अंतरिक्ष भौतिकी: Difference between revisions

From Vigyanwiki
(Created page with "अंतरिक्ष भौतिकी, जिसे सौर-स्थलीय भौतिकी या अंतरिक्ष-प्लाज्मा भौति...")
 
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
अंतरिक्ष भौतिकी, जिसे सौर-स्थलीय भौतिकी या अंतरिक्ष-प्लाज्मा भौतिकी के रूप में भी जाना जाता है, [[प्लाज्मा (भौतिकी)]] का अध्ययन है क्योंकि वे पृथ्वी के निकट अंतरिक्ष ([[एरोनोमी]]) और सौर मंडल के भीतर स्वाभाविक रूप से होते हैं। इस प्रकार, इसमें [[heliophysics]] जैसे कई विषयों को शामिल किया गया है जिसमें सूर्य के [[सौर भौतिकी]], सौर हवा, ग्रहों के [[चुंबकमंडल]] और [[ योण क्षेत्र ]], [[अरोड़ा]], ब्रह्मांडीय किरणें और [[सिंक्रोट्रॉन विकिरण]] शामिल हैं। अंतरिक्ष भौतिकी [[अंतरिक्ष मौसम]] के अध्ययन का एक मूलभूत हिस्सा है और इसका न केवल ब्रह्मांड को समझने में, बल्कि [[संचार उपग्रह]] और [[मौसम उपग्रह]]ों के संचालन सहित व्यावहारिक दैनिक जीवन के लिए भी महत्वपूर्ण प्रभाव पड़ता है।
'''अंतरिक्ष भौतिकी''', जिसे '''सौर-स्थलीय भौतिकी''' या '''अंतरिक्ष-प्लाज्मा भौतिकी''' के रूप में भी जाना जाता है, प्लाज्मा का अध्ययन, क्योंकि वे पृथ्वी के ऊपरी वायुमंडल ([[एरोनोमी|एरोनॉमी]]) और सौर मंडल के भीतर प्राकृतिक रूप से पाए जाते हैं। इस प्रकार, इसमें हेलीओफिजिक्स जैसे कई विषयों को सम्मिलित किया गया है, जिसमें सूर्य के [[सौर भौतिकी]], सौर हवा, ग्रहों के [[चुंबकमंडल]] और आयनमंडल, अरुणोदय, लौकिक किरणें और [[सिंक्रोट्रॉन विकिरण]] सम्मिलित हैं। अंतरिक्ष भौतिकी [[अंतरिक्ष मौसम]] के अध्ययन का एक मूलभूत हिस्सा है और इसका न केवल ब्रह्मांड को समझने में महत्वपूर्ण प्रभाव है, बल्कि [[संचार उपग्रह|संचार]] और [[मौसम उपग्रह|मौसम]] उपग्रहों के संचालन सहित व्यावहारिक दैनिक जीवन के लिए भी इसका महत्वपूर्ण प्रभाव है।


अंतरिक्ष भौतिकी [[ खगोल भौतिकी प्लाज्मा ]] और [[खगोल भौतिकी]] के क्षेत्र से अलग है, जो सौर मंडल से परे समान प्लाज्मा घटनाओं का अध्ययन करता है। अंतरिक्ष भौतिकी उच्च ऊंचाई वाले रॉकेट और अंतरिक्ष यान से सीटू मापन का उपयोग करती है,<ref>{{cite web|url=http://www.oulu.fi/~spaceweb/textbook/ |title=अंतरिक्ष भौतिकी पाठ्यपुस्तक|date=2006-11-26 |access-date=2008-12-31 |url-status=dead |archive-url=https://web.archive.org/web/20081218061302/http://www.oulu.fi/~spaceweb/textbook/ |archive-date=December 18, 2008 }}</ref> एस्ट्रोफिजिकल प्लाज्मा के विपरीत जो सिद्धांत और खगोलीय अवलोकन की कटौती पर निर्भर करता है। अंतरिक्ष भौतिकी 12
अंतरिक्ष भौतिकी [[ खगोल भौतिकी प्लाज्मा |खगोलभौतिकीय प्लाज्मा]] और [[खगोल भौतिकी]] के क्षेत्र से अलग है, जो सौर प्रणाली से परे समान प्लाज्मा घटनाओं का अध्ययन करता है। अंतरिक्ष भौतिकी उच्च ऊंचाई वाले रॉकेट और अंतरिक्ष यान से सीटू मापन का उपयोग करती है,<ref>{{cite web|url=http://www.oulu.fi/~spaceweb/textbook/ |title=अंतरिक्ष भौतिकी पाठ्यपुस्तक|date=2006-11-26 |access-date=2008-12-31 |url-status=dead |archive-url=https://web.archive.org/web/20081218061302/http://www.oulu.fi/~spaceweb/textbook/ |archive-date=December 18, 2008 }}</ref> खगोलीय प्लाज्मा के विपरीत जो सिद्धांत और खगोलीय अवलोकन की व्यवकलन पर निर्भर करता है। अंतरिक्ष भौतिकी 12


== इतिहास ==
== इतिहास ==
अंतरिक्ष भौतिकी का पता उन चीनियों से लगाया जा सकता है जिन्होंने कम्पास के सिद्धांत की खोज की, लेकिन यह नहीं समझ पाए कि यह कैसे काम करता है। 16वीं शताब्दी के दौरान, [[मैग्नेट द्वारा]] में, [[विलियम गिल्बर्ट (खगोलविद)]] ने पृथ्वी के चुंबकीय क्षेत्र का पहला विवरण दिया, जिसमें दिखाया गया कि पृथ्वी स्वयं एक महान चुंबक है, जिसने समझाया कि कम्पास की सुई उत्तर की ओर क्यों इशारा करती है। नेविगेशन चार्ट पर कम्पास सुई चुंबकीय झुकाव के विचलन दर्ज किए गए थे, और घड़ीसाज़ जॉर्ज ग्राहम (घड़ीसाज़) द्वारा लंदन के निकट गिरावट के एक विस्तृत अध्ययन के परिणामस्वरूप अनियमित चुंबकीय उतार-चढ़ाव की खोज हुई जिसे अब हम चुंबकीय तूफान कहते हैं, इसलिए [[अलेक्जेंडर वॉन हम्बोल्ट]] द्वारा नामित . गॉस और [[ विल्हेम एडवर्ड वेबर ]] ने पृथ्वी के चुंबकीय क्षेत्र का बहुत सावधानीपूर्वक मापन किया जिससे व्यवस्थित विविधता और यादृच्छिक उतार-चढ़ाव दिखाई दिए। इसने सुझाव दिया कि पृथ्वी एक अलग पिंड नहीं थी, बल्कि बाहरी ताकतों से प्रभावित थी - विशेष रूप से सूर्य और [[ झाई ]] की उपस्थिति से। 1747 में [[एंडर्स सेल्सियस]] और [[ओलोफ पीटर हियर्टर]] द्वारा अलग-अलग अरोरा और साथ में भू-चुंबकीय गड़बड़ी के बीच संबंध देखा गया। चुंबकीय ध्रुव। 1881 में, [[हरमन फ्रिट्ज]] ने स्थिर चुंबकीय क्षेत्र की आइसोचैम्स या रेखाओं का एक नक्शा प्रकाशित किया।
अंतरिक्ष भौतिकी का पता उन चीनियों से लगाया जा सकता है जिन्होंने कंपास के सिद्धांत की खोज की थी, लेकिन यह नहीं समझ पाए कि यह कैसे काम करता है। 16वीं शताब्दी के दौरान, डी मैग्नेट में, [[विलियम गिल्बर्ट (खगोलविद)|विलियम गिल्बर्ट]] ने पृथ्वी के चुंबकीय क्षेत्र का पहला विवरण दिया, यह दिखाते हुए कि पृथ्वी स्वयं एक विशिष्ट चुंबक है, जिसने समझाया कि कम्पास सुई उत्तर की ओर क्यों संकेत करती है। नेविगेशन चार्ट पर कम्पास सुई चुंबकीय निवेदन का विचलन दर्ज किया गया था, और घड़ीसाज़ जॉर्ज ग्राहम द्वारा लंदन के पास गिरावट का विस्तृत अध्ययन के परिणामस्वरूप अनियमित चुंबकीय उतार-चढ़ाव की खोज हुई, जिसे अब हम चुंबकीय तूफान कहते हैं, इसलिए [[अलेक्जेंडर वॉन हम्बोल्ट]] ने इसका नामकरण किया। गॉस और [[ विल्हेम एडवर्ड वेबर |विल्हेम वेबर]] ने पृथ्वी के चुंबकीय क्षेत्र का बहुत सावधानी से मापन किया जिसमें व्यवस्थित विविधता और यादृच्छिक उतार-चढ़ाव दिखाई दिया। इसने सुझाव दिया कि पृथ्वी एक अलग पिंड नहीं थी, लेकिन बाहरी बल से प्रभावित था - विशेष रूप से सूर्य और झाई की उपस्थिति थी। 1747 में एंडर्स सेल्सियस और [[ओलोफ पीटर हियर्टर]] द्वारा अलग-अलग उरोरा और साथ में भू-चुंबकीय गड़बड़ी के बीच संबंध देखा गया था। 1860 में, एलियास लूमिस (1811-1889) ने दिखाया कि चुंबकीय ध्रुव के चारों ओर 20 - 25 डिग्री के दीर्घवृत्तीय के अंदर अरोरा की सबसे अधिक घटना देखी जाती है। 1881 में, [[हरमन फ्रिट्ज]] ने "आइसोकैसम्स" या निरंतर चुंबकीय क्षेत्र की रेखाओं का नक्शा प्रकाशित किया था।


1870 के दशक के अंत में, [[हेनरी बेकरेल]] ने दर्ज किए गए सांख्यिकीय सहसंबंधों के लिए पहली भौतिक व्याख्या की पेशकश की: सनस्पॉट को तेज प्रोटॉन का स्रोत होना चाहिए। वे पृथ्वी के चुंबकीय क्षेत्र द्वारा ध्रुवों की ओर निर्देशित होते हैं। बीसवीं शताब्दी की शुरुआत में, इन विचारों ने [[ क्रिश्चियन बिर्कलैंड ]] को एक [[टेरेला]], या प्रयोगशाला उपकरण बनाने के लिए प्रेरित किया, जो एक निर्वात कक्ष में पृथ्वी के चुंबकीय क्षेत्र का अनुकरण करता है, और जो सौर हवा की रचना करने वाले ऊर्जावान कणों का अनुकरण करने के लिए कैथोड रे ट्यूब का उपयोग करता है। पृथ्वी के चुंबकीय क्षेत्र और सौर हवा के बीच की बातचीत के बारे में एक सिद्धांत तैयार किया जाने लगा।
1870 के अंत में, [[हेनरी बेकरेल]] ने रिकॉर्ड किए गए सांख्यिकीय सहसंबंधों के लिए पहली भौतिक व्याख्या को प्रस्तुत किया: सनस्पॉट को तीव्र प्रोटॉन का स्रोत होना चाहिए। वे पृथ्वी के चुंबकीय क्षेत्र द्वारा ध्रुवों तक निर्देशित होते हैं। बीसवीं सदी की प्रारम्भ में, इन विचारों ने [[ क्रिश्चियन बिर्कलैंड |क्रिस्टियन बिर्कलैंड]] को [[टेरेला]], या प्रयोगशाला के उपकरण जो निर्वात कक्ष में पृथ्वी के चुंबकीय क्षेत्र का अनुकरण करते हैं, और जो सौर हवा बनाने वाले ऊर्जावान कणों का अनुकरण करने के लिए कैथोड रे ट्यूब का उपयोग करते हैं। पृथ्वी के चुंबकीय क्षेत्र और सौर पवन के बीच अन्योन्यक्रिया के बारे में एक सिद्धांत बनने लगा था।


हालांकि, 1950 के दशक की शुरुआत में पहली बार इन-सीटू मापन तक अंतरिक्ष भौतिकी गंभीरता से शुरू नहीं हुई थी, जब [[जेम्स वैन एलन]] के नेतृत्व में एक टीम ने लगभग 110 किमी की ऊंचाई तक पहला रॉकेट लॉन्च किया था। दूसरे सोवियत उपग्रह, [[स्पुतनिक 2]], और पहले अमेरिकी उपग्रह, [[एक्सप्लोरर 1]] पर जाइगर काउंटरों ने पृथ्वी के विकिरण बेल्ट का पता लगाया,<ref>{{cite journal|last1=Li |first1=W.|last2=Hudson|first2=M.K. |title= Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era| journal = J. Geophys. Res.|date=2019|volume= 124|issue = 11| pages= 8319-8351|doi=10.1029/2018JA025940}} </ref> जिसे बाद में [[वान एलन विकिरण बेल्ट]] का नाम दिया गया। [[एक्सप्लोरर 10]] द्वारा पृथ्वी के चुंबकीय क्षेत्र और अंतर्ग्रहीय अंतरिक्ष के बीच की सीमा का अध्ययन किया गया था। भविष्य के अंतरिक्ष यान पृथ्वी की कक्षा के बाहर यात्रा करेंगे और सौर हवा की संरचना और संरचना का अधिक विस्तार से अध्ययन करेंगे। इनमें WIND (स्पेसक्राफ्ट), (1994), [[ उन्नत रचना एक्सप्लोरर ]] (ACE), Ulysses (स्पेसक्राफ्ट), 2008 में [[ इंटरस्टेलर सीमा एक्सप्लोरर ]] (IBEX) और [[ पार्कर सौर जांच ]] शामिल हैं। [[पवन (अंतरिक्ष यान)]] सूर्य का अध्ययन करेंगे, जैसे कि [[स्टीरियो]] और [[ सौर और हेलिओस्फेरिक वेधशाला ]] (SOHO)
हालांकि, 1950 के दशक की प्रारम्भ में पहली बार इन-सीटू मापन तक यह नहीं था कि अंतरिक्ष भौतिकी ने गंभीरता से उड़ान भरना प्रारम्भ किया। जब [[जेम्स वैन एलन|वैन एलन]] के नेतृत्व में टीम ने लगभग 110 किमी की ऊंचाई तक पहला रॉकेट लॉन्च किया था। दूसरे सोवियत उपग्रह, [[स्पुतनिक 2]], और पहले अमेरिकी उपग्रह, [[एक्सप्लोरर 1]] गीजर काउंटर्स पृथ्वी के विकिरण बेल्ट का पता लगाते हैं<ref>{{cite journal|last1=Li |first1=W.|last2=Hudson|first2=M.K. |title= Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era| journal = J. Geophys. Res.|date=2019|volume= 124|issue = 11| pages= 8319-8351|doi=10.1029/2018JA025940}} </ref> जिसे बाद में वैन [[वान एलन विकिरण बेल्ट|एलन बेल्ट]] का नाम दिया गया। [[एक्सप्लोरर 10]] द्वारा पृथ्वी के चुंबकीय क्षेत्र और ग्रहों के बीच अंतरिक्ष के बीच की सीमा का अध्ययन किया गया था। भविष्य के अंतरिक्ष यान पृथ्वी की कक्षा के बाहर यात्रा करेंगे और अधिक विस्तार से सौर हवा की संरचना और संरचना का अध्ययन करेंगे। इनमें विंड (स्पेसक्राफ्ट) (1994), एडवांस्ड कंपोजिशन एक्सप्लोरर (विकसित संघटन अन्वेषक) (एसीई), यूलिसिस, 2008 में इंटरस्टेलर बाउंड्री एक्सप्लोरर (अंतरातारकीय सीमा अन्वेषक) (आईबेक्स) और पार्कर सोलर प्रोब सम्मिलित हैं। अन्य अंतरिक्ष यान सूर्य का अध्ययन करेंगे, जैसे कि [[स्टीरियो]] और सोलर एंड हेलिओस्फेरिक ऑब्जर्वेटरी (सौर और सूर्यमंडलीय वेधशाला) (एसओएचओ) आदि।


== यह भी देखें ==
== यह भी देखें ==
* [[मानव शरीर पर अंतरिक्ष यान का प्रभाव]]
* [[मानव शरीर पर अंतरिक्ष यान का प्रभाव|अंतरिक्ष यान का मानव शरीर पर प्रभाव]]
* अंतरिक्ष वातावरण
* अंतरिक्ष वातावरण
*[[अंतरिक्ष विज्ञान]]
*[[अंतरिक्ष विज्ञान]]
Line 31: Line 31:
{{Physics-footer}}
{{Physics-footer}}
{{Authority control}}
{{Authority control}}
[[Category: अंतरिक्ष भौतिकी | अंतरिक्ष भौतिकी ]] [[Category: प्लाज्मा भौतिकी]] [[Category: वायुमंडलीय विज्ञान]]


 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 01/06/2023]]
[[Category:Created On 01/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:अंतरिक्ष भौतिकी| अंतरिक्ष भौतिकी ]]
[[Category:प्लाज्मा भौतिकी]]
[[Category:वायुमंडलीय विज्ञान]]

Latest revision as of 15:23, 13 June 2023

अंतरिक्ष भौतिकी, जिसे सौर-स्थलीय भौतिकी या अंतरिक्ष-प्लाज्मा भौतिकी के रूप में भी जाना जाता है, प्लाज्मा का अध्ययन, क्योंकि वे पृथ्वी के ऊपरी वायुमंडल (एरोनॉमी) और सौर मंडल के भीतर प्राकृतिक रूप से पाए जाते हैं। इस प्रकार, इसमें हेलीओफिजिक्स जैसे कई विषयों को सम्मिलित किया गया है, जिसमें सूर्य के सौर भौतिकी, सौर हवा, ग्रहों के चुंबकमंडल और आयनमंडल, अरुणोदय, लौकिक किरणें और सिंक्रोट्रॉन विकिरण सम्मिलित हैं। अंतरिक्ष भौतिकी अंतरिक्ष मौसम के अध्ययन का एक मूलभूत हिस्सा है और इसका न केवल ब्रह्मांड को समझने में महत्वपूर्ण प्रभाव है, बल्कि संचार और मौसम उपग्रहों के संचालन सहित व्यावहारिक दैनिक जीवन के लिए भी इसका महत्वपूर्ण प्रभाव है।

अंतरिक्ष भौतिकी खगोलभौतिकीय प्लाज्मा और खगोल भौतिकी के क्षेत्र से अलग है, जो सौर प्रणाली से परे समान प्लाज्मा घटनाओं का अध्ययन करता है। अंतरिक्ष भौतिकी उच्च ऊंचाई वाले रॉकेट और अंतरिक्ष यान से सीटू मापन का उपयोग करती है,[1] खगोलीय प्लाज्मा के विपरीत जो सिद्धांत और खगोलीय अवलोकन की व्यवकलन पर निर्भर करता है। अंतरिक्ष भौतिकी 12

इतिहास

अंतरिक्ष भौतिकी का पता उन चीनियों से लगाया जा सकता है जिन्होंने कंपास के सिद्धांत की खोज की थी, लेकिन यह नहीं समझ पाए कि यह कैसे काम करता है। 16वीं शताब्दी के दौरान, डी मैग्नेट में, विलियम गिल्बर्ट ने पृथ्वी के चुंबकीय क्षेत्र का पहला विवरण दिया, यह दिखाते हुए कि पृथ्वी स्वयं एक विशिष्ट चुंबक है, जिसने समझाया कि कम्पास सुई उत्तर की ओर क्यों संकेत करती है। नेविगेशन चार्ट पर कम्पास सुई चुंबकीय निवेदन का विचलन दर्ज किया गया था, और घड़ीसाज़ जॉर्ज ग्राहम द्वारा लंदन के पास गिरावट का विस्तृत अध्ययन के परिणामस्वरूप अनियमित चुंबकीय उतार-चढ़ाव की खोज हुई, जिसे अब हम चुंबकीय तूफान कहते हैं, इसलिए अलेक्जेंडर वॉन हम्बोल्ट ने इसका नामकरण किया। गॉस और विल्हेम वेबर ने पृथ्वी के चुंबकीय क्षेत्र का बहुत सावधानी से मापन किया जिसमें व्यवस्थित विविधता और यादृच्छिक उतार-चढ़ाव दिखाई दिया। इसने सुझाव दिया कि पृथ्वी एक अलग पिंड नहीं थी, लेकिन बाहरी बल से प्रभावित था - विशेष रूप से सूर्य और झाई की उपस्थिति थी। 1747 में एंडर्स सेल्सियस और ओलोफ पीटर हियर्टर द्वारा अलग-अलग उरोरा और साथ में भू-चुंबकीय गड़बड़ी के बीच संबंध देखा गया था। 1860 में, एलियास लूमिस (1811-1889) ने दिखाया कि चुंबकीय ध्रुव के चारों ओर 20 - 25 डिग्री के दीर्घवृत्तीय के अंदर अरोरा की सबसे अधिक घटना देखी जाती है। 1881 में, हरमन फ्रिट्ज ने "आइसोकैसम्स" या निरंतर चुंबकीय क्षेत्र की रेखाओं का नक्शा प्रकाशित किया था।

1870 के अंत में, हेनरी बेकरेल ने रिकॉर्ड किए गए सांख्यिकीय सहसंबंधों के लिए पहली भौतिक व्याख्या को प्रस्तुत किया: सनस्पॉट को तीव्र प्रोटॉन का स्रोत होना चाहिए। वे पृथ्वी के चुंबकीय क्षेत्र द्वारा ध्रुवों तक निर्देशित होते हैं। बीसवीं सदी की प्रारम्भ में, इन विचारों ने क्रिस्टियन बिर्कलैंड को टेरेला, या प्रयोगशाला के उपकरण जो निर्वात कक्ष में पृथ्वी के चुंबकीय क्षेत्र का अनुकरण करते हैं, और जो सौर हवा बनाने वाले ऊर्जावान कणों का अनुकरण करने के लिए कैथोड रे ट्यूब का उपयोग करते हैं। पृथ्वी के चुंबकीय क्षेत्र और सौर पवन के बीच अन्योन्यक्रिया के बारे में एक सिद्धांत बनने लगा था।

हालांकि, 1950 के दशक की प्रारम्भ में पहली बार इन-सीटू मापन तक यह नहीं था कि अंतरिक्ष भौतिकी ने गंभीरता से उड़ान भरना प्रारम्भ किया। जब वैन एलन के नेतृत्व में टीम ने लगभग 110 किमी की ऊंचाई तक पहला रॉकेट लॉन्च किया था। दूसरे सोवियत उपग्रह, स्पुतनिक 2, और पहले अमेरिकी उपग्रह, एक्सप्लोरर 1 गीजर काउंटर्स पृथ्वी के विकिरण बेल्ट का पता लगाते हैं[2] जिसे बाद में वैन एलन बेल्ट का नाम दिया गया। एक्सप्लोरर 10 द्वारा पृथ्वी के चुंबकीय क्षेत्र और ग्रहों के बीच अंतरिक्ष के बीच की सीमा का अध्ययन किया गया था। भविष्य के अंतरिक्ष यान पृथ्वी की कक्षा के बाहर यात्रा करेंगे और अधिक विस्तार से सौर हवा की संरचना और संरचना का अध्ययन करेंगे। इनमें विंड (स्पेसक्राफ्ट) (1994), एडवांस्ड कंपोजिशन एक्सप्लोरर (विकसित संघटन अन्वेषक) (एसीई), यूलिसिस, 2008 में इंटरस्टेलर बाउंड्री एक्सप्लोरर (अंतरातारकीय सीमा अन्वेषक) (आईबेक्स) और पार्कर सोलर प्रोब सम्मिलित हैं। अन्य अंतरिक्ष यान सूर्य का अध्ययन करेंगे, जैसे कि स्टीरियो और सोलर एंड हेलिओस्फेरिक ऑब्जर्वेटरी (सौर और सूर्यमंडलीय वेधशाला) (एसओएचओ) आदि।

यह भी देखें

संदर्भ

  1. "अंतरिक्ष भौतिकी पाठ्यपुस्तक". 2006-11-26. Archived from the original on December 18, 2008. Retrieved 2008-12-31.
  2. Li, W.; Hudson, M.K. (2019). "Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era". J. Geophys. Res. 124 (11): 8319–8351. doi:10.1029/2018JA025940.


अग्रिम पठन


बाहरी संबंध