समूह-योजना कार्रवाई: Difference between revisions
m (added Category:Vigyan Ready using HotCat) Tag: Reverted |
No edit summary Tag: Manual revert |
||
(One intermediate revision by one other user not shown) | |||
Line 35: | Line 35: | ||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
Latest revision as of 15:37, 15 June 2023
बीजगणितीय ज्यामिति में, समूह योजना की एक क्रिया समूह योजना के लिए समूह क्रिया का सामान्यीकरण है। संक्षेप में, समूह S-स्कीम G दिया गया है, S-स्कीम X पर G की बाईं क्रिया S-मॉर्फिज्म है
यह ऐसा है
- (साहचर्य) , जहाँ समूह नियम है,
- (एकता) , जहाँ का तत्समक खंड है।
X पर G की एक सही क्रिया को अनुरूप रूप से परिभाषित किया गया है। समूह योजना G की बाएं या दाएं क्रिया से सुसज्जित योजना को G-योजना कहा जाता है। G-स्कीम के बीच एक समान रूपवाद उन स्कीम का आकार है जो संबंधित G-कार्यों को आपस में जोड़ता है।
अधिक सामान्यतः समूह गुणन खंड की क्रिया (कम से कम कुछ विशेष स्थिति) पर भी विचार कर सकता है: G को फ़ंक्टर के रूप में देखते हुए, उपरोक्त के अनुरूप शर्तों को पूरा करने वाले प्राकृतिक परिवर्तन के रूप में एक क्रिया दी जाती है।[1] वैकल्पिक रूप से, कुछ लेखक समूह क्रिया का अध्ययन समूह की भाषा में करते हैं; ग्रुप-स्कीम क्रिया तब ग्रुपॉइड स्कीम का एक उदाहरण है।
बनाता है
समूह क्रिया (गणित) के लिए सामान्य निर्माण जैसे कक्षाएँ समूह-योजना क्रिया के लिए सामान्यीकृत होती हैं। मान लीजिये ऊपर के रूप में दी गई समूह-योजना क्रिया हो।
- T-मूल्यवान बिंदु दिया गया है, कक्षा मानचित्र को के रूप में दिया गया है।
- x की कक्षा कक्षा मानचित्र की प्रतिकृति है।
- x का स्टेबलाइज़र मैप के पर फाइबर है।
भागफल बनाने की समस्या
सेट-सैद्धांतिक समूह क्रिया के विपरीत, समूह-योजना क्रिया के लिए भागफल का निर्माण करने का कोई सीधा तरीका नहीं है। अपवाद तब होता है जब कार्रवाई मुक्त होती है, प्रमुख फाइबर बंडल की स्थिति है।
- स्तर संरचना - संभवतया सबसे पुराना, दृष्टिकोण एक वस्तु द्वारा वर्गीकृत करने के लिए स्तर संरचना के साथ वस्तु को प्रतिस्थापित करता है
- ज्यामितीय अपरिवर्तनीय सिद्धांत - दोषपूर्ण कक्षाओं को फेंक दें और फिर अंश लें। दोष यह है कि "दोषपूर्ण कक्षाओं" की धारणा को पेश करने का कोई वैधानिक तरीका नहीं है; धारणा रैखिकरण की पसंद पर निर्भर करती है। यह भी देखें: श्रेणीबद्ध भागफल, GIT भागफल।
- बोरेल निर्माण - यह अनिवार्य रूप से बीजीय सांस्थिति से दृष्टिकोण है; इस दृष्टिकोण के लिए अनंत-आयामी अंतरिक्ष के साथ काम करने की आवश्यकता होती है।
- विश्लेषणात्मक दृष्टिकोण, टेकमूलर स्पेस का सिद्धांत।
- कोशेंट स्टैक - अर्थ में, यह समस्या का अंतिम उत्तर है। मोटे तौर पर, "भाग्य प्रेस्टैक" कक्षाओं की श्रेणी है और भागफल का अंश प्राप्त करने के लिए स्टैकिफ़ाई (यानी, टोरसर की धारणा का परिचय)।
अनुप्रयोगों के आधार पर, एक और विधि यह होगी कि फ़ोकस को स्पेस से दूर और फिर स्पेस में उपस्थित सामान पर स्थानांतरित किया जाए; जैसे, टोपोस, इसलिए समस्या कक्षाओं के वर्गीकरण से समतुल्य वस्तुओं के वर्गीकरण में बदल जाती है।
यह भी देखें
- समूहबद्ध योजना
- सुमिहिरो प्रमेय
- समतुल्य शीफ
- बोरेल निश्चित बिंदु प्रमेय
- ↑ In details, given a group-scheme action , for each morphism , determines a group action ; i.e., the group acts on the set of T-points . Conversely, if for each , there is a group action and if those actions are compatible; i.e., they form a natural transformation, then, by the Yoneda lemma, they determine a group-scheme action .