प्रसार प्रक्रिया: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 19: Line 19:


[[Category:All stub articles]]
[[Category:All stub articles]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Collapse templates]]
[[Category:Created On 01/06/2023]]
[[Category:Created On 01/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes| ]]
Line 28: Line 30:
[[Category:Short description with empty Wikidata description]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 20:20, 19 June 2023

संभाव्यता सिद्धांत और सांख्यिकी में, प्रसार प्रक्रिया निरंतर-समय मार्कोव प्रक्रिया का वर्ग है जिसमें लगभग निश्चित रूप से निरंतर कार्य प्रारूप मार्ग होते हैं। प्रसार प्रक्रिया प्रकृति में आंकड़े है और इसलिए इसका उपयोग कई वास्तविक जीवन स्टोचैस्टिक प्रणालियों के मॉडल के लिए किया जाता है। ब्राउनियन गति, परिलक्षित ब्राउनियन गति और ऑर्स्टीन-उहलेनबेक प्रक्रियाएं प्रसार प्रक्रियाओं के उदाहरण हैं। यह सांख्यिकीय भौतिकी, सांख्यिकीय विश्लेषण, सूचना सिद्धांत, डेटा विज्ञान, प्रणाली नेटवर्क, वित्त और विपणन में अत्यधिक उपयोग किया जाता है।

प्रसार प्रक्रिया का प्रारूप मार्ग प्रवाहित तरल पदार्थ में एम्बेडेड कण के प्रक्षेप वक्र को मॉडल करता है और अन्य कणों के साथ टकराव के कारण यादृच्छिक विस्थापन के अधीन होता है, जिसे ब्राउनियन गति कहा जाता है। कण की स्थिति तब यादृच्छिक होती है; अंतरिक्ष और समय के कार्य के रूप में इसका संभाव्यता घनत्व कार्य संवहन समीकरण-प्रसार समीकरण द्वारा नियंत्रित होता है।

गणितीय परिभाषा

प्रसार प्रक्रिया ऐसी मार्कोव प्रक्रिया है, जिसमें निरंतर प्रारूप मार्ग होते हैं जिसके लिए कोलमोगोरोव फॉरवर्ड समीकरण फोकर-प्लैंक समीकरण है।[1]


यह भी देखें

संदर्भ

  1. "9. Diffusion processes" (pdf). Retrieved October 10, 2011.