सवलन भागफल (कोंवोलुशन क्वॉटेंट): Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 23: Line 23:
|title=Operational calculus  
|title=Operational calculus  
|series=International Series of Monographs on Pure and Applied Mathematics|volume= 8|publisher= Pergamon Press|place= New York-London-Paris-Los Angeles|year=1959|origyear=1953}}
|series=International Series of Monographs on Pure and Applied Mathematics|volume= 8|publisher= Pergamon Press|place= New York-London-Paris-Los Angeles|year=1959|origyear=1953}}
[[Category: सामान्यीकृत कार्य]]
 
{{math-stub}}
{{math-stub}}


 
[[Category:All stub articles]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 13/05/2023]]
[[Category:Created On 13/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Mathematics stubs]]
[[Category:Templates Vigyan Ready]]
[[Category:सामान्यीकृत कार्य]]

Latest revision as of 15:38, 15 June 2023

गणित में, कनवल्शन भागफल का स्पेस, फलन के कनवल्शन रिंग (अमूर्त बीजगणित) के अंशों का क्षेत्र है | कनवल्शन भागफल कनवल्शन के संचालन (गणित) के लिए है | क्योंकि पूर्णांक का भागफल गुणा करना है। कनवल्शन भागफल का निर्माण डिराक डेल्टा फलन, अभिन्न संचालिका और अंतर संचालन के सरल बीजगणितीय प्रतिनिधित्व की अनुमति देता है | अभिन्न रूपांतर से सीधे निपटने के लिए, जो अधिकांशतः विधि कठिनाइयों के अधीन होते हैं कि वे अभिसरण करते हैं या नहीं करते है ।

कनवल्शन भागफल द्वारा प्रस्तुत किया गया था | मिकुसिंस्की (1949), और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।

एक प्रकार का कनवल्शन जिसके साथ यह सिद्धांत संबंधित है | इसके द्वारा परिभाषित किया गया है |

यह टिश्मर्श कनवल्शन प्रमेय से अनुसरण करता है कि यदि कनवल्शन दो कार्यों का जो निरंतर हैं | उस अंतराल पर प्रत्येक स्थान 0 के समान है, तो कम से कम एक उस अंतराल पर प्रत्येक स्थान 0 है। परिणाम यह है कि यदि निरंतर हैं | तब केवल यह तथ्य कनवल्शन भागफल को यह कहकर परिभाषित करना संभव बनाता है कि दो फलन (गणित) ƒ, g के लिए, जोड़ी (ƒ, g) में जोड़ी (h * ƒ,h * g) के समान कनवल्शन भागफल है।


जैसा कि पूर्णांकों से परिमेय संख्याओं के निर्माण के साथ होता है | कनवल्शन कोशेंट्स का क्षेत्र कनवल्शन रिंग का सीधा विस्तार होता है | जिससे इसे बनाया गया था। प्रत्येक साधारण फलन मूल स्थान में कैनोनिक रूप से कनवल्शन भागफल के स्थान में (समतुल्यता वर्ग) जोड़ी के रूप में एम्बेड होता है | उसी तरह से जैसे साधारण पूर्णांक परिमेय संख्याओं में विहित रूप से एम्बेड होते हैं। हमारे नए स्थान के गैर-कार्यात्मक तत्वों को संचालको या सामान्यीकृत कार्यों के रूप में माना जा सकता है | जिनके कार्यों पर बीजगणितीय क्रिया सदैव अच्छी तरह से परिभाषित होती है | तथापि उनका सामान्य कार्य स्थान में कोई प्रतिनिधित्व न हो।

यदि हम सकारात्मक अर्ध-पंक्ति कार्यों के कनवल्शन रिंग से प्रारंभ करते हैं, तो उपरोक्त निर्माण व्यवहार में लाप्लास परिवर्तन के समान है, और साधारण लाप्लास-स्पेस रूपांतरण चार्ट का उपयोग गैर-फलन संचालको को सामान्य कार्यों में सम्मिलित करने के लिए किया जा सकता है |(यदि वे उपस्थित हैं) ). फिर भी जैसा कि ऊपर उल्लेख किया गया है | अंतरिक्ष के निर्माण के लिए बीजगणितीय दृष्टिकोण पारंपरिक अभिन्न परिवर्तन निर्माण के साथ कई विधि रूप से चुनौतीपूर्ण अभिसरण समस्याओं को दरकिनार करते हुए, परिवर्तन या इसके व्युत्क्रम को स्पष्ट रूप से परिभाषित करने की आवश्यकता को दरकिनार कर देता है।

संदर्भ

  • Mikusiński, Jan G. (1949), "Sur les fondements du calcul opératoire", Studia Math., 11: 41–70, MR 0036949
  • Mikusiński, Jan (1959) [1953], Operational calculus, International Series of Monographs on Pure and Applied Mathematics, vol. 8, New York-London-Paris-Los Angeles: Pergamon Press, MR 0105594