डायज़ोट्रोफ़: Difference between revisions

From Vigyanwiki
(Created page with "डायज़ोट्रॉफ़ जीवाणु और आर्किया हैं जो वायुमंडल में नाइट्रोजन...")
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
डायज़ोट्रॉफ़ [[ जीवाणु ]] और [[आर्किया]] हैं जो वायुमंडल में नाइट्रोजन स्थिरीकरण को [[अमोनिया]] जैसे अधिक उपयोगी रूप में बनाते हैं।
डायज़ोट्रॉफ़ [[ जीवाणु |जीवाणु]] और [[आर्किया]] हैं जो वायुमंडल में गैसीय नाइट्रोजन को [[अमोनिया]] जैसे अधिक उपयोगी रूप में स्थिर करते हैं।
 
डायज़ोट्रॉफ़ एक [[सूक्ष्मजीव]] है जो निश्चित [[नाइट्रोजन नियतन]] बाहरी स्रोतों के बिना बढ़ने में सक्षम है। ऐसा करने वाले जीवों के उदाहरण [[राइजोबिया]] और [[फ्रान्सिया]] (सहजीवन में) और [[Azospirillum]] हैं। सभी डायज़ोट्रॉफ़्स में आयरन-मोलिब्डेनम या आयरन-वैनेडियम [[नाइट्रोजनेस]] सिस्टम होते हैं। सबसे अधिक अध्ययन की जाने वाली प्रणालियों में से दो '[[ क्लेबसिएला निमोनिया ]]' और '[[एज़ोटोबैक्टर विनलैंडी]]' हैं। इन प्रणालियों का अध्ययन उनके अनुवांशिक ट्रैक्टेबिलिटी और उनके तेज विकास के कारण किया जाता है।<ref name=DK94>{{cite journal | vauthors = Dixon R, Kahn D | title = जैविक नाइट्रोजन स्थिरीकरण का आनुवंशिक नियमन| journal = Nature Reviews. Microbiology | volume = 2 | issue = 8 | pages = 621–31 | date = August 2004 | pmid = 15263897 | doi = 10.1038/nrmicro954 | s2cid = 29899253 }}</ref>
 


एक डायज़ोट्रॉफ़ एक [[सूक्ष्मजीव]] है जो स्थिर नाइट्रोजन के बाहरी स्रोतों के बिना बढ़ने में सक्षम है। ऐसा करने वाले जीवों के उदाहरण [[राइजोबिया]] और [[राइजोबिया|फ्रैंकिया]]  (सहजीवन में) और [[Azospirillum|एज़ोस्पिरिलम]] हैं। सभी डायज़ोट्रॉफ़्स में आयरन-मोलिब्डेनम या आयरन-वैनेडियम [[नाइट्रोजनेस]] प्रणालिया होती हैं। सबसे अधिक अध्ययन की जाने वाली प्रणालियों में से दो '[[ क्लेबसिएला निमोनिया |"क्लेबसिएला निमोनिया"]]' और '[[एज़ोटोबैक्टर विनलैंडी]]' हैं। इन प्रणालियों का अध्ययन उनके अनुवांशिक सुवाह्यता और उनके तेज विकास के कारण किया जाता है।<ref name=DK94>{{cite journal | vauthors = Dixon R, Kahn D | title = जैविक नाइट्रोजन स्थिरीकरण का आनुवंशिक नियमन| journal = Nature Reviews. Microbiology | volume = 2 | issue = 8 | pages = 621–31 | date = August 2004 | pmid = 15263897 | doi = 10.1038/nrmicro954 | s2cid = 29899253 }}</ref>
== व्युत्पत्ति ==
== व्युत्पत्ति ==
डायज़ोट्रॉफ़ शब्द की उत्पत्ति डायज़ो (di = दो + azo = नाइट्रोजन) शब्दों से हुई है जिसका अर्थ है डाइनाइट्रोजन (N)<sub>2</sub>) और ट्रोफ का अर्थ भोजन या पोषण से संबंधित है, संक्षेप में डाइनाइट्रोजन का उपयोग करना। एज़ोट शब्द का अर्थ फ्रेंच में नाइट्रोजन है और इसका नाम फ्रांसीसी रसायनज्ञ और जीवविज्ञानी एंटोनी लेवोइसियर ने रखा था, जिन्होंने इसे हवा के हिस्से के रूप में देखा था जो जीवन को बनाए नहीं रख सकता।<ref>{{cite web | url=http://www.biology-online.org/dictionary/Diazotroph | title=Diazotroph - Biology-Online Dictionary &#124; Biology-Online Dictionary | access-date=2017-04-05 | archive-url=https://web.archive.org/web/20170315014421/http://www.biology-online.org/dictionary/Diazotroph | archive-date=2017-03-15 | url-status=live }}</ref>
डायज़ोट्रॉफ़ शब्द की उत्पत्ति {diazo}डायज़ो (di = दो + azo = नाइट्रोजन) शब्दों से हुई है जिसका अर्थ है डाइनाइट्रोजन (N)<sub>2</sub> और ट्रोफ का अर्थ भोजन या पोषण से संबंधित है, संक्षेप में डाइनाइट्रोजन का उपयोग करना है। एज़ोट शब्द का अर्थ फ्रेंच में नाइट्रोजन है और इसका नाम फ्रांसीसी रसायनज्ञ और जीवविज्ञानी एंटोनी लेवोइसियर ने रखा था, जिन्होंने इसे हवा के हिस्से के रूप में देखा था जो जीवन को बनाए नहीं रख सकता।<ref>{{cite web | url=http://www.biology-online.org/dictionary/Diazotroph | title=Diazotroph - Biology-Online Dictionary &#124; Biology-Online Dictionary | access-date=2017-04-05 | archive-url=https://web.archive.org/web/20170315014421/http://www.biology-online.org/dictionary/Diazotroph | archive-date=2017-03-15 | url-status=live }}</ref>
 
 
== डायज़ोट्रोफ़्स के प्रकार ==
== डायज़ोट्रोफ़्स के प्रकार ==
डायज़ोट्रोफ़्स [[ जीवाणु ]] टैक्सोनोमिक समूहों (साथ ही आर्किया के एक जोड़े) में बिखरे हुए हैं। यहां तक ​​कि एक प्रजाति के भीतर भी जो नाइट्रोजन को ठीक कर सकती है, ऐसे उपभेद हो सकते हैं जो ऐसा नहीं करते हैं।<ref name="Postgate98">{{cite book|title=Nitrogen Fixation, 3rd Edition|author=Postgate, J|publisher=Cambridge University Press, Cambridge UK|year=1998}}</ref> नाइट्रोजन के अन्य स्रोत उपलब्ध होने पर, और कई प्रजातियों के लिए, जब ऑक्सीजन उच्च आंशिक दबाव में होता है, तो फिक्सेशन बंद हो जाता है। नाइट्रोजन गैसों पर ऑक्सीजन के दुर्बल करने वाले प्रभावों से निपटने के लिए बैक्टीरिया के अलग-अलग तरीके हैं, जिनकी सूची नीचे दी गई है।
डायज़ोट्रोफ़्स [[ जीवाणु ]]टैक्सोनोमिक समूहों (साथ ही आर्किया के एक जोड़े) में बिखरे हुए हैं। यहां तक ​​कि एक प्रजाति के भीतर भी जो नाइट्रोजन स्थिरीकरण कर सकती है, ऐसे उपभेद हो सकते हैं जो ऐसा नहीं करते हैं।<ref name="Postgate98">{{cite book|title=Nitrogen Fixation, 3rd Edition|author=Postgate, J|publisher=Cambridge University Press, Cambridge UK|year=1998}}</ref> नाइट्रोजन के अन्य स्रोत उपलब्ध होने पर, और कई प्रजातियों के लिए, जब ऑक्सीजन उच्च आंशिक दबाव में होता है, तो फिक्सेशन(निर्धारण) बंद हो जाता है। नाइट्रोजन गैसों पर ऑक्सीजन के दुर्बल करने वाले प्रभावों से निपटने के लिए जीवाणु के अलग-अलग तरीके हैं, जिनकी सूची नीचे दी गई है।


=== मुक्त-जीवित डायज़ोट्रोफ़्स ===
=== मुक्त-जीवित डायज़ोट्रोफ़्स ===
* अवायुजीव- ये बाध्यकारी अवायवीय जीव हैं जो ऑक्सीजन को सहन नहीं कर सकते, भले ही वे नाइट्रोजन स्थिरीकरण न कर रहे हों। वे उन आवासों में रहते हैं जिनमें ऑक्सीजन की कमी होती है, जैसे कि मिट्टी और सड़े हुए वनस्पति पदार्थ। [[क्लोस्ट्रीडियम]] एक उदाहरण है। सल्फेट को कम करने वाले बैक्टीरिया समुद्र के तलछट (जैसे [[डेसल्फोविब्रियो]]) में महत्वपूर्ण हैं, और कुछ आर्कियन मेथनोगेंस, जैसे [[ मेथानोकोकस ]], कीचड़, जानवरों की आंतों में नाइट्रोजन को ठीक करते हैं।<ref name=Postgate98/>और अनॉक्सी मिट्टी।<ref>{{cite journal | vauthors = Bae HS, Morrison E, Chanton JP, Ogram A | title = मेथनोगेंस फ्लोरिडा एवरग्लेड्स की मिट्टी में नाइट्रोजन स्थिरीकरण में प्रमुख योगदानकर्ता हैं| journal = Applied and Environmental Microbiology | volume = 84 | issue = 7 | pages = e02222–17 | date = April 2018 | pmid = 29374038 | pmc = 5861825 | doi = 10.1128/AEM.02222-17 }}</ref>
* अवायुजीव- ये बाध्यकारी अवायवीय जीव हैं जो ऑक्सीजन को सहन नहीं कर सकते, भले ही वे नाइट्रोजन स्थिरीकरण न कर रहे हों। वे उन आवासों में रहते हैं जिनमें ऑक्सीजन की कमी होती है<ref name="Postgate98" />, जैसे कि मिट्टी और सड़े हुए वनस्पति पदार्थ, [[क्लोस्ट्रीडियम]] इसका एक उदाहरण है। सल्फेट को कम करने वाले जीवाणु समुद्र के तलछट (जैसे [[डेसल्फोविब्रियो]]) में महत्वपूर्ण हैं, और कुछ आर्कियन मेथनोगेंस, जैसे [[ मेथानोकोकस ]], कीचड़, जानवरों की आंतों और अनॉक्सी(ऑक्सीन्यूनताजन्य) मिट्टी में नाइट्रोजन को ठीक करते हैं।<ref>{{cite journal | vauthors = Bae HS, Morrison E, Chanton JP, Ogram A | title = मेथनोगेंस फ्लोरिडा एवरग्लेड्स की मिट्टी में नाइट्रोजन स्थिरीकरण में प्रमुख योगदानकर्ता हैं| journal = Applied and Environmental Microbiology | volume = 84 | issue = 7 | pages = e02222–17 | date = April 2018 | pmid = 29374038 | pmc = 5861825 | doi = 10.1128/AEM.02222-17 }}</ref>
* ऐच्छिक अवायवीय- ये प्रजातियाँ या तो ऑक्सीजन के साथ या बिना ऑक्सीजन के विकसित हो सकती हैं, लेकिन वे केवल नाइट्रोजन को अवायवीय रूप से ठीक करती हैं। अक्सर, वे जितनी तेजी से ऑक्सीजन की आपूर्ति करते हैं, उतनी तेजी से सांस लेते हैं, मुक्त ऑक्सीजन की मात्रा कम रखते हैं। उदाहरणों में क्लेबसिएला न्यूमोनिया, [[पैनीबैसिलस पॉलीमाइक्सा]], बेसिलस मैकेरन्स और [[एस्चेरिचिया इंटरमीडिया]] शामिल हैं।<ref name=Postgate98/>* एरोबेस- इन प्रजातियों को बढ़ने के लिए ऑक्सीजन की आवश्यकता होती है, फिर भी ऑक्सीजन के संपर्क में आने पर उनका नाइट्रोजिनेज कमजोर हो जाता है। एज़ोटोबैक्टर विनलैंडी इन जीवों में सबसे अधिक अध्ययन किया गया है। ऑक्सीजन की क्षति को रोकने के लिए यह बहुत उच्च श्वसन दर और सुरक्षात्मक यौगिकों का उपयोग करता है। कई अन्य प्रजातियां भी इस तरह ऑक्सीजन के स्तर को कम करती हैं, लेकिन कम श्वसन दर और कम ऑक्सीजन सहनशीलता के साथ।<ref name=Postgate98/>* ऑक्सीजेनिक प्रकाश संश्लेषक बैक्टीरिया ([[साइनोबैक्टीरीया]]) [[प्रकाश संश्लेषण]] के उप-उत्पाद के रूप में ऑक्सीजन उत्पन्न करते हैं, फिर भी कुछ नाइट्रोजन को ठीक करने में भी सक्षम होते हैं। ये औपनिवेशिक बैक्टीरिया हैं जिनमें विशेष कोशिकाएं ([[विषमपुटी]]) होती हैं जिनमें प्रकाश संश्लेषण के ऑक्सीजन पैदा करने वाले चरणों की कमी होती है। [[एनाबिना सिलिंड्रिका]] और [[नोस्टॉक कम्यून]] इसके उदाहरण हैं। अन्य सायनोबैक्टीरिया में हेटरोसिस्ट की कमी होती है और केवल कम रोशनी और ऑक्सीजन के स्तर (जैसे [[Plectonema]]) में नाइट्रोजन को ठीक कर सकते हैं।<ref name=Postgate98/>अत्यधिक प्रचुर समुद्री टैक्सा [[प्रोक्लोरोकोकस]] और [[सिंटिकोकोकस]] सहित कुछ साइनोबैक्टीरिया नाइट्रोजन को ठीक नहीं करते हैं,<ref>{{cite journal | vauthors = Zehr JP | title = समुद्री साइनोबैक्टीरिया द्वारा नाइट्रोजन स्थिरीकरण| journal = Trends in Microbiology | volume = 19 | issue = 4 | pages = 162–73 | date = April 2011 | pmid = 21227699 | doi = 10.1016/j.tim.2010.12.004 }}</ref> जबकि अन्य समुद्री सायनोबैक्टीरिया, जैसे कि [[ट्राइकोड्समियम]] और [[सायनोथेस]], समुद्री नाइट्रोजन स्थिरीकरण में प्रमुख योगदानकर्ता हैं।<ref>{{cite journal | vauthors = Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ | title = ट्राइकोड्समियम - असामान्य नाइट्रोजन निर्धारण गुणों वाला एक व्यापक समुद्री साइनोबैक्टीरियम| journal = FEMS Microbiology Reviews | volume = 37 | issue = 3 | pages = 286–302 | date = May 2013 | pmid = 22928644 | pmc = 3655545 | doi = 10.1111/j.1574-6976.2012.00352.x }}</ref>
* ऐच्छिक अवायवीय- ये प्रजातियाँ या तो ऑक्सीजन के साथ या बिना ऑक्सीजन के विकसित हो सकती हैं, लेकिन वे केवल नाइट्रोजन को अवायवीय रूप से ठीक करती हैं। प्रायः, वे जितनी तेजी से ऑक्सीजन की आपूर्ति करते हैं, उतनी तेजी से सांस लेते हैं, मुक्त ऑक्सीजन की मात्रा कम रखते हैं। उदाहरणों में क्लेबसिएला न्यूमोनिया, [[पैनीबैसिलस पॉलीमाइक्सा]], बेसिलस मैकेरन्स और [[एस्चेरिचिया इंटरमीडिया]] सम्मलित हैं।<ref name=Postgate98/>
* एनोक्सीजेनिक प्रकाश संश्लेषण जीवाणु प्रकाश संश्लेषण के दौरान ऑक्सीजन उत्पन्न नहीं करते हैं, केवल एक ही फोटोसिस्टम होता है जो पानी को विभाजित नहीं कर सकता है। नाइट्रोजनेज को नाइट्रोजन सीमा के तहत व्यक्त किया जाता है। आम तौर पर, अभिव्यक्ति को उत्पादित अमोनियम आयन से नकारात्मक प्रतिक्रिया के माध्यम से नियंत्रित किया जाता है लेकिन एन की अनुपस्थिति में<sub>2</sub>, उत्पाद नहीं बनता है, और उप-उत्पाद एच<sub>2</sub> बेरोकटोक जारी है [बायोहाइड्रोजन]। उदाहरण प्रजातियाँ: रोडोबैक्टर स्पैरोइड्स, रोडोप्स्यूडोमोनस पलस्ट्रिस, रोडोबैक्टर कैप्सुलैटस।<ref name=Blankenship>[[Robert E. Blankenship|Blankenship RE]], Madigan MT & Bauer CE (1995). Anoxygenic photosynthetic bacteria. Dordrecht, The Netherlands, Kluwer Academic.</ref>
*एरोबेस- इन प्रजातियों को बढ़ने के लिए ऑक्सीजन की आवश्यकता होती है, फिर भी ऑक्सीजन के संपर्क में आने पर उनका नाइट्रोजिनेज अभी भी दुर्बल होता है। एज़ोटोबैक्टर विनलैंडी इन जीवों में सबसे अधिक अध्ययन किया गया है। ऑक्सीजन की क्षति को रोकने के लिए यह बहुत उच्च श्वसन दर और सुरक्षात्मक यौगिकों का उपयोग करता है। कई अन्य प्रजातियां भी इस तरह ऑक्सीजन के स्तर को कम करती हैं, लेकिन कम श्वसन दर और कम ऑक्सीजन सहनशीलता के साथ।<ref name="Postgate98" />
 
*ऑक्सीजेनिक प्रकाश संश्लेषक जीवाणु ([[साइनोबैक्टीरीया]]) [[प्रकाश संश्लेषण]] के उप-उत्पाद के रूप में ऑक्सीजन उत्पन्न करते हैं, फिर भी कुछ नाइट्रोजन को ठीक करने में भी सक्षम होते हैं। ये औपनिवेशिक जीवाणु हैं जिनमें विशेष कोशिकाएं ([[विषमपुटी]]) होती हैं जिनमें प्रकाश संश्लेषण के ऑक्सीजन पैदा करने वाले चरणों की कमी होती है। [[एनाबिना सिलिंड्रिका]] और [[नोस्टॉक कम्यून]] इसके उदाहरण हैं। अन्य सायनोबैक्टीरिया में हेटरोसिस्ट(विषमलैंगिक) की कमी होती है और केवल कम रोशनी और ऑक्सीजन के स्तर (जैसे [[Plectonema|पल्टोनेमा)]] में नाइट्रोजन को ठीक कर सकते हैं।<ref name="Postgate98" />अत्यधिक प्रचुर समुद्री टैक्सा [[प्रोक्लोरोकोकस]] और [[सिंटिकोकोकस]] सहित कुछ साइनोबैक्टीरिया नाइट्रोजन को ठीक नहीं करते हैं,<ref>{{cite journal | vauthors = Zehr JP | title = समुद्री साइनोबैक्टीरिया द्वारा नाइट्रोजन स्थिरीकरण| journal = Trends in Microbiology | volume = 19 | issue = 4 | pages = 162–73 | date = April 2011 | pmid = 21227699 | doi = 10.1016/j.tim.2010.12.004 }}</ref> जबकि अन्य समुद्री सायनोबैक्टीरिया, जैसे कि [[ट्राइकोड्समियम]] और [[सायनोथेस]], समुद्री नाइट्रोजन स्थिरीकरण में प्रमुख योगदानकर्ता हैं।<ref>{{cite journal | vauthors = Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ | title = ट्राइकोड्समियम - असामान्य नाइट्रोजन निर्धारण गुणों वाला एक व्यापक समुद्री साइनोबैक्टीरियम| journal = FEMS Microbiology Reviews | volume = 37 | issue = 3 | pages = 286–302 | date = May 2013 | pmid = 22928644 | pmc = 3655545 | doi = 10.1111/j.1574-6976.2012.00352.x }}</ref>
 
* एनोक्सीजेनिक प्रकाश संश्लेषण जीवाणु प्रकाश संश्लेषण के दौरान ऑक्सीजन उत्पन्न नहीं करते हैं, केवल एक ही फोटोसिस्टम होता है जो जल को विभाजित नहीं कर सकता है। नाइट्रोजनेज को नाइट्रोजन सीमा के तहत व्यक्त किया जाता है। समान्यता, अभिव्यक्ति को उत्पादित अमोनियम आयन से नकारात्मक अभिक्रिया के माध्यम से नियंत्रित किया जाता है लेकिन N<sub>2</sub> की अनुपस्थिति में, उत्पाद नहीं बनता है, और उप-उत्पाद H<sub>2</sub> अविरत जारी है [जैवहाइड्रोजन]। उदाहरण प्रजातियाँ: रोडोबैक्टर स्पैरोइड्स, रोडोप्स्यूडोमोनस पलस्ट्रिस, रोडोबैक्टर कैप्सुलैटस।<ref name="Blankenship">[[Robert E. Blankenship|Blankenship RE]], Madigan MT & Bauer CE (1995). Anoxygenic photosynthetic bacteria. Dordrecht, The Netherlands, Kluwer Academic.</ref>
=== सहजीवी डायज़ोट्रोफ़्स ===
=== सहजीवी डायज़ोट्रोफ़्स ===
* राइजोबिया- ये ऐसी प्रजातियां हैं जो फलियां, [[ fabaceae ]] परिवार के पौधों से जुड़ी हैं। ऑक्सीजन रूट नोड्यूल्स में [[लेगहीमोग्लोबिन]] से बंधी होती है, जिसमें बैक्टीरिया के सीबम होते हैं, और उस दर पर आपूर्ति की जाती है जो नाइट्रोजनेज को नुकसान नहीं पहुंचाएगी।<ref name=Postgate98/>* फ्रैंकियास- इन 'एक्टिनोराइजल' नाइट्रोजन फिक्सर्स के बारे में/के बारे में बहुत कम जानकारी है। बैक्टीरिया जड़ों को भी संक्रमित करते हैं जिससे नोड्यूल बनते हैं। [[एक्टिनोरिज़ल]] नोड्यूल में कई लोब होते हैं, प्रत्येक लोब में पार्श्व जड़ के समान संरचना होती है। फ्रेंकिया नोड्यूल्स के कॉर्टिकल टिश्यू में उपनिवेश बनाने में सक्षम है जहां यह नाइट्रोजन को ठीक करता है।<ref name=Vessey />एक्टिनोरिज़ल पौधे और फ्रेंकियस भी हीमोग्लोबिन का उत्पादन करते हैं,<ref name=Beckwith02>{{cite journal | vauthors = Beckwith J, Tjepkema JD, Cashon RE, Schwintzer CR, Tisa LS | title = पांच आनुवंशिक रूप से विविध फ्रेंकिया उपभेदों में हीमोग्लोबिन| journal = Canadian Journal of Microbiology | volume = 48 | issue = 12 | pages = 1048–55 | date = December 2002 | pmid = 12619816 | doi = 10.1139/w02-106 }}</ref> लेकिन राइजोबिया की तुलना में उनकी भूमिका कम सुस्थापित है।<ref name=Vessey />हालांकि सबसे पहले यह प्रतीत हुआ कि वे असंबंधित पौधों ([[ आयु ]]्स, [[ऑस्ट्रेलियाई पाइन]], [[सेनोथस]], [[दलदल मर्टल]], [[प्रीफेक्चुरल शीया]], ड्रायस (पौधे)) के सेट में रहते हैं, [[एंजियोस्पर्म]] के [[ फिलोजेनी ]] के संशोधन इन प्रजातियों और फलियों की निकटता को दर्शाते हैं।<ref name=Soltis>{{cite journal | vauthors = Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG | title = क्लोरोप्लास्ट जीन अनुक्रम डेटा एंजियोस्पर्म में सहजीवी नाइट्रोजन स्थिरीकरण के लिए पूर्वाभास के एकल मूल का सुझाव देते हैं| journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 92 | issue = 7 | pages = 2647–51 | date = March 1995 | pmid = 7708699 | pmc = 42275 | doi = 10.1073/pnas.92.7.2647 | bibcode = 1995PNAS...92.2647S | doi-access = free }}
* राइजोबिया- ये ऐसी प्रजातियां हैं जो फलियां, [[ fabaceae | फैबेसी]] परिवार के पौधों से जुड़ी हैं। जड़ की गांठों में ऑक्सीजन [[लेगहीमोग्लोबिन]] से बंधी होती है, जिसमें जीवाणु सहजीवन होते हैं, और उस दर पर आपूर्ति की जाती है जो नाइट्रोजनेज को नुकसान नहीं पहुंचाएगी।<ref name=Postgate98/>
</ref><ref name=Vessey>{{cite journal |author = Vessey JK, Pawlowski, K and Bergman B |s2cid=5035264 |title=Root-based N<sub>2</sub>-fixing symbioses: Legumes, actinorhizal plants, ''Parasponia'' sp and cycads |journal=Plant and Soil |year=2005 |volume=274 |issue=1–2 |pages=51–78 |doi= 10.1007/s11104-005-5881-5}}</ref> ये फ़ुटनोट फ़िलेजनी के बजाय इन प्रतिकृतियों के ऑनटोजेनेसिस का सुझाव देते हैं। दूसरे शब्दों में, एक प्राचीन जीन (एंजियोस्पर्म और जिम्नोस्पर्म के विचलन से पहले) जो कि अधिकांश प्रजातियों में अप्रयुक्त है, इन प्रजातियों में पुन: जागृत और पुन: उपयोग किया गया था।
*फ्रैंकियास- इन 'एक्टिनोराइजल' नाइट्रोजन स्थिर करने वाले के बारे में/के बारे में बहुत कम जानकारी है। जीवाणु जड़ों को भी संक्रमित करते हैं जिससे नोड्यूल(पिंड) बनते हैं। [[एक्टिनोरिज़ल]] नोड्यूल(पिंड) में कई पालि होते हैं, प्रत्येक पालि में पार्श्व जड़ के समान संरचना होती है। फ्रेंकिया नोड्यूल्स(पिंड) के कॉर्टिकल(वल्कुट) ऊतक में उपनिवेश बनाने में सक्षम है जहां यह नाइट्रोजन को स्थिर करता है।<ref name="Vessey" /> एक्टिनोरिज़ल पौधे और फ्रेंकियस भी हीमोग्लोबिन का उत्पादन करते हैं,<ref name="Beckwith02">{{cite journal | vauthors = Beckwith J, Tjepkema JD, Cashon RE, Schwintzer CR, Tisa LS | title = पांच आनुवंशिक रूप से विविध फ्रेंकिया उपभेदों में हीमोग्लोबिन| journal = Canadian Journal of Microbiology | volume = 48 | issue = 12 | pages = 1048–55 | date = December 2002 | pmid = 12619816 | doi = 10.1139/w02-106 }}</ref> लेकिन राइजोबिया की तुलना में उनकी भूमिका कम सुस्थापित है।<ref name="Vessey" /> यद्यपि सबसे पहले यह प्रतीत हुआ कि वे असंबंधित पौधों (एल्डर्स, [[ऑस्ट्रेलियाई पाइन]], [[सेनोथस|, कैलिफोर्निया बकाइन]], [[दलदल मर्टल]], [[प्रीफेक्चुरल शीया]], ड्रायस (पौधे)) के सेट में रहते हैं, [[एंजियोस्पर्म|आवृतबीजी]] के [[ फिलोजेनी | फिलोजेनी(जातिवृत्‍ति)]] के संशोधन इन प्रजातियों और फलियों के बीच घनिष्ठ संबंध दिखाते हैं।<ref name="Soltis">{{cite journal | vauthors = Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG | title = क्लोरोप्लास्ट जीन अनुक्रम डेटा एंजियोस्पर्म में सहजीवी नाइट्रोजन स्थिरीकरण के लिए पूर्वाभास के एकल मूल का सुझाव देते हैं| journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 92 | issue = 7 | pages = 2647–51 | date = March 1995 | pmid = 7708699 | pmc = 42275 | doi = 10.1073/pnas.92.7.2647 | bibcode = 1995PNAS...92.2647S | doi-access = free }}
* साइनोबैक्टीरिया- सहजीवी साइनोबैक्टीरिया भी हैं। कुछ [[कवक]] के साथ लाइकेन के रूप में, [[मर्चेंटियोफाइटा]] के साथ, एक [[ फ़र्न ]] के साथ, और एक [[साइकैड]] के साथ।<ref name=Postgate98/>ये गांठ नहीं बनाते (वास्तव में अधिकांश पौधों की जड़ें नहीं होती हैं)। जैसा कि ऊपर चर्चा की गई है, विषमपुटी ऑक्सीजन को बाहर कर देते हैं। फ़र्न एसोसिएशन कृषि के लिए महत्वपूर्ण है: ऐनाबीना को शरण देने वाला जल फ़र्न [[अजोला]] [[चावल]] की खेती के लिए एक महत्वपूर्ण हरी खाद है।<ref name=Postgate98/>* जानवरों के साथ जुड़ाव- हालांकि कई जानवरों की हिम्मत में डायज़ोट्रोफ़ पाए गए हैं, आमतौर पर नाइट्रोजन स्थिरीकरण को दबाने के लिए पर्याप्त अमोनिया मौजूद है।<ref name=Postgate98/>कम नाइट्रोजन आहार पर [[दीमक]] कुछ निर्धारण की अनुमति देते हैं, लेकिन दीमक की नाइट्रोजन आपूर्ति में योगदान नगण्य है। [[जहाज़ का कीड़ा]] एकमात्र ऐसी प्रजाति हो सकती है जो अपने आंत सहजीवन से महत्वपूर्ण लाभ प्राप्त करती है।<ref name=Postgate98/>
</ref><ref name="Vessey">{{cite journal |author = Vessey JK, Pawlowski, K and Bergman B |s2cid=5035264 |title=Root-based N<sub>2</sub>-fixing symbioses: Legumes, actinorhizal plants, ''Parasponia'' sp and cycads |journal=Plant and Soil |year=2005 |volume=274 |issue=1–2 |pages=51–78 |doi= 10.1007/s11104-005-5881-5}}</ref> ये पादटिप्पणियाँ जातिवृत्‍ति के बजाय इन प्रतिकृतियों के व्यक्तिवृत्त का सुझाव देते हैं। दूसरे शब्दों में, एक प्राचीन जीन (आवृतबीजी और अनावृतबीजियों के विचलन से पहले) जो कि अधिकांश प्रजातियों में अप्रयुक्त है, इन प्रजातियों में पुन: जागृत और पुन: उपयोग किया गया था।
 
* साइनोबैक्टीरिया- सहजीवी साइनोबैक्टीरिया भी हैं। कुछ [[कवक]] के साथ लाइकेन के रूप में, [[मर्चेंटियोफाइटा|लिवरवॉर्ट्स]] के साथ, एक [[ फ़र्न | फ़र्न]] के साथ, और एक [[साइकैड]] के साथ।<ref name="Postgate98" />ये गांठ नहीं बनाते (वास्तव में अधिकांश पौधों की जड़ें नहीं होती हैं)। जैसा कि ऊपर चर्चा की गई है, विषमपुटी ऑक्सीजन को बाहर कर देते हैं। फ़र्न संगठन कृषि की दृष्टि से महत्वपूर्ण है: ऐनाबीना को आश्रय देने वाला जल फ़र्न [[अजोला|एजोला]] [[चावल]] की खेती के लिए एक महत्वपूर्ण हरी खाद है।<ref name="Postgate98" />
 
*जानवरों के साथ जुड़ाव- यद्यपि डायज़ोट्रॉफ़ कई जानवरों की आंत में पाए गए हैं, समान्यता नाइट्रोजन स्थिरीकरण को दबाने के लिए पर्याप्त अमोनिया मौजूद होता है।<ref name="Postgate98" /> कम नाइट्रोजन आहार पर [[दीमक]] कुछ निर्धारण की अनुमति देते हैं, लेकिन दीमक की नाइट्रोजन आपूर्ति में योगदान नगण्य है। [[जहाज़ का कीड़ा|जहाज़ का कीड़ा(शिपवॉर्म)]] एकमात्र ऐसी प्रजाति हो सकती है जो अपने आंत सहजीवन से महत्वपूर्ण लाभ प्राप्त करती है।<ref name="Postgate98" />
== खेती ==
== खेती करना ==
प्रयोगशाला स्थितियों के तहत, मुक्त रहने वाले डायज़ोट्रोफ़्स में अतिरिक्त नाइट्रोजन स्रोतों की आवश्यकता नहीं होती है, और कार्बन स्रोतों (जैसे सुक्रोज़, ग्लूकोज) और अकार्बनिक नमक की एक छोटी मात्रा की आवश्यकता होती है। मुक्त रहने वाले डायज़ोट्रोफ़ सीधे नाइट्रोजन का उपयोग कर सकते हैं (एन<sub>2</sub>) हवा में नाइट्रोजन पोषण के रूप में। हालाँकि, कई सहजीवी डायज़ोट्रोफ़्स जैसे राइज़ोबिया की खेती करते समय, नाइट्रोजन पोषण को जोड़ना आवश्यक है, क्योंकि राइज़ोबिया और अन्य सहजीवी नाइट्रोजन-फिक्सिंग बैक्टीरिया आणविक नाइट्रोजन (एन) का उपयोग नहीं कर सकते हैं<sub>2</sub>) मुक्त रहने वाले रूप में।<ref>{{cite book |last1=Somasegaran |first1=Padma |last2=Hoden |first2=Heinz.J |title=राइजोबिया के लिए हैंडबुक|date=1994 |publisher=Springer |location=New York, NY |isbn=978-1-4613-8375-8 |page=1 |doi=10.1007/978-1-4613-8375-8 |s2cid=21924709 |edition=1 |url=https://doi.org/10.1007/978-1-4613-8375-8}}</ref>
प्रयोगशाला स्थितियों के तहत, मुक्त रहने वाले डायज़ोट्रोफ़्स में अतिरिक्त नाइट्रोजन स्रोतों की आवश्यकता नहीं होती है, और कार्बन स्रोतों (जैसे सुक्रोज़, ग्लूकोज) और अकार्बनिक नमक की एक छोटी मात्रा की आवश्यकता होती है। मुक्त रहने वाले डायज़ोट्रोफ़ नाइट्रोजन पोषण के रूप में हवा में सीधे नाइट्रोजन (N<sub>2</sub>) का उपयोग कर सकते हैं। यद्यपि, कई सहजीवी डायज़ोट्रोफ़्स जैसे राइज़ोबिया की खेती करते समय, नाइट्रोजन पोषण को जोड़ना आवश्यक है, क्योंकि राइज़ोबिया और अन्य सहजीवी नाइट्रोजन-स्थिरीकरण जीवाणु मुक्त जीवित रूप में आणविक नाइट्रोजन (N<sub>2</sub>) का उपयोग नहीं कर सकते हैं।<ref>{{cite book |last1=Somasegaran |first1=Padma |last2=Hoden |first2=Heinz.J |title=राइजोबिया के लिए हैंडबुक|date=1994 |publisher=Springer |location=New York, NY |isbn=978-1-4613-8375-8 |page=1 |doi=10.1007/978-1-4613-8375-8 |s2cid=21924709 |edition=1 |url=https://doi.org/10.1007/978-1-4613-8375-8}}</ref>
 
 
== आवेदन ==
== आवेदन ==


=== [[जैव उर्वरक]] ===
=== [[जैव उर्वरक]] ===


डायज़ोट्रोफ़ उर्वरक एक प्रकार का जैव उर्वरक है जो नाइट्रोजन-फिक्सिंग सूक्ष्मजीवों का उपयोग आणविक नाइट्रोजन (एन<sub>2</sub>) अमोनिया में (जो फसलों के उपयोग के लिए उपलब्ध नाइट्रोजन का निर्माण है)। इन नाइट्रोजन पोषक तत्वों का उपयोग तब पौधों के लिए प्रोटीन संश्लेषण की प्रक्रिया में किया जा सकता है। डायज़ोट्रोफ़ द्वारा नाइट्रोजन स्थिरीकरण की इस पूरी प्रक्रिया को जैविक नाइट्रोजन स्थिरीकरण कहा जाता है। यह जैव रासायनिक प्रतिक्रिया सामान्य तापमान और दबाव की स्थिति में की जा सकती है। इसलिए इसे उर्वरक उत्पादन में अत्यधिक परिस्थितियों और विशिष्ट उत्प्रेरकों की आवश्यकता नहीं होती है। अत: इस प्रकार उपलब्ध नाइट्रोजन का उत्पादन सस्ता, स्वच्छ और कुशल हो सकता है। नाइट्रोजन-फिक्सिंग बैक्टीरिया उर्वरक एक आदर्श और आशाजनक जैव उर्वरक है। <ref>{{cite journal |last1=Vessey |first1=J.K. |title=जैवउर्वरक के रूप में राइजोबैक्टीरिया को बढ़ावा देने वाले पौधों की वृद्धि।|journal=Plant and Soil |date=2003 |volume=255 |issue=2 |pages=571–586 |doi=10.1023/A:1026037216893|s2cid=37031212 }}</ref>
डायज़ोट्रॉफ़ उर्वरक एक प्रकार का जैव उर्वरक है जो आणविक नाइट्रोजन (N<sub>2</sub>) को अमोनिया में परिवर्तित करने के लिए नाइट्रोजन-स्थिरीकरण सूक्ष्मजीवों का उपयोग कर सकता है (जो फसलों के उपयोग के लिए उपलब्ध नाइट्रोजन का निर्माण है)। इन नाइट्रोजन पोषक तत्वों का उपयोग तब पौधों के लिए प्रोटीन संश्लेषण की प्रक्रिया में किया जा सकता है। डायज़ोट्रोफ़ द्वारा नाइट्रोजन स्थिरीकरण की इस पूरी प्रक्रिया को जैविक नाइट्रोजन स्थिरीकरण कहा जाता है। यह जैव रासायनिक अभिक्रिया सामान्य तापमान और दबाव की स्थिति में की जा सकती है। इसलिए इसे उर्वरक उत्पादन में अत्यधिक परिस्थितियों और विशिष्ट उत्प्रेरकों की आवश्यकता नहीं होती है। अत: इस प्रकार उपलब्ध नाइट्रोजन का उत्पादन सस्ता, स्वच्छ और कुशल हो सकता है। नाइट्रोजन-स्थिरीकरण जीवाणु उर्वरक एक आदर्श और आशाजनक जैव उर्वरक है। <ref>{{cite journal |last1=Vessey |first1=J.K. |title=जैवउर्वरक के रूप में राइजोबैक्टीरिया को बढ़ावा देने वाले पौधों की वृद्धि।|journal=Plant and Soil |date=2003 |volume=255 |issue=2 |pages=571–586 |doi=10.1023/A:1026037216893|s2cid=37031212 }}</ref>
 
प्राचीन काल से ही लोग मिट्टी को अधिक उपजाऊ बनाने के लिए दलहनी फसलें उगाते रहे हैं। और इसका कारण है: फलीदार फसलों की जड़ें राइजोबिया (एक प्रकार का डायज़ोट्रोफ़) के साथ सहजीवी होती हैं। मिट्टी में उपलब्ध नाइट्रोजन प्रदान करने के लिए इन राइजोबिया को प्राकृतिक जैव उर्वरक माना जा सकता है। फलीदार फसलों की कटाई के बाद, और फिर अन्य फसलें (फलीदार नहीं हो सकती हैं) उगाते हैं, वे मिट्टी में बचे इन नाइट्रोजन का भी उपयोग कर सकते हैं और बेहतर विकास कर सकते हैं।
प्राचीन काल से ही लोग मिट्टी को अधिक उपजाऊ बनाने के लिए दलहनी फसलें उगाते रहे हैं। और इसका कारण है: फलीदार फसलों की जड़ें राइजोबिया (एक प्रकार का डायज़ोट्रोफ़) के साथ सहजीवी होती हैं। मिट्टी में उपलब्ध नाइट्रोजन प्रदान करने के लिए इन राइजोबिया को प्राकृतिक जैव उर्वरक माना जा सकता है। फलीदार फसलों की कटाई के बाद, और फिर अन्य फसलें (फलीदार नहीं हो सकती हैं) उगाते हैं, वे मिट्टी में बचे इन नाइट्रोजन का भी उपयोग कर सकते हैं और बेहतर विकास कर सकते हैं।
[[File:Leguminous plant by MG.jpg|thumb|फलीदार पौधे परित्यक्त भूमि में खाद डालते थे]]आज उपयोग किए जाने वाले डायज़ोट्रॉफ़ जैव उर्वरकों में राइज़ोबियम, [[एजोटोबैक्टर]], एज़ोस्पिरिलियम और ब्लू ग्रीन शैवाल (सायनोबैक्टीरिया का एक जीनस) शामिल हैं। इन उर्वरकों का व्यापक रूप से उपयोग किया जाता है और औद्योगिक उत्पादन में शुरू किया जाता है। अब तक बाजार में नाइट्रोजन फिक्सेशन बायोफर्टिलाइजर को लिक्विड फर्टिलाइजर और सॉलिड फर्टिलाइजर में बांटा जा सकता है। अधिकांश उर्वरक तरल किण्वन के तरीके से किण्वित होते हैं। किण्वन के बाद, तरल बैक्टीरिया को पैक किया जा सकता है, जो कि तरल उर्वरक है, और किण्वित तरल को एक ठोस माइक्रोबियल उर्वरक बनाने के लिए निष्फल पीट और अन्य वाहक adsorbents के साथ भी सोख लिया जा सकता है। कपास, चावल, गेहूं, मूंगफली, तोरिया, मक्का, ज्वार, आलू, तम्बाकू, गन्ना और विभिन्न सब्जियों के उत्पादन में वृद्धि पर इन नाइट्रोजन-स्थिरीकरण उर्वरकों का एक निश्चित प्रभाव पड़ता है।
[[File:Leguminous plant by MG.jpg|thumb|फलीदार पौधे परित्यक्त भूमि में खाद डालते थे]]आज उपयोग किए जाने वाले डायज़ोट्रॉफ़ जैव उर्वरकों में राइज़ोबियम, [[एजोटोबैक्टर]], एज़ोस्पिरिलियम और नील हरित शैवाल (सायनोबैक्टीरिया की एक प्रजाति) सम्मलित हैं। इन उर्वरकों का व्यापक रूप से उपयोग किया जाता है और औद्योगिक उत्पादन में शुरू किया जाता है। अब तक बाजार में नाइट्रोजन फिक्सेशन(निर्धारण) जैव उर्वरक को तरल उर्वरक और ठोस उर्वरक में बांटा जा सकता है। अधिकांश उर्वरक तरल किण्वन के तरीके से किण्वित होते हैं। किण्वन के बाद, तरल जीवाणु को पैक(डिब्बाबंद) किया जा सकता है, जो कि तरल उर्वरक है, और किण्वित तरल को एक ठोस सूक्ष्मजैविक उर्वरक बनाने के लिए निष्फल पीट और अन्य वाहक अधिशोषक के साथ भी सोख लिया जा सकता है। कपास, चावल, गेहूं, मूंगफली, तोरिया, मक्का, ज्वार, आलू, तम्बाकू, गन्ना और विभिन्न सब्जियों के उत्पादन में वृद्धि पर इन नाइट्रोजन-स्थिरीकरण उर्वरकों का एक निश्चित प्रभाव पड़ता है।


== महत्व ==
== महत्व ==
सभी जीवों के लिए उपलब्ध नाइट्रोजन उत्पन्न करने के संदर्भ में, साइनोबैक्टीरिया के अपवाद के साथ सहजीवी संघ मुक्त-जीवित प्रजातियों से बहुत अधिक हैं।<ref name=Postgate98/>
सभी जीवों के लिए उपलब्ध नाइट्रोजन उत्पन्न करने के संदर्भ में, साइनोबैक्टीरिया के अपवाद के साथ सहजीवी संघ मुक्त-जीवित प्रजातियों से बहुत अधिक हैं।<ref name=Postgate98/>


डायज़ोट्रोफ़्स पृथ्वी के नाइट्रोजन चक्र में एक महत्वपूर्ण भूमिका निभाते हैं। [[स्थलीय पारिस्थितिकी तंत्र]] में, डायज़ोट्रॉफ़ (एन<sub>2</sub>) वातावरण से और प्राथमिक उत्पादक के लिए उपलब्ध नाइट्रोजन प्रदान करते हैं। फिर नाइट्रोजन को उच्च ट्राफिकल स्तरों और मनुष्यों में स्थानांतरित किया जाता है। नाइट्रोजन का निर्माण और भंडारण सभी परिवर्तन प्रक्रिया से प्रभावित होंगे। साथ ही डायज़ोट्रॉफ़ द्वारा निर्धारित उपलब्ध नाइट्रोजन पर्यावरण की दृष्टि से टिकाऊ है, जो उर्वरक के उपयोग को कम कर सकता है, जो कृषि अनुसंधान में एक महत्वपूर्ण विषय हो सकता है।
डायज़ोट्रोफ़्स पृथ्वी के नाइट्रोजन चक्र में एक महत्वपूर्ण भूमिका निभाते हैं। [[स्थलीय पारिस्थितिकी तंत्र]] में, डायज़ोट्रॉफ़ वातावरण से (N<sub>2</sub>) को स्थिर करता है और प्राथमिक उत्पादक के लिए उपलब्ध नाइट्रोजन प्रदान करता है। फिर नाइट्रोजन को उच्च ट्राफिकल स्तरों और मनुष्यों में स्थानांतरित किया जाता है। नाइट्रोजन का निर्माण और भंडारण सभी परिवर्तन प्रक्रिया से प्रभावित होंगे। साथ ही डायज़ोट्रॉफ़ द्वारा निर्धारित उपलब्ध नाइट्रोजन पर्यावरण की दृष्टि से टिकाऊ है, जो उर्वरक के उपयोग को कम कर सकता है, जो कृषि अनुसंधान में एक महत्वपूर्ण विषय हो सकता है।
 
समुद्री पारिस्थितिक तंत्र में, प्रोकैरियोटिक फाइटोप्लांकटन (जैसे साइनोबैक्टीरिया) मुख्य नाइट्रोजन फिक्सर है, फिर नाइट्रोजन उच्च ट्रॉफिकल स्तरों द्वारा खपत होती है। इन जीवों से जारी निश्चित एन पारिस्थितिक तंत्र एन इनपुट का एक घटक है। और निश्चित N भी युग्मित C चक्र के लिए महत्वपूर्ण है। निश्चित एन की एक बड़ी समुद्री सूची प्राथमिक उत्पादन और जैविक सी के गहरे समुद्र में निर्यात को बढ़ा सकती है।<ref>{{cite journal |last1=Inomura |first1=Keisuke |last2=Deutsch |first2=Curtis |last3=Masuda |first3=Takako |last4=Prášil |first4=Ondrej |last5=Follows |first5=Michael J. |title=नाइट्रोजन-फिक्सिंग जीवों के मात्रात्मक मॉडल|journal=Computational and Structural Biotechnology |date=2020 |volume=18 |pages=3905–3924 |doi=10.1016/j.csbj.2020.11.022 |pmid=33335688 |pmc=7733014 }}</ref><ref>{{cite journal |last1=Karl |first1=David M. |last2=Church |first2=Matthew J. |last3=Dore |first3=John E. |last4=Letelier |first4=Richardo M. |last5=Mahaffey |first5=Claire |title=सहजीवी नाइट्रोजन निर्धारण द्वारा समर्थित उत्तरी प्रशांत महासागर में अनुमानित और कुशल कार्बन पृथक्करण|journal=PNAS |date=2012 |volume=109 |issue=6 |pages=1842–1849 |doi=10.1073/pnas.1120312109 |pmid=22308450 |pmc=3277559 |doi-access=free }}</ref>
 


समुद्री पारिस्थितिक तंत्र में, प्रोकैरियोटिक फाइटोप्लांकटन या पादप प्लवक (जैसे साइनोबैक्टीरिया) मुख्य नाइट्रोजन स्थिर करनेवाला है, फिर नाइट्रोजन उच्च ट्रॉफिकल(उष्णकटिबंधीय) स्तरों द्वारा खपत होती है। इन जीवों से जारी निश्चित N पारिस्थितिक तंत्र N इनपुट(निविष्टि) का एक घटक है। और निश्चित N भी युग्मित C चक्र के लिए महत्वपूर्ण है। निश्चित N की एक बड़ी समुद्री सूची गहरे समुद्र में जैविक सी के प्राथमिक उत्पादन और निर्यात को बढ़ा सकती है।<ref>{{cite journal |last1=Karl |first1=David M. |last2=Church |first2=Matthew J. |last3=Dore |first3=John E. |last4=Letelier |first4=Richardo M. |last5=Mahaffey |first5=Claire |title=सहजीवी नाइट्रोजन निर्धारण द्वारा समर्थित उत्तरी प्रशांत महासागर में अनुमानित और कुशल कार्बन पृथक्करण|journal=PNAS |date=2012 |volume=109 |issue=6 |pages=1842–1849 |doi=10.1073/pnas.1120312109 |pmid=22308450 |pmc=3277559 |doi-access=free }}</ref><ref>{{cite journal |last1=Inomura |first1=Keisuke |last2=Deutsch |first2=Curtis |last3=Masuda |first3=Takako |last4=Prášil |first4=Ondrej |last5=Follows |first5=Michael J. |title=नाइट्रोजन-फिक्सिंग जीवों के मात्रात्मक मॉडल|journal=Computational and Structural Biotechnology |date=2020 |volume=18 |pages=3905–3924 |doi=10.1016/j.csbj.2020.11.022 |pmid=33335688 |pmc=7733014 }}</ref>
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
Line 52: Line 45:
* [http://www.rhizobia.co.nz Rhizobia]
* [http://www.rhizobia.co.nz Rhizobia]
* [https://web.archive.org/web/20180806064343/http://web.uconn.edu/mcbstaff/benson/Frankia/FrankiaHome.htm Frankia & Actinorhizal Plants]
* [https://web.archive.org/web/20180806064343/http://web.uconn.edu/mcbstaff/benson/Frankia/FrankiaHome.htm Frankia & Actinorhizal Plants]
[[Category: नाइट्रोजन चक्र]] [[Category: पर्यावरण सूक्ष्म जीव विज्ञान]]


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Created On 19/05/2023]]
[[Category:Created On 19/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:नाइट्रोजन चक्र]]
[[Category:पर्यावरण सूक्ष्म जीव विज्ञान]]

Latest revision as of 16:21, 14 June 2023

डायज़ोट्रॉफ़ जीवाणु और आर्किया हैं जो वायुमंडल में गैसीय नाइट्रोजन को अमोनिया जैसे अधिक उपयोगी रूप में स्थिर करते हैं।

एक डायज़ोट्रॉफ़ एक सूक्ष्मजीव है जो स्थिर नाइट्रोजन के बाहरी स्रोतों के बिना बढ़ने में सक्षम है। ऐसा करने वाले जीवों के उदाहरण राइजोबिया और फ्रैंकिया (सहजीवन में) और एज़ोस्पिरिलम हैं। सभी डायज़ोट्रॉफ़्स में आयरन-मोलिब्डेनम या आयरन-वैनेडियम नाइट्रोजनेस प्रणालिया होती हैं। सबसे अधिक अध्ययन की जाने वाली प्रणालियों में से दो '"क्लेबसिएला निमोनिया"' और 'एज़ोटोबैक्टर विनलैंडी' हैं। इन प्रणालियों का अध्ययन उनके अनुवांशिक सुवाह्यता और उनके तेज विकास के कारण किया जाता है।[1]

व्युत्पत्ति

डायज़ोट्रॉफ़ शब्द की उत्पत्ति {diazo}डायज़ो (di = दो + azo = नाइट्रोजन) शब्दों से हुई है जिसका अर्थ है डाइनाइट्रोजन (N)2 और ट्रोफ का अर्थ भोजन या पोषण से संबंधित है, संक्षेप में डाइनाइट्रोजन का उपयोग करना है। एज़ोट शब्द का अर्थ फ्रेंच में नाइट्रोजन है और इसका नाम फ्रांसीसी रसायनज्ञ और जीवविज्ञानी एंटोनी लेवोइसियर ने रखा था, जिन्होंने इसे हवा के हिस्से के रूप में देखा था जो जीवन को बनाए नहीं रख सकता।[2]

डायज़ोट्रोफ़्स के प्रकार

डायज़ोट्रोफ़्स जीवाणु टैक्सोनोमिक समूहों (साथ ही आर्किया के एक जोड़े) में बिखरे हुए हैं। यहां तक ​​कि एक प्रजाति के भीतर भी जो नाइट्रोजन स्थिरीकरण कर सकती है, ऐसे उपभेद हो सकते हैं जो ऐसा नहीं करते हैं।[3] नाइट्रोजन के अन्य स्रोत उपलब्ध होने पर, और कई प्रजातियों के लिए, जब ऑक्सीजन उच्च आंशिक दबाव में होता है, तो फिक्सेशन(निर्धारण) बंद हो जाता है। नाइट्रोजन गैसों पर ऑक्सीजन के दुर्बल करने वाले प्रभावों से निपटने के लिए जीवाणु के अलग-अलग तरीके हैं, जिनकी सूची नीचे दी गई है।

मुक्त-जीवित डायज़ोट्रोफ़्स

  • अवायुजीव- ये बाध्यकारी अवायवीय जीव हैं जो ऑक्सीजन को सहन नहीं कर सकते, भले ही वे नाइट्रोजन स्थिरीकरण न कर रहे हों। वे उन आवासों में रहते हैं जिनमें ऑक्सीजन की कमी होती है[3], जैसे कि मिट्टी और सड़े हुए वनस्पति पदार्थ, क्लोस्ट्रीडियम इसका एक उदाहरण है। सल्फेट को कम करने वाले जीवाणु समुद्र के तलछट (जैसे डेसल्फोविब्रियो) में महत्वपूर्ण हैं, और कुछ आर्कियन मेथनोगेंस, जैसे मेथानोकोकस , कीचड़, जानवरों की आंतों और अनॉक्सी(ऑक्सीन्यूनताजन्य) मिट्टी में नाइट्रोजन को ठीक करते हैं।[4]
  • ऐच्छिक अवायवीय- ये प्रजातियाँ या तो ऑक्सीजन के साथ या बिना ऑक्सीजन के विकसित हो सकती हैं, लेकिन वे केवल नाइट्रोजन को अवायवीय रूप से ठीक करती हैं। प्रायः, वे जितनी तेजी से ऑक्सीजन की आपूर्ति करते हैं, उतनी तेजी से सांस लेते हैं, मुक्त ऑक्सीजन की मात्रा कम रखते हैं। उदाहरणों में क्लेबसिएला न्यूमोनिया, पैनीबैसिलस पॉलीमाइक्सा, बेसिलस मैकेरन्स और एस्चेरिचिया इंटरमीडिया सम्मलित हैं।[3]
  • एरोबेस- इन प्रजातियों को बढ़ने के लिए ऑक्सीजन की आवश्यकता होती है, फिर भी ऑक्सीजन के संपर्क में आने पर उनका नाइट्रोजिनेज अभी भी दुर्बल होता है। एज़ोटोबैक्टर विनलैंडी इन जीवों में सबसे अधिक अध्ययन किया गया है। ऑक्सीजन की क्षति को रोकने के लिए यह बहुत उच्च श्वसन दर और सुरक्षात्मक यौगिकों का उपयोग करता है। कई अन्य प्रजातियां भी इस तरह ऑक्सीजन के स्तर को कम करती हैं, लेकिन कम श्वसन दर और कम ऑक्सीजन सहनशीलता के साथ।[3]
  • ऑक्सीजेनिक प्रकाश संश्लेषक जीवाणु (साइनोबैक्टीरीया) प्रकाश संश्लेषण के उप-उत्पाद के रूप में ऑक्सीजन उत्पन्न करते हैं, फिर भी कुछ नाइट्रोजन को ठीक करने में भी सक्षम होते हैं। ये औपनिवेशिक जीवाणु हैं जिनमें विशेष कोशिकाएं (विषमपुटी) होती हैं जिनमें प्रकाश संश्लेषण के ऑक्सीजन पैदा करने वाले चरणों की कमी होती है। एनाबिना सिलिंड्रिका और नोस्टॉक कम्यून इसके उदाहरण हैं। अन्य सायनोबैक्टीरिया में हेटरोसिस्ट(विषमलैंगिक) की कमी होती है और केवल कम रोशनी और ऑक्सीजन के स्तर (जैसे पल्टोनेमा) में नाइट्रोजन को ठीक कर सकते हैं।[3]अत्यधिक प्रचुर समुद्री टैक्सा प्रोक्लोरोकोकस और सिंटिकोकोकस सहित कुछ साइनोबैक्टीरिया नाइट्रोजन को ठीक नहीं करते हैं,[5] जबकि अन्य समुद्री सायनोबैक्टीरिया, जैसे कि ट्राइकोड्समियम और सायनोथेस, समुद्री नाइट्रोजन स्थिरीकरण में प्रमुख योगदानकर्ता हैं।[6]
  • एनोक्सीजेनिक प्रकाश संश्लेषण जीवाणु प्रकाश संश्लेषण के दौरान ऑक्सीजन उत्पन्न नहीं करते हैं, केवल एक ही फोटोसिस्टम होता है जो जल को विभाजित नहीं कर सकता है। नाइट्रोजनेज को नाइट्रोजन सीमा के तहत व्यक्त किया जाता है। समान्यता, अभिव्यक्ति को उत्पादित अमोनियम आयन से नकारात्मक अभिक्रिया के माध्यम से नियंत्रित किया जाता है लेकिन N2 की अनुपस्थिति में, उत्पाद नहीं बनता है, और उप-उत्पाद H2 अविरत जारी है [जैवहाइड्रोजन]। उदाहरण प्रजातियाँ: रोडोबैक्टर स्पैरोइड्स, रोडोप्स्यूडोमोनस पलस्ट्रिस, रोडोबैक्टर कैप्सुलैटस।[7]

सहजीवी डायज़ोट्रोफ़्स

  • राइजोबिया- ये ऐसी प्रजातियां हैं जो फलियां, फैबेसी परिवार के पौधों से जुड़ी हैं। जड़ की गांठों में ऑक्सीजन लेगहीमोग्लोबिन से बंधी होती है, जिसमें जीवाणु सहजीवन होते हैं, और उस दर पर आपूर्ति की जाती है जो नाइट्रोजनेज को नुकसान नहीं पहुंचाएगी।[3]
  • फ्रैंकियास- इन 'एक्टिनोराइजल' नाइट्रोजन स्थिर करने वाले के बारे में/के बारे में बहुत कम जानकारी है। जीवाणु जड़ों को भी संक्रमित करते हैं जिससे नोड्यूल(पिंड) बनते हैं। एक्टिनोरिज़ल नोड्यूल(पिंड) में कई पालि होते हैं, प्रत्येक पालि में पार्श्व जड़ के समान संरचना होती है। फ्रेंकिया नोड्यूल्स(पिंड) के कॉर्टिकल(वल्कुट) ऊतक में उपनिवेश बनाने में सक्षम है जहां यह नाइट्रोजन को स्थिर करता है।[8] एक्टिनोरिज़ल पौधे और फ्रेंकियस भी हीमोग्लोबिन का उत्पादन करते हैं,[9] लेकिन राइजोबिया की तुलना में उनकी भूमिका कम सुस्थापित है।[8] यद्यपि सबसे पहले यह प्रतीत हुआ कि वे असंबंधित पौधों (एल्डर्स, ऑस्ट्रेलियाई पाइन, , कैलिफोर्निया बकाइन, दलदल मर्टल, प्रीफेक्चुरल शीया, ड्रायस (पौधे)) के सेट में रहते हैं, आवृतबीजी के फिलोजेनी(जातिवृत्‍ति) के संशोधन इन प्रजातियों और फलियों के बीच घनिष्ठ संबंध दिखाते हैं।[10][8] ये पादटिप्पणियाँ जातिवृत्‍ति के बजाय इन प्रतिकृतियों के व्यक्तिवृत्त का सुझाव देते हैं। दूसरे शब्दों में, एक प्राचीन जीन (आवृतबीजी और अनावृतबीजियों के विचलन से पहले) जो कि अधिकांश प्रजातियों में अप्रयुक्त है, इन प्रजातियों में पुन: जागृत और पुन: उपयोग किया गया था।
  • साइनोबैक्टीरिया- सहजीवी साइनोबैक्टीरिया भी हैं। कुछ कवक के साथ लाइकेन के रूप में, लिवरवॉर्ट्स के साथ, एक फ़र्न के साथ, और एक साइकैड के साथ।[3]ये गांठ नहीं बनाते (वास्तव में अधिकांश पौधों की जड़ें नहीं होती हैं)। जैसा कि ऊपर चर्चा की गई है, विषमपुटी ऑक्सीजन को बाहर कर देते हैं। फ़र्न संगठन कृषि की दृष्टि से महत्वपूर्ण है: ऐनाबीना को आश्रय देने वाला जल फ़र्न एजोला चावल की खेती के लिए एक महत्वपूर्ण हरी खाद है।[3]
  • जानवरों के साथ जुड़ाव- यद्यपि डायज़ोट्रॉफ़ कई जानवरों की आंत में पाए गए हैं, समान्यता नाइट्रोजन स्थिरीकरण को दबाने के लिए पर्याप्त अमोनिया मौजूद होता है।[3] कम नाइट्रोजन आहार पर दीमक कुछ निर्धारण की अनुमति देते हैं, लेकिन दीमक की नाइट्रोजन आपूर्ति में योगदान नगण्य है। जहाज़ का कीड़ा(शिपवॉर्म) एकमात्र ऐसी प्रजाति हो सकती है जो अपने आंत सहजीवन से महत्वपूर्ण लाभ प्राप्त करती है।[3]

खेती करना

प्रयोगशाला स्थितियों के तहत, मुक्त रहने वाले डायज़ोट्रोफ़्स में अतिरिक्त नाइट्रोजन स्रोतों की आवश्यकता नहीं होती है, और कार्बन स्रोतों (जैसे सुक्रोज़, ग्लूकोज) और अकार्बनिक नमक की एक छोटी मात्रा की आवश्यकता होती है। मुक्त रहने वाले डायज़ोट्रोफ़ नाइट्रोजन पोषण के रूप में हवा में सीधे नाइट्रोजन (N2) का उपयोग कर सकते हैं। यद्यपि, कई सहजीवी डायज़ोट्रोफ़्स जैसे राइज़ोबिया की खेती करते समय, नाइट्रोजन पोषण को जोड़ना आवश्यक है, क्योंकि राइज़ोबिया और अन्य सहजीवी नाइट्रोजन-स्थिरीकरण जीवाणु मुक्त जीवित रूप में आणविक नाइट्रोजन (N2) का उपयोग नहीं कर सकते हैं।[11]

आवेदन

जैव उर्वरक

डायज़ोट्रॉफ़ उर्वरक एक प्रकार का जैव उर्वरक है जो आणविक नाइट्रोजन (N2) को अमोनिया में परिवर्तित करने के लिए नाइट्रोजन-स्थिरीकरण सूक्ष्मजीवों का उपयोग कर सकता है (जो फसलों के उपयोग के लिए उपलब्ध नाइट्रोजन का निर्माण है)। इन नाइट्रोजन पोषक तत्वों का उपयोग तब पौधों के लिए प्रोटीन संश्लेषण की प्रक्रिया में किया जा सकता है। डायज़ोट्रोफ़ द्वारा नाइट्रोजन स्थिरीकरण की इस पूरी प्रक्रिया को जैविक नाइट्रोजन स्थिरीकरण कहा जाता है। यह जैव रासायनिक अभिक्रिया सामान्य तापमान और दबाव की स्थिति में की जा सकती है। इसलिए इसे उर्वरक उत्पादन में अत्यधिक परिस्थितियों और विशिष्ट उत्प्रेरकों की आवश्यकता नहीं होती है। अत: इस प्रकार उपलब्ध नाइट्रोजन का उत्पादन सस्ता, स्वच्छ और कुशल हो सकता है। नाइट्रोजन-स्थिरीकरण जीवाणु उर्वरक एक आदर्श और आशाजनक जैव उर्वरक है। [12]

प्राचीन काल से ही लोग मिट्टी को अधिक उपजाऊ बनाने के लिए दलहनी फसलें उगाते रहे हैं। और इसका कारण है: फलीदार फसलों की जड़ें राइजोबिया (एक प्रकार का डायज़ोट्रोफ़) के साथ सहजीवी होती हैं। मिट्टी में उपलब्ध नाइट्रोजन प्रदान करने के लिए इन राइजोबिया को प्राकृतिक जैव उर्वरक माना जा सकता है। फलीदार फसलों की कटाई के बाद, और फिर अन्य फसलें (फलीदार नहीं हो सकती हैं) उगाते हैं, वे मिट्टी में बचे इन नाइट्रोजन का भी उपयोग कर सकते हैं और बेहतर विकास कर सकते हैं।

फलीदार पौधे परित्यक्त भूमि में खाद डालते थे

आज उपयोग किए जाने वाले डायज़ोट्रॉफ़ जैव उर्वरकों में राइज़ोबियम, एजोटोबैक्टर, एज़ोस्पिरिलियम और नील हरित शैवाल (सायनोबैक्टीरिया की एक प्रजाति) सम्मलित हैं। इन उर्वरकों का व्यापक रूप से उपयोग किया जाता है और औद्योगिक उत्पादन में शुरू किया जाता है। अब तक बाजार में नाइट्रोजन फिक्सेशन(निर्धारण) जैव उर्वरक को तरल उर्वरक और ठोस उर्वरक में बांटा जा सकता है। अधिकांश उर्वरक तरल किण्वन के तरीके से किण्वित होते हैं। किण्वन के बाद, तरल जीवाणु को पैक(डिब्बाबंद) किया जा सकता है, जो कि तरल उर्वरक है, और किण्वित तरल को एक ठोस सूक्ष्मजैविक उर्वरक बनाने के लिए निष्फल पीट और अन्य वाहक अधिशोषक के साथ भी सोख लिया जा सकता है। कपास, चावल, गेहूं, मूंगफली, तोरिया, मक्का, ज्वार, आलू, तम्बाकू, गन्ना और विभिन्न सब्जियों के उत्पादन में वृद्धि पर इन नाइट्रोजन-स्थिरीकरण उर्वरकों का एक निश्चित प्रभाव पड़ता है।

महत्व

सभी जीवों के लिए उपलब्ध नाइट्रोजन उत्पन्न करने के संदर्भ में, साइनोबैक्टीरिया के अपवाद के साथ सहजीवी संघ मुक्त-जीवित प्रजातियों से बहुत अधिक हैं।[3]

डायज़ोट्रोफ़्स पृथ्वी के नाइट्रोजन चक्र में एक महत्वपूर्ण भूमिका निभाते हैं। स्थलीय पारिस्थितिकी तंत्र में, डायज़ोट्रॉफ़ वातावरण से (N2) को स्थिर करता है और प्राथमिक उत्पादक के लिए उपलब्ध नाइट्रोजन प्रदान करता है। फिर नाइट्रोजन को उच्च ट्राफिकल स्तरों और मनुष्यों में स्थानांतरित किया जाता है। नाइट्रोजन का निर्माण और भंडारण सभी परिवर्तन प्रक्रिया से प्रभावित होंगे। साथ ही डायज़ोट्रॉफ़ द्वारा निर्धारित उपलब्ध नाइट्रोजन पर्यावरण की दृष्टि से टिकाऊ है, जो उर्वरक के उपयोग को कम कर सकता है, जो कृषि अनुसंधान में एक महत्वपूर्ण विषय हो सकता है।

समुद्री पारिस्थितिक तंत्र में, प्रोकैरियोटिक फाइटोप्लांकटन या पादप प्लवक (जैसे साइनोबैक्टीरिया) मुख्य नाइट्रोजन स्थिर करनेवाला है, फिर नाइट्रोजन उच्च ट्रॉफिकल(उष्णकटिबंधीय) स्तरों द्वारा खपत होती है। इन जीवों से जारी निश्चित N पारिस्थितिक तंत्र N इनपुट(निविष्टि) का एक घटक है। और निश्चित N भी युग्मित C चक्र के लिए महत्वपूर्ण है। निश्चित N की एक बड़ी समुद्री सूची गहरे समुद्र में जैविक सी के प्राथमिक उत्पादन और निर्यात को बढ़ा सकती है।[13][14]

संदर्भ

  1. Dixon R, Kahn D (August 2004). "जैविक नाइट्रोजन स्थिरीकरण का आनुवंशिक नियमन". Nature Reviews. Microbiology. 2 (8): 621–31. doi:10.1038/nrmicro954. PMID 15263897. S2CID 29899253.
  2. "Diazotroph - Biology-Online Dictionary | Biology-Online Dictionary". Archived from the original on 2017-03-15. Retrieved 2017-04-05.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Postgate, J (1998). Nitrogen Fixation, 3rd Edition. Cambridge University Press, Cambridge UK.
  4. Bae HS, Morrison E, Chanton JP, Ogram A (April 2018). "मेथनोगेंस फ्लोरिडा एवरग्लेड्स की मिट्टी में नाइट्रोजन स्थिरीकरण में प्रमुख योगदानकर्ता हैं". Applied and Environmental Microbiology. 84 (7): e02222–17. doi:10.1128/AEM.02222-17. PMC 5861825. PMID 29374038.
  5. Zehr JP (April 2011). "समुद्री साइनोबैक्टीरिया द्वारा नाइट्रोजन स्थिरीकरण". Trends in Microbiology. 19 (4): 162–73. doi:10.1016/j.tim.2010.12.004. PMID 21227699.
  6. Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ (May 2013). "ट्राइकोड्समियम - असामान्य नाइट्रोजन निर्धारण गुणों वाला एक व्यापक समुद्री साइनोबैक्टीरियम". FEMS Microbiology Reviews. 37 (3): 286–302. doi:10.1111/j.1574-6976.2012.00352.x. PMC 3655545. PMID 22928644.
  7. Blankenship RE, Madigan MT & Bauer CE (1995). Anoxygenic photosynthetic bacteria. Dordrecht, The Netherlands, Kluwer Academic.
  8. 8.0 8.1 8.2 Vessey JK, Pawlowski, K and Bergman B (2005). "Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp and cycads". Plant and Soil. 274 (1–2): 51–78. doi:10.1007/s11104-005-5881-5. S2CID 5035264.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Beckwith J, Tjepkema JD, Cashon RE, Schwintzer CR, Tisa LS (December 2002). "पांच आनुवंशिक रूप से विविध फ्रेंकिया उपभेदों में हीमोग्लोबिन". Canadian Journal of Microbiology. 48 (12): 1048–55. doi:10.1139/w02-106. PMID 12619816.
  10. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (March 1995). "क्लोरोप्लास्ट जीन अनुक्रम डेटा एंजियोस्पर्म में सहजीवी नाइट्रोजन स्थिरीकरण के लिए पूर्वाभास के एकल मूल का सुझाव देते हैं". Proceedings of the National Academy of Sciences of the United States of America. 92 (7): 2647–51. Bibcode:1995PNAS...92.2647S. doi:10.1073/pnas.92.7.2647. PMC 42275. PMID 7708699.
  11. Somasegaran, Padma; Hoden, Heinz.J (1994). राइजोबिया के लिए हैंडबुक (1 ed.). New York, NY: Springer. p. 1. doi:10.1007/978-1-4613-8375-8. ISBN 978-1-4613-8375-8. S2CID 21924709.
  12. Vessey, J.K. (2003). "जैवउर्वरक के रूप में राइजोबैक्टीरिया को बढ़ावा देने वाले पौधों की वृद्धि।". Plant and Soil. 255 (2): 571–586. doi:10.1023/A:1026037216893. S2CID 37031212.
  13. Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Richardo M.; Mahaffey, Claire (2012). "सहजीवी नाइट्रोजन निर्धारण द्वारा समर्थित उत्तरी प्रशांत महासागर में अनुमानित और कुशल कार्बन पृथक्करण". PNAS. 109 (6): 1842–1849. doi:10.1073/pnas.1120312109. PMC 3277559. PMID 22308450.
  14. Inomura, Keisuke; Deutsch, Curtis; Masuda, Takako; Prášil, Ondrej; Follows, Michael J. (2020). "नाइट्रोजन-फिक्सिंग जीवों के मात्रात्मक मॉडल". Computational and Structural Biotechnology. 18: 3905–3924. doi:10.1016/j.csbj.2020.11.022. PMC 7733014. PMID 33335688.


बाहरी संबंध