानों की सदैव प्रत्याभूति नहीं होती है।
कई कार्यान्वयन प्रारंभिक कॉन्फ़िगरेशन के रूप में प्रथम प्रमुख घटकों का उपयोग लोकप्रिय है।[4]
1969 में अपने आगमन के पश्चात, सैमन की मैपिंग सबसे सफल अरैखिक मीट्रिक बहुआयामी स्केलिंग विधि रही है, किन्तु प्रतिबल-फलन के अतिरिक्त एल्गोरिथम सुधार पर ध्यान केंद्रित किया गया है।
बाएं ब्रेगमैन विचलन[5] और दाएं ब्रेगमैन विचलन[6] का उपयोग करके और इसके प्रतिबल-फलन को विस्तारित करके सैमन की मैपिंग के प्रदर्शन में सुधार किया गया है।
यह भी देखें
- प्रीफ्रंटल कॉर्टेक्स बेसल गैन्ग्लिया वर्किंग मेमोरी
- स्टेट-एक्शन-इनाम-स्टेट-एक्शन
- कौशल वृक्षों का निर्माण
संदर्भ
- ↑ Jeevanandam, Nivash (2021-09-13). "Underrated But Fascinating ML Concepts #5 – CST, PBWM, SARSA, & Sammon Mapping". Analytics India Magazine (in English). Retrieved 2021-12-05.
- ↑ Sammon JW (1969). "डेटा संरचना विश्लेषण के लिए एक अरेखीय मानचित्रण" (PDF). IEEE Transactions on Computers. 18 (5): 401, 402 (missing in PDF), 403–409. doi:10.1109/t-c.1969.222678. S2CID 43151050.
- ↑ Lerner, B; Hugo Guterman, Mayer Aladjem, Itshak Dinsteint, Yitzhak Romem (1998). "सैमन के नॉनलाइनियर मैपिंग के साथ पैटर्न वर्गीकरण पर एक प्रायोगिक अध्ययन". Pattern Recognition. 31 (4): 371–381. Bibcode:1998PatRe..31..371L. doi:10.1016/S0031-3203(97)00064-2.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Lerner, B; H. Guterman, M. Aladjem and I. Dinstein (2000). "सैमन के नॉनलाइनियर मैपिंग की शुरूआत पर". Pattern Analysis and Applications. 3 (2): 61–68. CiteSeerX 10.1.1.579.8935. doi:10.1007/s100440050006. S2CID 2055054.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ J. Sun, M. Crowe, C. Fyfe (May 2011). "ब्रेगमैन डायवर्जेंस के साथ मीट्रिक बहुआयामी स्केलिंग का विस्तार". Pattern Recognition. 44 (5): 1137–1154. Bibcode:2011PatRe..44.1137S. doi:10.1016/j.patcog.2010.11.013.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ J. Sun, C. Fyfe, M. Crowe (2011). "ब्रेगमैन डायवर्जेंस के साथ सैमन मैपिंग का विस्तार". Information Sciences. 187: 72–92. doi:10.1016/j.ins.2011.10.013.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)