रदरफोर्ड स्कैटरिंग: Difference between revisions

From Vigyanwiki
mNo edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 75: Line 75:
इन्हें इसमें प्रतिस्थापित करने पर लगभग {{val|2.7e-14|u=m}}, या 27 fm का मान मिलता है। (सच्ची त्रिज्या लगभग 7.3 fm है।) इन प्रयोगों में नाभिक की वास्तविक त्रिज्या पुनः प्राप्त नहीं हुई है क्योंकि अल्फा में परमाणु केंद्र के 27 fm से अधिक में प्रवेश करने के लिए पर्याप्त ऊर्जा नहीं है, जैसा कि उल्लेख किया गया है, जब सोने की वास्तविक त्रिज्या 7.3 fm है। रदरफोर्ड ने इसे महसूस किया, और यह भी महसूस किया कि सोने पर अल्फ़ाज़ के वास्तविक प्रभाव से किसी भी बल-विचलन का कारण बनता है {{math|{{sfrac|1|''r''}}}} कूलम्ब विभव उसके प्रकीर्णन वक्र के रूप को उच्च प्रकीर्णन कोणों (न्यूनतम प्रभाव प्राचलों) पर एक अतिपरवलय से कुछ और में बदल देगा। यह नहीं देखा गया था, यह दर्शाता है कि सोने के नाभिक की सतह को छुआ नहीं गया था, इसलिए रदरफोर्ड को भी पता था कि सोने के नाभिक (या सोने और अल्फा त्रिज्या का योग) 27 fm से छोटा था।
इन्हें इसमें प्रतिस्थापित करने पर लगभग {{val|2.7e-14|u=m}}, या 27 fm का मान मिलता है। (सच्ची त्रिज्या लगभग 7.3 fm है।) इन प्रयोगों में नाभिक की वास्तविक त्रिज्या पुनः प्राप्त नहीं हुई है क्योंकि अल्फा में परमाणु केंद्र के 27 fm से अधिक में प्रवेश करने के लिए पर्याप्त ऊर्जा नहीं है, जैसा कि उल्लेख किया गया है, जब सोने की वास्तविक त्रिज्या 7.3 fm है। रदरफोर्ड ने इसे महसूस किया, और यह भी महसूस किया कि सोने पर अल्फ़ाज़ के वास्तविक प्रभाव से किसी भी बल-विचलन का कारण बनता है {{math|{{sfrac|1|''r''}}}} कूलम्ब विभव उसके प्रकीर्णन वक्र के रूप को उच्च प्रकीर्णन कोणों (न्यूनतम प्रभाव प्राचलों) पर एक अतिपरवलय से कुछ और में बदल देगा। यह नहीं देखा गया था, यह दर्शाता है कि सोने के नाभिक की सतह को छुआ नहीं गया था, इसलिए रदरफोर्ड को भी पता था कि सोने के नाभिक (या सोने और अल्फा त्रिज्या का योग) 27 fm से छोटा था।


== {{anchor|Extension to situations with relativistic particles and target recoil}}


<big>आपेक्षिकीय कणों और टारगेट रिकॉइल(लक्ष्य हटना) वाली स्थितियों का विस्तार</big>
<big>आपेक्षिकीय कणों और टारगेट रिकॉइल(लक्ष्य हटना) वाली स्थितियों का विस्तार</big>
Line 110: Line 109:
* {{cite journal | url = http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/GM-1909.html | archive-url = https://web.archive.org/web/20080102232956/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/GM-1909.html | archive-date = January 2, 2008 | title  = On a Diffuse Reflection of the α-Particles | journal = Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | author1 = Geiger, H. | author2 = Marsden, E. | volume = 82 | issue = 557| pages = 495–500 | doi = 10.1098/rspa.1909.0054 | date = 1909|bibcode = 1909RSPSA..82..495G | doi-access = free }}
* {{cite journal | url = http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/GM-1909.html | archive-url = https://web.archive.org/web/20080102232956/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/GM-1909.html | archive-date = January 2, 2008 | title  = On a Diffuse Reflection of the α-Particles | journal = Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | author1 = Geiger, H. | author2 = Marsden, E. | volume = 82 | issue = 557| pages = 495–500 | doi = 10.1098/rspa.1909.0054 | date = 1909|bibcode = 1909RSPSA..82..495G | doi-access = free }}


{{DEFAULTSORT:Rutherford Scattering}}[[Category: बिखरने]] [[Category: मूलभूत क्वांटम भौतिकी]] [[Category: अर्नेस्ट रदरफोर्ड]]
{{DEFAULTSORT:Rutherford Scattering}}


 
[[Category:Created On 03/05/2023|Rutherford Scattering]]
 
[[Category:Lua-based templates|Rutherford Scattering]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Rutherford Scattering]]
[[Category:Created On 03/05/2023]]
[[Category:Pages with script errors|Rutherford Scattering]]
[[Category:Templates Vigyan Ready|Rutherford Scattering]]
[[Category:Templates that add a tracking category|Rutherford Scattering]]
[[Category:Templates that generate short descriptions|Rutherford Scattering]]
[[Category:Templates using TemplateData|Rutherford Scattering]]
[[Category:अर्नेस्ट रदरफोर्ड|Rutherford Scattering]]
[[Category:बिखरने|Rutherford Scattering]]
[[Category:मूलभूत क्वांटम भौतिकी|Rutherford Scattering]]

Latest revision as of 14:57, 12 June 2023

कण भौतिकी में, रदरफोर्ड प्रकीर्णन कूलम्ब अंतःक्रिया द्वारा आवेशित कणों का लोचदार प्रकीर्णन है। यह 1911 में अर्नेस्ट रदरफोर्ड द्वारा समझाई गई एक भौतिक घटना है[1] इससे परमाणु के ग्रहीय रदरफोर्ड मॉडल और अंततः बोहर मॉडल का विकास हुआ। रदरफोर्ड प्रकीर्णन को पहले कूलम्ब प्रकीर्णन कहा जाता था क्योंकि यह केवल स्थिर विद्युत (कूलॉम्ब) क्षमता पर निर्भर करता है, और कणों के बीच न्यूनतम दूरी पूरी तरह से इस क्षमता द्वारा निर्धारित की जाती है। सोने के परमाणु नाभिक के खिलाफ अल्फा कणों की शास्त्रीय रदरफोर्ड प्रकीर्णन की प्रक्रिया लोचदार प्रकीर्णन का एक उदाहरण है क्योंकि न तो अल्फा कण और न ही सोने के नाभिक आंतरिक रूप से उत्तेजित होते हैं। रदरफोर्ड सूत्र (नीचे देखें) बड़े लक्ष्य नाभिक की पुनरावृत्ति गतिज ऊर्जा की उपेक्षा करता है।

प्रारंभिक खोज 1909 में हैंस गीगर और अर्नेस्ट मार्सडेन द्वारा की गई थी, जब उन्होंने रदरफोर्ड के सहयोग से सोने की पन्नी का प्रयोग किया था, जिसमें उन्होंने केवल कुछ परमाणुओं की मोटी सोने की पत्ती की पन्नी पर अल्फा कणों (हीलियम नाभिक) के एक किरण को निकाल दिया था। प्रयोग के समय, परमाणु को एक प्लम-पुडिंग मॉडल (जैसा कि जे जे थॉमसन द्वारा प्रस्तावित किया गया था) के अनुरूप माना जाता था, नकारात्मक रूप से आवेशित इलेक्ट्रॉनों (प्लम) के साथ एक सकारात्मक गोलाकार आव्यूह (पुडिंग) में जड़ी होती है। यदि प्लम-पुडिंग मॉडल सही था, तो धनात्मक "पुडिंग", एक केंद्रित नाभिक के सही मॉडल की तुलना में अधिक फैला होने के कारण, इतने बड़े कूलम्बिक बलों को लागू करने में सक्षम नहीं होगा, और अल्फा कणों को केवल छोटे कोणों से विक्षेपित किया जाना चाहिए क्योंकि वे गुजरते हैं।

चित्र 1. एक क्लाउड(बादल) कक्ष में, बिंदु 1 के निकट लीड-210 पिन स्रोत से 5.3 MeV अल्फा कण धावन पथ बिंदु 2 के पास रदरफोर्ड प्रकीर्णन से गुज़रता है, जो लगभग 30° के कोण से विक्षेपित होता है। यह एक बार फिर बिंदु 3 के पास बिखर जाता है, और अंत में गैस में रुक जाता है। कक्ष गैस में लक्ष्य नाभिक नाइट्रोजन, ऑक्सीजन, कार्बन या हाइड्रोजन नाभिक हो सकता था। इसने लोचदार टक्कर में पर्याप्त गतिज ऊर्जा प्राप्त की जिससे बिंदु 2 के पास एक छोटी दृश्यमान पुनरावृत्ति धावन पथ हो सके (पैमाना सेंटीमीटर में है।)

यद्यपि, दिलचस्प परिणाम बताते हैं कि 1,00,000 अल्फा कणों में लगभग 1 को बहुत बड़े कोणों (90 डिग्री से अधिक) से विक्षेपित किया गया था, जबकि शेष कुछ विक्षेपण के साथ पारित हो गए थे। इससे, रदरफोर्ड ने निष्कर्ष निकाला कि अधिकांश द्रव्यमान इलेक्ट्रॉनों से घिरे एक मिनट, धनावेशित क्षेत्र (नाभिक) में केंद्रित था। जब एक (धनावेशित) अल्फा कण नाभिक के काफी करीब पहुंच गया, तो इसे उच्च कोणों पर उछालने के लिए पर्याप्त मजबूती से पीछे हटा दिया गया। नाभिक के छोटे आकार ने अल्फ़ा कणों की छोटी संख्या को समझाया जो इस तरह से खदेड़ दिए गए थे। रदरफोर्ड ने नीचे उल्लिखित विधि का उपयोग करते हुए दिखाया कि नाभिक का आकार लगभग 10−14 m से कम था (इस आकार से कितना छोटा है, रदरफोर्ड अकेले इस प्रयोग से नहीं बता सकते;निम्नतम संभव आकार की इस समस्या पर और नीचे देखें)। एक दृश्य उदाहरण के रूप में, चित्रा 1 क्लाउड(बादल) कक्ष के गैस में एक नाभिक द्वारा अल्फा कण के विक्षेपण को दर्शाता है।

रदरफोर्ड पश्च प्रकीर्णन नामक एक विश्लेषणात्मक तकनीक में सामग्री विज्ञान समुदाय द्वारा अब रदरफोर्ड प्रकीर्णन का शोषण किया जाता है।

व्युत्पत्ति

एक केंद्रीय क्षमता के माध्यम से परस्पर क्रिया करने वाले दो आवेशित बिंदु कणों के लिए अंतर अनुप्रस्थ काट को गति के समीकरणों से प्राप्त किया जा सकता है। सामान्य तौर पर, केंद्रीय बल के तहत परस्पर क्रिया करने वाले दो कणों का वर्णन करने वाले गति के समीकरणों को द्रव्यमान के केंद्र और एक दूसरे के सापेक्ष कणों की गति में विभाजित किया जा सकता है। उस स्थिति पर विचार करें जहां एक कण (लेबल 1), द्रव्यमान के साथ और आवेशित करें साथ प्राथमिक आवेश कुछ प्रारंभिक गति से बहुत दूर से आपतित होता है द्रव्यमान वाले दूसरे कण (लेबल 2) पर और आवेशित करें शुरू में आराम पर। रदरफोर्ड द्वारा किए गए प्रयोग के अनुसार, हल्के अल्फा कणों के भारी नाभिक से प्रकीर्णन के कारक में, कम द्रव्यमान, अनिवार्य रूप से अल्फा कण का द्रव्यमान और जिस नाभिक से यह बिखरता है, वह प्रयोगशाला ढाँचे में अनिवार्य रूप से स्थिर होता है।

समन्वय प्रणाली की उत्पत्ति के साथ, बिनेट समीकरण में प्रतिस्थापन लक्ष्य पर कण 1 के लिए (बिखरने वाला, कण 2), के रूप में प्रक्षेपवक्र का समीकरण प्राप्त करता है

जहां u = 1/r और b प्रभाव पैरामीटर है।

उपरोक्त अंतर समीकरण का सामान्य हल है

और सीमा शर्त है

उन सीमा शर्तों का उपयोग करके समीकरण u → 0 को हल करना:

और इसका व्युत्पन्न du/ → −1/b उन सीमा स्थितियों का उपयोग करना

हम प्राप्त कर सकते हैं

विक्षेपण कोण पर Θ टक्कर के बाद :

फिर विक्षेपण कोण Θ के रूप में व्यक्त किया जा सकता है:

b देने के लिए हल किया जा सकता है

इस परिणाम से प्रकीर्णन अनुप्रस्थ काट खोजने के लिए इसकी परिभाषा पर विचार करें

कूलम्ब क्षमता और आने वाले कणों की प्रारंभिक गतिज ऊर्जा, प्रकीर्णन कोण को देखते हुए Θ विशिष्ट रूप से प्रभाव पैरामीटर b द्वारा निर्धारित किया जाता है इसलिए, Θ और Θ + dΘ के बीच के कोण में बिखरे हुए कणों की संख्या b और b + db के बीच संबंधित प्रभाव पैरामीटर वाले कणों की संख्या के समान होनी चाहिए। एक घटना तीव्रता I के लिए, इसका तात्पर्य निम्नलिखित समानता से है

त्रिज्य सममित प्रकीर्णन विभव के लिए, जैसा कि कूलम्ब विभव के कारक में होता है, = 2π sin Θ , प्रकीर्णन वाले अनुप्रस्थ काट के लिए अभिव्यक्ति प्रदान करता है

प्रभाव पैरामीटर b(Θ) के लिए पहले व्युत्पन्न अभिव्यक्ति में प्लग करने पर हमें रदरफोर्ड विभेदक प्रकीर्णन अनुप्रस्थ काट मिलता है

इसी परिणाम को वैकल्पिक रूप से व्यक्त किया जा सकता है

कहाँ α1/137 आयाम हीन सूक्ष्म संरचना स्थिरांक है, EK10 MeV में कण 1 की प्रारंभिक गैर-सापेक्ष गतिज ऊर्जा है, और ħc 197 MeV·fm.है।

अधिकतम परमाणु आकार की गणना का विवरण

अल्फा कणों और नाभिक (शून्य प्रभाव पैरामीटर के साथ) के बीच सीधे टकराव के लिए, अल्फा कण की सभी गतिज ऊर्जा को संभावित ऊर्जा में बदल दिया जाता है और कण आराम पर होता है। इस बिंदु पर अल्फा कण के केंद्र से नाभिक के केंद्र (rmin) तक की दूरी परमाणु त्रिज्या के लिए एक ऊपरी सीमा है, अगर यह प्रयोग से स्पष्ट है कि बिखरने की प्रक्रिया ऊपर दिए गए अनुप्रस्थ काट सूत्र का पालन करती है।

अल्फा कण के केंद्र से नाभिक के केंद्र की दूरी इस बिंदु पर परमाणु त्रिज्या के लिए ऊपरी सीमा है, अगर यह प्रयोग से स्पष्ट है कि प्रकीर्णन की प्रक्रिया ऊपर दिए गए अनुप्रस्थ काट सूत्र का पालन करती है।

अल्फा कण और नाभिक पर आवेशों के बीच व्युत्क्रम-वर्ग नियम को लागू करके, कोई लिख सकता है:धारणाएँ: 1. निकाय पर कोई बाह्य बल कार्य नहीं कर रहा है। इस प्रकार निकाय की कुल ऊर्जा (K.E.+P.E.) नियत रहती है। 2. प्रारंभ में अल्फा कण नाभिक से बहुत अधिक दूरी पर होते हैं।

पुनर्व्यवस्थित:

एक अल्फा कण के लिए:

  • m (द्रव्यमान) = 6.64424×10−27 kg = 3.7273×109 eV/c2
  • q1 (हीलियम के लिए) = 2 × 1.6×10−19 C = 3.2×10−19 C
  • q2 (सोने के लिए) = 79 × 1.6×10−19 C = 1.27×10−17 C
  • v (प्रारंभिक वेग) = 2×107 m/s (इस उदाहरण के लिए)

इन्हें इसमें प्रतिस्थापित करने पर लगभग 2.7×10−14 m, या 27 fm का मान मिलता है। (सच्ची त्रिज्या लगभग 7.3 fm है।) इन प्रयोगों में नाभिक की वास्तविक त्रिज्या पुनः प्राप्त नहीं हुई है क्योंकि अल्फा में परमाणु केंद्र के 27 fm से अधिक में प्रवेश करने के लिए पर्याप्त ऊर्जा नहीं है, जैसा कि उल्लेख किया गया है, जब सोने की वास्तविक त्रिज्या 7.3 fm है। रदरफोर्ड ने इसे महसूस किया, और यह भी महसूस किया कि सोने पर अल्फ़ाज़ के वास्तविक प्रभाव से किसी भी बल-विचलन का कारण बनता है 1/r कूलम्ब विभव उसके प्रकीर्णन वक्र के रूप को उच्च प्रकीर्णन कोणों (न्यूनतम प्रभाव प्राचलों) पर एक अतिपरवलय से कुछ और में बदल देगा। यह नहीं देखा गया था, यह दर्शाता है कि सोने के नाभिक की सतह को छुआ नहीं गया था, इसलिए रदरफोर्ड को भी पता था कि सोने के नाभिक (या सोने और अल्फा त्रिज्या का योग) 27 fm से छोटा था।


आपेक्षिकीय कणों और टारगेट रिकॉइल(लक्ष्य हटना) वाली स्थितियों का विस्तार

कम-ऊर्जा रदरफोर्ड-प्रकार के प्रकीर्णन का विस्तार सापेक्षतावादी ऊर्जाओं और कणों में होता है, जिनमें आंतरिक घूर्णन होता है जो इस लेख के दायरे से बाहर है। उदाहरण के लिए, प्रोटॉन से इलेक्ट्रॉन प्रकीर्णन को मॉट(Mott) प्रकीर्णन के रूप में वर्णित किया जाता है,[2] एक अनुप्रस्थ काट के साथ जो गैर-सापेक्षवादी इलेक्ट्रॉनों के लिए रदरफोर्ड सूत्र को कम करता है। यदि किरण या लक्ष्य कण की कोई आंतरिक ऊर्जा उत्तेजित नहीं होती है, तो इस प्रक्रिया को लोचदार प्रकीर्णन कहा जाता है, क्योंकि ऊर्जा और संवेग को किसी भी स्थिति में संरक्षित करना होता है। यदि टक्कर के कारण एक या दूसरे घटक उत्तेजित हो जाते हैं, या यदि परस्पर क्रिया में नए कण बनते हैं, तो इस प्रक्रिया को अप्रत्यास्थ टक्कर प्रकीर्णन कहा जाता है।

टारगेट रिकॉइल(लक्ष्य हटना) को काफी आसानी से नियंत्रित किया जा सकता है। हम अभी भी ऊपर वर्णित स्थिति पर विचार करते हैं, कण 2 शुरू में प्रयोगशाला ढाँचे में आराम पर है। उपरोक्त परिणाम सभी बड़े पैमाने के ढाँचे के केंद्र में लागू होते हैं। प्रयोगशाला ढाँचे में, एक उपलेख L द्वारा निरूपित, एक सामान्य केंद्रीय क्षमता के लिए प्रकीर्णन वाला कोण है

कहाँ . के लिए , . भारी कण 1 के लिए, और अर्थात आपतित कण बहुत छोटे कोण से विक्षेपित होता है। प्रयोगशाला ढाँचे में कण 2 की अंतिम गतिज ऊर्जा, , है

F, 0 और 1 के बीच है, और संतुष्ट करता है , इसका अर्थ है कि यदि हम कण द्रव्यमान को बदलते हैं तो यह समान है। इनके साथ आमने-सामने की टक्कर के लिए ऊर्जा अनुपात F पर अधिकतम हो जाता है और इस तरह . के लिए , . यह 1 के लिए अधिकतम होता है , जिसका अर्थ है कि समान द्रव्यमान वाले आमने-सामने की टक्कर में, कण 1 की समस्त ऊर्जा कण 2 में स्थानांतरित हो जाती है। , या एक भारी घटना कण, और शून्य की ओर अग्रसर होता है, जिसका अर्थ है कि आपतित कण अपनी लगभग सभी गतिज ऊर्जा को बनाए रखता है। किसी भी केंद्रीय क्षमता के लिए, प्रयोगशाला ढाँचे में अंतर अनुप्रस्थ काट से संबंधित है जो सेंटर-ऑफ-मास(द्रव्यमान का केंद्र) ढाँचे में है

प्रतिक्षेप के महत्व की भावना देने के लिए, हम एक घटना अल्फा कण (द्रव्यमान संख्या) के लिए हेड-ऑन एनर्जी(ऊर्जा) अनुपात F का मूल्यांकन करते हैं ) सोने के नाभिक का प्रकीर्णन (द्रव्यमान संख्या ): .| अल्फा पर सोने की घटना के विपरीत कारक में, F का वही मूल्य है, जैसा कि ऊपर बताया गया है। एक प्रोटॉन से इलेक्ट्रॉन के प्रकीर्णन के अधिक चरम कारक के लिए, और .

यह भी देखें

संदर्भ

  1. Rutherford, E. (1911). "LXXIX. The scattering of α and β particles by matter and the structure of the atom". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 21 (125): 669–688. doi:10.1080/14786440508637080. ISSN 1941-5982.
  2. "Hyperphysics link".


पाठ्यपुस्तकें


बाहरी संबंध