मध्य केन्द्रीयता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 35: Line 35:


</math>
</math>
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 08:53, 15 June 2023

कम से कम (लाल) से सबसे बड़ी (नीला) तक प्रत्येक शीर्ष की मध्य की केंद्रीयता के आधार पर रंगीन अप्रत्यक्ष ग्राफ

ग्राफ सिद्धांत में, मध्य केन्द्रीयता सबसे छोटे रास्तों पर आधारित ग्राफ (असतत गणित) में केंद्रीयता का उपाय है। कनेक्टेड ग्राफ़ में हर जोड़े के कोने के लिए, वर्टिकल के मध्य कम से कम सबसे छोटा रास्ता उपस्थित होता है जैसे कि या तो किनारों की संख्या जिससे रास्ता निकलता है (अनवेटेड ग्राफ़ के लिए) या किनारों के वज़न का योग (भारित ग्राफ़ के लिए) न्यूनतम किया गया है। प्रत्येक शीर्ष (ग्राफ़ सिद्धांत) के लिए मध्य की केंद्रीयता इन सबसे छोटे रास्तों की संख्या है, जो शीर्ष से होकर निकलती हैं।

मध्य की केंद्रीयता को केंद्रीयता के सामान्य उपाय के रूप में तैयार किया गया था:[1] यह नेटवर्क सिद्धांत में समस्याओं की विस्तृत श्रृंखला पर प्रयुक्त होता है, जिसमें सोशल नेटवर्क सिद्धांत, जीव विज्ञान, परिवहन और वैज्ञानिक सहयोग से संबंधित समस्याएं सम्मिलित हैं। चूँकि पहले के लेखकों ने सरल रूप से केंद्रीयता को मध्य के आधार पर वर्णित किया है, फ्रीमैन (1977) ने मध्य की केंद्रीयता की पहली औपचारिक परिभाषा दी थी।

मध्य की केंद्रीयता को नेटवर्क सिद्धांत में व्यापक अनुप्रयोग मिलता है; यह उस डिग्री का प्रतिनिधित्व करता है, जिस पर नोड्स एक दूसरे के मध्य खड़े होते हैं। उदाहरण के लिए, दूरसंचार नेटवर्क में, उच्च केंद्रीयता वाले नोड का नेटवर्क पर अधिक नियंत्रण होगा, क्योंकि अधिक जानकारी उस नोड से होकर निकलेगी।

परिभाषा

नोड के मध्य की केंद्रीयता अभिव्यक्ति द्वारा दी गई है:

जहाँ नोड से नोड तक के सबसे छोटे रास्तों की कुल संख्या है और उन रास्तों की संख्या है, जो से होकर निकलते हैं (जहाँ अंत बिंदु नहीं है)।[2]

ध्यान दें कि नोड के मध्य की केंद्रीयता, नोड्स के जोड़े की संख्या के साथ मापी जाती है, जैसा कि योग सूचकांकों द्वारा सुझाया गया है। इसलिए, गणना को सहित नोड्स के जोड़े की संख्या से विभाजित करके पुन: स्केल किया जा सकता है, जिससे प्राप्त होता है। विभाजन निर्देशित ग्राफ़ के लिए और द्वारा किया जाता है अप्रत्यक्ष रेखांकन, जहां विशाल घटक में नोड्स की संख्या है। ध्यान दें कि यह उच्चतम संभव मान के लिए मापता है, जहां प्रत्येक सबसे छोटे पथ द्वारा नोड को पार किया जाता है। यह स्थिति अधिकांशतः नहीं होती है, और स्पष्टता की हानि के बिना सामान्यीकरण किया जा सकता है:

जिसके परिणामस्वरूप:

ध्यान दें कि यह सदैव छोटी श्रेणी से बड़ी श्रेणी में स्केलिंग होगी, इसलिए कोई स्पष्टता नहीं खोती है।

भारित नेटवर्क

भारित नेटवर्क में नोड्स को जोड़ने वाले लिंक को अब बाइनरी इंटरैक्शन के रूप में नहीं माना जाता है, लेकिन उनकी क्षमता, प्रभाव, आवृत्ति आदि के अनुपात में भारित किया जाता है, जो टोपोलॉजिकल प्रभावों से हटकर नेटवर्क के अन्दर विषमता का एक और आयाम जोड़ता है। भारित नेटवर्क में एक नोड की शक्ति उसके आसन्न किनारों के भार के योग द्वारा दी जाती है।

और के साथ क्रमशः नोड्स और के मध्य आसन्नता और वज़न मैट्रिसेस हैं। स्केल फ्री नेटवर्क में पाए जाने वाले डिग्री के पावर लॉ डिस्ट्रीब्यूशन के अनुरूप, किसी दिए गए नोड की शक्ति पावर लॉ डिस्ट्रीब्यूशन का भी पालन करती है।

मध्य के के साथ शिखर के लिए ताकत के औसत मान के अध्ययन से पता चलता है कि कार्यात्मक व्यवहार को स्केलिंग फॉर्म द्वारा अनुमानित किया जा सकता है:

  1. Freeman (1977), p. 39.
  2. "गेफी में बीचनेस सेंट्रलिटी की गणना". YouTube.