रजिस्टर-ट्रांसफर लेवल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Use American English|date = April 2019}}
'''''एकीकृत परिपथ'''''  संरचना में '''रजिस्टर-ट्रांसफर लेवल''' (RTL) एक संक्षेपण संरचना है जो [[ हार्डवेयर रजिस्टर]] के बीच संकेत (डाटा) के प्रवाह और संकेतों पर किए गए [[ बूलियन तर्क | तर्क संगत संक्रिया]]  के संदर्भ में एक [[ तुल्यकालिक सर्किट | तुल्यकालिक परिपथ]]  को प्रदर्शित करता है।
{{Short description|Description of digital circuits in terms of flow of information between registers}}
{{Distinguish|रजिस्टर-स्थानांतरण भाषा |प्रतिरोधक ट्रंजिस्टर तर्क }}
{{refimprove|date=December 2009}}
'''''एकीकृत परिपथ'''''  संरचना में रजिस्टर-स्थानांतरण स्तर (आरटीएल) एक ऐसा संरचना सारांशन है, जो [[ हार्डवेयर रजिस्टर ]] के बीच संकेत (डाटा) के प्रवाह और संकेतों पर किए गए [[ बूलियन तर्क | तकनीक संगत संक्रिया]]  के संदर्भ में एक [[ तुल्यकालिक सर्किट | तुल्यकालिक परिपथ]]  को प्रदर्शित करता है।  


रजिस्टर-स्थानांतरण स्तर सारांशन का उपयोग [[ हार्डवेयर विवरण भाषा | हार्डवेयर विवरण भाषा]]  (एचडीएल) जैसे  [[ Verilog |दृढ़ता  पूर्वक]]  और  [[ वीएचडीएल |वीएचडीएल]]  में एक परिपथ में उच्च-स्तरीय प्रतिनिधित्व बनाने के लिए  [[ जानकारी |जानकारी]] दी गयी है, जिससे निचले स्तर के प्रतिनिधित्व और वास्तविक तार स्थापन प्राप्त किया जा सकता है। आरटीएल स्तर पर डिजाइन आधुनिक अंकीय डिजाइन एक ऐसा विशिष्ट अभ्यास है।<ref>
रजिस्टर-ट्रांसफर लेवल का उपयोग [[ हार्डवेयर विवरण भाषा | हार्डवेयर डिस्क्रिप्शन लैंग्वेज]]  (HDL) जैसे  [[ Verilog |दृढ़ता  पूर्वक]]  और  [[वीएचडीएल]]  में एक परिपथ में उच्च-स्तरीय प्रतिनिधित्व बनाने के लिए  [[जानकारी]] दी गयी है, जिससे निचले स्तर के प्रतिनिधित्व और वास्तविक तार स्थापन प्राप्त किया जा सकता है। आरटीएल स्तर पर डिजाइन आधुनिक अंकीय डिजाइन एक ऐसा विशिष्ट अभ्यास है।<ref>
{{cite book
{{cite book
  | title = Digital Design with RTL Design, Verilog and VHDL
  | title = Digital Design with RTL Design, Verilog and VHDL
Line 16: Line 12:
  | url = https://books.google.com/books?id=-YayRpmjc20C&pg=PA247
  | url = https://books.google.com/books?id=-YayRpmjc20C&pg=PA247
  }}</ref>
  }}</ref>
जो सॉफ्टवेयर संकलन डिजाइन के विपरीत, जहां रजिस्टर-स्थानांतरण स्तर एक मध्यवर्ती प्रतिनिधित्व है और निम्नतम स्तर पर आरटीएल स्तर सामान्य दिये गए है जिस पर परिपथ अभिकल्पक के रूप काम करते हैं। वास्तव में परिपथ संश्लेषण में दिये गए रजिस्टर स्थानांतरण स्तर प्रतिनिधित्व और लक्ष्य  [[ नेटलिस्ट |जाल के समान]]  बीच में एक मध्यवर्ती भाषा का कभी-कभी उपयोग किया जाता है। जैसे जाल के समान विपरीत सेल कार्य और उनके अनेक फलक रजिस्टर निर्माण उपलब्ध हैं।<ref>[http://www.clifford.at/yosys/files/yosys_manual.pdf Yosys Manual] (RTLIL)</ref> उदाहरणों में (फआईआरआरटीएल) और (आरटीएलआईएल) शामिल हैं।  
जो सॉफ्टवेयर संकलन डिजाइन के विपरीत, जहां रजिस्टर-ट्रांसफर लेवल एक मध्यवर्ती प्रतिनिधित्व है और निम्नतम स्तर पर आरटीएल स्तर सामान्य दिये गए है जिस पर परिपथ अभिकल्पक के रूप में काम करते हैं। वास्तव में परिपथ संश्लेषण में दिये गए रजिस्टर स्थानांतरण स्तर प्रतिनिधित्व और लक्ष्य  [[ नेटलिस्ट |जाल के समान]]  बीच में एक मध्यवर्ती भाषा का कभी-कभी उपयोग किया जाता है। जैसे जाल के समान विपरीत सेल कार्य और उनके अनेक फलक रजिस्टर निर्माण उपलब्ध हैं।<ref>[http://www.clifford.at/yosys/files/yosys_manual.pdf Yosys Manual] (RTLIL)</ref> उदाहरणों में (फआईआरआरटीएल) और (आरटीएलआईएल) शामिल हैं।  


लेन-देन-स्तरीय प्रतिरूपण [[ इलेक्ट्रॉनिक डिजाइन स्वचालन | इलेक्ट्रॉनिक अभिकल्पक(डिज़ाइन) स्वचालन]] का एक उच्च स्तर है।
लेन-देन-स्तरीय प्रतिरूपण [[ इलेक्ट्रॉनिक डिजाइन स्वचालन | इलेक्ट्रॉनिक अभिकल्पक(डिज़ाइन) स्वचालन]] का एक उच्च स्तर है।


==आरटीएल विवरण==
==आरटीएल(RTL) विवरण==
[[File:Register transfer level - example toggler.svg|right|thumb|300px|निर्विष्ट के प्रत्येक बढ़ते किनारे पर उत्पादक बांधने के साथ एक साधारण परिपथ का उदाहरण है। जो प्रतिवर्तित्र परिपथ में सटीक विधि से संयोजन तकनीक बनाता है, और रजिस्टर स्थिति रखता है।]]
[[File:Register transfer level - example toggler.svg|right|thumb|300px|निर्विष्ट के प्रत्येक बढ़ते किनारे पर उत्पादक बांधने के साथ एक साधारण परिपथ का उदाहरण है। जो प्रतिवर्ती परिपथ में सटीक विधि से संयोजन तर्क बनाता है, और रजिस्टर स्थिति रखता है।]]
एक समकालिक परिपथ में दो प्रकार के तत्व होते हैं।  [[ अनुक्रमिक तर्क | अनुक्रमिक तकनीक]]  और  [[ संयोजन तर्क | संयोजन तकनीक]] । रजिस्टर (आमतौर पर डी फ्लिप-फ्लॉप के रूप में कार्यान्वित) परिपथ के संचालन को घड़ी संकेतों के किनारों पर समकालिक करते हैं, और ये परिपथ में एकमात्र स्मृति गुण वाले तत्व होते हैं। संयुक्त तकनीक परिपथ में सभी तार्किक फलन के रूप में कार्य करते है और इसमें आमतौर पर [[ लॉजिक गेट | तकनीक गेट]]  होते हैं।
एक समकालिक परिपथ में दो प्रकार के तत्व होते हैं।  [[ अनुक्रमिक तर्क | अनुक्रमिक तर्क]]  और  [[ संयोजन तर्क | संयोजन तर्क]] । रजिस्टर (आमतौर पर डी फ्लिप-फ्लॉप के रूप में कार्यान्वित) परिपथ के संचालन को घड़ी संकेतों के किनारों पर समकालिक करते हैं, और ये परिपथ में एकमात्र स्मृति गुण वाले तत्व होते हैं। संयुक्त तर्क परिपथ में सभी तार्किक फलन के रूप में कार्य करते है और इसमें आमतौर पर [[ लॉजिक गेट |तार्किक गेट]]  होते हैं।


उदाहरण के लिए एक बहुत ही सरल समकालिक परिपथ चित्र में दिखाया गया है।  [[ इन्वर्टर (लॉजिक गेट) |तकनीक गेट]]  एक रजिस्टर के उत्पादन वाले क्यू से रजिस्टर के निवेश वाले डी परिपथ से जुड़ा होता है। एक परिपथ बनाने के लिए जो घड़ी के प्रत्येक बढ़ते किनारे पर अपनी स्थिति बदलता है, इस परिपथ में संयोजन तरीके से प्रतिवर्तित्र होता है।
उदाहरण के लिए एक बहुत ही सरल समकालिक परिपथ चित्र में दिखाया गया है।  [[ इन्वर्टर (लॉजिक गेट) |तार्किक गेट]]  एक रजिस्टर के उत्पादन वाले क्यू से रजिस्टर के निवेश वाले डी परिपथ से जुड़ा होता है। एक परिपथ बनाने के लिए जो घड़ी के प्रत्येक बढ़ते किनारे पर अपनी स्थिति बदलता है, इस परिपथ में संयोजन तरीके से परिवर्तित होता है।


हार्डवेयर विवरण भाषा (एचडीएल) के साथ अंकीय एकीकृत परिपथ डिजाइन करते समय, संरचना आमतौर पर स्थानातरण स्तर या प्रतिवर्तित्र गेट स्तर की तुलना में उच्च स्तर के अमूर्तता पर अभियंत्रित होते हैं। एचडीएल में अभिकल्पक रजिस्टरों की घोषणा करता है (जो मोटे तौर पर कंप्यूटर प्रोग्रामिंग भाषाओं में चर के अनुरूप होता है), प्रोग्रामिंग भाषाओं से परिचित निर्माणों का उपयोग करके संयोजन तकनीक का वर्णन करता है। और अगर तब यह अंकगणितीय संचालन भी करता है। तब इस स्तर को रजिस्टर-स्थानातरण स्तर कहा जाता है। यह शब्द तथ्य को इस तरह से संदर्भित करता है कि आरटीएल रजिस्टरों के बीच संकेतों के प्रवाह का वर्णन करने पर केंद्रित है।
[[ हार्डवेयर विवरण भाषा |हार्डवेयर डिस्क्रिप्शन लैंग्वेज]] (एचडीएल) के साथ अंकीय एकीकृत परिपथ डिजाइन करते समय, संरचना आमतौर पर स्थानातरण स्तर या प्रतिवर्ती गेट स्तर की तुलना में उच्च स्तर की अमूर्तता पर अभियंत्रित होते हैं। एचडीएल में अभिकल्पक रजिस्टरों की घोषणा करता है (जो मोटे तौर पर कंप्यूटर प्रोग्रामिंग भाषाओं में चर के अनुरूप होता है), प्रोग्रामिंग भाषाओं से परिचित निर्माणों का उपयोग करके संयोजन तर्क का वर्णन करता है और अगर तब यह अंकगणितीय संचालन भी करता है। तब इस स्तर को रजिस्टर-स्थानातरण स्तर कहा जाता है। यह शब्द तथ्य को इस तरह से संदर्भित करता है कि आरटीएल रजिस्टरों के बीच संकेतों के प्रवाह का वर्णन करने पर केंद्रित है।


इसको एक उदाहरण के रूप में ऊपर वर्णित परिपथ को वीएचडीएल में निम्नानुसार वर्णित किया जा सकता है:
इसको एक उदाहरण के रूप में ऊपर वर्णित परिपथ को वीएचडीएल में निम्नानुसार वर्णित किया जा सकता है:
Line 44: Line 40:
end process;
end process;


संश्लेषण के लिए एक ईडीए उपकरण का उपयोग करते हुए, इस विवरण को आम तौर पर एएसआईसी या एफपीजीए के लिए समकक्ष हार्डवेयर कार्यान्वयन पंक्ति में सीधे अनुवादित किया जा सकता है। यह [[ तर्क संश्लेषण | तकनीक संश्लेषण]] से [[ तर्क अनुकूलन | तकनीक अनुकूलन]] भी करता है।
संश्लेषण के लिए एक ईडीए उपकरण का उपयोग करते हुए, इस विवरण को आम तौर पर एएसआईसी या एफपीजीए के लिए समकक्ष हार्डवेयर कार्यान्वयन पंक्ति में सीधे अनुवादित किया जा सकता है। यह [[ तर्क संश्लेषण |तर्क संश्लेषण]] से [[ तर्क अनुकूलन | तर्क अनुकूलन]] भी करता है।


रजिस्टर-स्थानांतरण स्तर पर कुछ प्रकार के परिपथों को पहचाना जा सकता है। यदि किसी रजिस्टर के उत्पादन से उसके निवेश तक का तकनीक एक चक्रीय पथ है। तो परिपथ को एक परिमित-स्थिति उपकरण कहा जाता है या इसे अनुक्रमिक तकनीक भी कहा जा सकता है। यदि बिना चक्र के एक रजिस्टर से दूसरे रजिस्टर में तार्किक पथ हैं, तो इसे [[ पाइपलाइन (कंप्यूटिंग) | पाइपलाइन (कंप्यूटिंग)]] कहा जाता है।
रजिस्टर-ट्रांसफर लेवल पर कुछ प्रकार के परिपथों को पहचाना जा सकता है। यदि किसी रजिस्टर के उत्पादन से उसके निवेश तक का तर्क एक चक्रीय पथ है। तो परिपथ को एक परिमित-स्थिति उपकरण कहा जाता है या इसे अनुक्रमिक तर्क भी कहा जा सकता है। यदि बिना चक्र के एक रजिस्टर से दूसरे रजिस्टर में तार्किक पथ हैं, तो इसे [[ पाइपलाइन (कंप्यूटिंग) | पाइपलाइन (कंप्यूटिंग)]] कहा जाता है।


== परिपथ  परिकलन चक्र में आरटीएल ==
== परिपथ  परिकलन चक्र में आरटीएल(RTL) ==
आरटीएल का उपयोग  [[ एकीकृत सर्किट डिजाइन |एकीकृत परिपथ परिकलन]]  चक्र के  [[ डिजिटल तर्क |अंकीय तकनीक]]  चरण में किया जाता है।
आरटीएल का उपयोग  [[ एकीकृत सर्किट डिजाइन |एकीकृत परिपथ परिकलन]]  चक्र के  [[ डिजिटल तर्क |अंकीय तर्क]]  चरण में किया जाता है।


एक आरटीएल विवरण आमतौर पर एक तकनीक संश्लेषण प्रक्रिया सामग्री उपकरण गेटा परिपथ के जाल के समान | गेट -स्तरीय विवरण में परिवर्तित किया जाता है। भौतिक एकीकृत परिपथ बनाने के लिए संश्लेषण परिणामों का उपयोग [[ प्लेसमेंट (ईडीए) | स्थानन (प्लेसमेंट)]] और [[ रूटिंग (ईडीए) | अनुमार्गण (रूटिंग)]] उपकरण  गेटा किया जाता है।
एक आरटीएल विवरण आमतौर पर एक तर्क संश्लेषण प्रक्रिया सामग्री उपकरण द्वारा परिपथ के जाल के समान | द्वार -स्तरीय विवरण में परिवर्तित किया जाता है। भौतिक एकीकृत परिपथ बनाने के लिए संश्लेषण परिणामों का उपयोग [[ प्लेसमेंट (ईडीए) | स्थानन (प्लेसमेंट)]] और [[ रूटिंग (ईडीए) | अनुमार्गण (रूटिंग)]] उपकरण  द्वारा किया जाता है।


[[ तर्क अनुकरण | तकनीक अनुकरण]] उपकरण इसकी शुद्धता को सत्यापित करने के लिए संरचना के आरटीएल विवरण का उपयोग कर सकते हैं।
[[ तर्क अनुकरण | तर्क अनुकरण]] उपकरण इसकी शुद्धता को सत्यापित करने के लिए संरचना के आरटीएल विवरण का उपयोग कर सकते हैं।


== आरटीएल के लिए शक्ति आकलन तकनीक ==
== आरटीएल(RTL) के लिए शक्ति आकलन तकनीक ==
परिपथ स्तर के लिए सबसे सटीक बिजली विश्लेषण उपकरण उपलब्ध हैं, लेकिन दुर्भाग्य से, बटन के साथ भी उपकरण स्तरीय प्रतिरूपण के बजाय, परिपथ स्तर पर उपकरण में नुकसान होता है। जैसे कि वे या तो बहुत धीमे होते हैं या तो बहुत अधिक मेमोरी की आवश्यकता होती है जिससे बड़ी टुकड़े संचालन में बाधा जाता है। इनमें से अधिकांश  [[ SPICE | तनाव]]  जैसे अनुकारी और संरचनाओं गेटा कई वर्षों से प्रदर्शन विश्लेषण उपकरण के रूप में उपयोग किए जाते हैं। इन नुकसानों के कारण गेट -स्तरीय बिजली आकलन उपकरण कुछ स्वीकृति प्राप्त करने लगे हैं। जहां तेजी से, संभाव्य तकनीकों ने पैर जमाना शुरू कर दिया है। लेकिन इसका व्यापार  भी बंद है क्योंकि सटीकता की लागत पर गति प्राप्त की जाती है, खासकर सहसंबद्ध संकेतों की उपस्थिति में। वर्षों से यह महसूस किया गया है कि कम बिजली परिकलन में सबसे बड़ी जीत परिपथ और गेट स्तरीय अनुकूलन से नहीं आ सकती है, जबकि स्थापत्य व्यवस्था और कलनविधि अनुकूलन का बिजली की खपत पर सबसे अधिक प्रभाव पड़ता है। इसलिए, उपकरण विकसित करने वाले के झुकाव में बिजली के लिए उच्च-स्तरीय विश्लेषण और अनुकूलन उपकरण की ओर एक बदलाव आया है।
परिपथ स्तर के लिए सबसे सटीक बिजली विश्लेषण उपकरण उपलब्ध हैं, लेकिन दुर्भाग्य से, बटन के साथ भी उपकरण स्तरीय प्रतिरूपण के बजाय, परिपथ स्तर पर उपकरण में नुकसान होता है। जैसे कि वे या तो बहुत धीमे होते हैं या तो बहुत अधिक मेमोरी की आवश्यकता होती है जिससे बड़ी टुकड़े संचालन में बाधा जाता है। इनमें से अधिकांश  [[ SPICE | तनाव]]  जैसे अनुकारी और संरचनाओं द्वारा कई वर्षों से प्रदर्शन विश्लेषण उपकरण के रूप में उपयोग किए जाते हैं। इन नुकसानों के कारण द्वार -स्तरीय बिजली आकलन उपकरण कुछ स्वीकृति प्राप्त करने लगे हैं। जहां तेजी से, संभाव्य तकनीकों ने पैर जमाना शुरू कर दिया है। लेकिन इसका व्यापार  भी बंद है क्योंकि सटीकता की लागत पर गति प्राप्त की जाती है, खासकर सहसंबद्ध संकेतों की उपस्थिति में। वर्षों से यह महसूस किया गया है कि कम बिजली परिकलन में सबसे बड़ी जीत परिपथ और गेट स्तरीय अनुकूलन से नहीं आ सकती है, जबकि स्थापत्य व्यवस्था और कलनविधि अनुकूलन का बिजली की खपत पर सबसे अधिक प्रभाव पड़ता है। इसलिए, उपकरण विकसित करने वाले के झुकाव में बिजली के लिए उच्च-स्तरीय विश्लेषण और अनुकूलन उपकरण की ओर एक बदलाव आया है।


=== प्रेरणा ===
=== प्रेरणा ===
यह सर्वविदित है कि यदि अमूर्तता के स्तर पर अनुकूलन किया जाता है तो अधिक महत्वपूर्ण बिजली कटौती संभव है। जैसे कि आर्किटेक्चरल और एल्गोरिथम स्तर की तरह, जो सर्किट या गेट स्तर से अधिक हैं <ref>[http://www.eecg.toronto.edu/~najm/papers/iccad95-tutorial.pdf "Power Estimation Techniques for Integrated Circuits "]</ref> यह उपकरण बनाने वाले को नए स्थापत्य स्तर और शक्ति विश्लेशित उपकरणों के विकास पर ध्यान केंद्रित करने के लिए आवश्यक प्रेरणा प्रदान करता है। इसका मतलब यह नहीं है कि निचले स्तर के उपकरण महत्वहीन हैं। इसके बजाय, उपकरणों की प्रत्येक परत एक आधार प्रदान करती है जिस पर अगले स्तर का निर्माण किया जा सकता है। निचले स्तर पर अनुमान तकनीकों के सार का उपयोग उच्च स्तर पर मामूली संशोधनों के साथ किया जा सकता है।
यह सर्वविदित है कि यदि अमूर्तता के स्तर पर अनुकूलन किया जाता है तो अधिक महत्वपूर्ण बिजली कटौती संभव है। जैसे कि आर्किटेक्चरल और एल्गोरिथम स्तर की तरह, जो सर्किट या द्वार स्तर से अधिक हैं <ref>[http://www.eecg.toronto.edu/~najm/papers/iccad95-tutorial.pdf "Power Estimation Techniques for Integrated Circuits "]</ref> यह उपकरण बनाने वाले को नए स्थापत्य स्तर और शक्ति विश्लेशित उपकरणों के विकास पर ध्यान केंद्रित करने के लिए आवश्यक प्रेरणा प्रदान करता है। इसका मतलब यह नहीं है कि निचले स्तर के उपकरण महत्वहीन हैं। इसके बजाय, उपकरणों की प्रत्येक परत एक आधार प्रदान करती है जिस पर अगले स्तर का निर्माण किया जा सकता है। निचले स्तर पर अनुमान तर्कों के सार का उपयोग उच्च स्तर पर मामूली संशोधनों के साथ किया जा सकता है।


=== आरटीएल या स्थापत्य स्तर पर शक्ति आकलन करने के लाभ ===
=== आरटीएल(RTL) या स्थापत्य स्तर पर शक्ति आकलन करने के लाभ ===
* संरचनात्मक अनुकूलन और दुविधापूर्ण संरचना प्रवाह में बहुत जल्दी करने के लिए संरचना के रजिस्टर-स्थानांतरण स्तर विवरण का उपयोग करते हैं।
* संरचनात्मक अनुकूलन और दुविधापूर्ण संरचना प्रवाह में बहुत जल्दी करने के लिए संरचना के रजिस्टर-ट्रांसफर लेवल विवरण का उपयोग करते हैं।
* आरटीएल विवरण में कार्यात्मक खंडों की उपस्थिति बड़े टूकडें के लिए भी वास्तुशिल्प संरचना की जटिलता को और अधिक प्रबंधनीय बनाती है क्योंकि आरटीएल में गेट या परिपथ स्तरीय विवरणों की तुलना में पर्याप्त रूप से बड़े कणमयता पूर्ण होते है।
* आरटीएल विवरण में कार्यात्मक खंडों की उपस्थिति बड़े टूकडें के लिए भी वास्तुशिल्प संरचना की जटिलता को और अधिक प्रबंधनीय बनाती है क्योंकि आरटीएल में द्वार या परिपथ स्तरीय विवरणों की तुलना में पर्याप्त रूप से बड़े कणमयता पूर्ण होते है।


=== गेट समकक्ष<ref>[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4551&rep=rep1&type=pdf "Low-Power Architectural Design Methodologies "]</ref>===
=== द्वार  समकक्ष<ref>[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4551&rep=rep1&type=pdf "Low-Power Architectural Design Methodologies "]</ref>===
यह  [[ गेट समकक्ष |गेट समकक्ष]]  की अवधारणा पर आधारित एक तकनीक है। जो टूकडें स्थापत्य कला की जटिलता को लगभग गेट समकक्षों के संदर्भ में वर्णित किया जा सकता है जहां गेट समकक्ष गणना में विशेष कार्य को लागू करने के लिए आवश्यक संदर्भो गेटा औसत संख्या निर्दिष्ट करती है। किसी विशेष कार्य के लिए आवश्यक कुल शक्ति का अनुमान गेट समकक्षों की अनुमानित संख्या को प्रति गेट औसत बिजली की खपत से गुणा करके लगाया जाता है। निर्देशित गेट कोई भी  हो सकता है । उदाहरण -(एनएएनडी) गेट ।   
यह  [[ गेट समकक्ष |द्वार समकक्ष]]  की अवधारणा पर आधारित एक तर्क है। जो टूकडें स्थापत्य कला की जटिलता को लगभग द्वार समकक्षों के संदर्भ में वर्णित किया जा सकता है जहां द्वार समकक्ष गणना में विशेष कार्य को लागू करने के लिए आवश्यक संदर्भो द्वारा औसत संख्या निर्दिष्ट करती है। किसी विशेष कार्य के लिए आवश्यक कुल शक्ति का अनुमान द्वार समकक्षों की अनुमानित संख्या को प्रति द्वार औसत बिजली की खपत से गुणा करके लगाया जाता है। निर्देशित द्वार कोई भी  हो सकता है । उदाहरण -(एनएएनडी) द्वार ।   


==== गेट समतुल्य तकनीक के उदाहरण ====
==== द्वार समतुल्य तर्क के उदाहरण ====
* '''वर्ग-स्वतंत्र शक्ति प्रतिरूपण''' ''':-''' यह एक ऐसी तकनीक है जो गेट समकक्षों के संदर्भ में रचना की जटिलता के बारे में जानकारी के आधार पर खंड क्षेत्र, शक्ति और बिजली विसरण का अनुमान लगाने की कोशिश करती है। कार्यक्षमता को विभिन्न टुकणों में विभाजित किया गया है लेकिन टुकणों की कार्यक्षमता के बारे में कोई भी भेद नहीं किया गया है अर्थात, यह मूल रूप से वर्ग स्वतंत्र है। यह खंड अनुमान प्रणाली (सीईएस) गेटा उपयोग की जाने वाली तकनीक है।
* '''वर्ग-स्वतंत्र शक्ति प्रतिरूपण''' ''':-''' यह एक ऐसी तर्क है जो द्वार समकक्षों के संदर्भ में रचना की जटिलता के बारे में जानकारी के आधार पर खंड क्षेत्र, शक्ति और बिजली विसरण का अनुमान लगाने की कोशिश करती है। कार्यक्षमता को विभिन्न टुकणों में विभाजित किया गया है लेकिन टुकणों की कार्यक्षमता के बारे में कोई भी भेद नहीं किया गया है अर्थात, यह मूल रूप से वर्ग स्वतंत्र है। यह खंड अनुमान प्रणाली (सीईएस) द्वारा उपयोग की जाने वाली तर्क है।
*'''उपयोग करने के तरीके:'''
*'''उपयोग करने के तरीके:'''


# गिनने के उपकरण, विसंकेतक (डिकोडर), प्रवर्धक, मेमोरी आदि जैसे कार्यात्मक खंडों की पहचान करें।
# गिनने के उपकरण, विसंकेतक (डिकोडर), प्रवर्धक, मेमोरी आदि जैसे कार्यात्मक खंडों की पहचान करें।
# गेट समकक्षों के संदर्भ में एक जटिलता निर्दिष्ट करें। जीई की संख्या प्रत्येक इकाई के लिए सीधे उपयोगकर्ता से निवेश के रूप में ली जाती है या पुस्तकालय से सिंचित (फीड) की जाती है।
# द्वार समकक्षों के संदर्भ में एक जटिलता निर्दिष्ट करें। जीई की संख्या प्रत्येक इकाई के लिए सीधे उपयोगकर्ता से निवेश के रूप में ली जाती है या पुस्तकालय से सिंचित (फीड) की जाती है।


<math>\displaystyle P = \sum_{i \in \text{fns}} \textit{GE}_i (E_\text{typ} + C_L^i V_\text{dd}^2) f A_\text{int}^i</math>
<math>\displaystyle P = \sum_{i \in \text{fns}} \textit{GE}_i (E_\text{typ} + C_L^i V_\text{dd}^2) f A_\text{int}^i</math>


जहां,  E<sub>typ</sub> सक्रिय होने पर, गेट समकक्ष गेटा अनुमानित औसत विलुप्त ऊर्जा है। सक्रिय घटक,  A<sub>int</sub>  हर समय वृत्त अनुप्रयोगों गेटा औसत प्रतिशत को दर्शाता है। और इसे क्रिया से क्रिया में भिन्न होने की अनुमति होती है। संधारित्र भार, C<sub>L</sub> , निर्गतांक भार के साथ-साथ तारों का एक संयोजन है। तारों की धारिता की गणना के लिए औसत तार की लंबाई का अनुमान लगाया जा सकता है। यह उपयोगकर्ता गेटा प्रदान किया जाता है रेंट्स के नियम के व्युत्पन्न का उपयोग करके फिर से संयमित किया जाता है।
जहां,  E<sub>typ</sub> सक्रिय होने पर, द्वार समकक्ष द्वारा अनुमानित औसत विलुप्त ऊर्जा है। सक्रिय घटक,  A<sub>int</sub>  हर समय वृत्त अनुप्रयोगों द्वारा औसत प्रतिशत को दर्शाता है। और इसे क्रिया से क्रिया में भिन्न होने की अनुमति होती है। संधारित्र भार, C<sub>L</sub> , निर्गतांक भार के साथ-साथ तारों का एक संयोजन है। तारों की धारिता की गणना के लिए औसत तार की लंबाई का अनुमान लगाया जा सकता है। यह उपयोगकर्ता द्वारा प्रदान किया जाता है रेंट्स के नियम के व्युत्पन्न का उपयोग करके फिर से संयमित किया जाता है।


====== धारणाएं: ======
====== धारणाएं: ======


# एकल संदर्भ गेट को विभिन्न परिपथ शैलियों, समय की रणनीतियों या  अभिन्यास तकनीकों को ध्यान में रखते हुए सभी शक्ति अनुमानों के आधार के रूप में लिया जाता है।
# एकल संदर्भ द्वार को विभिन्न परिपथ शैलियों, समय की रणनीतियों या  अभिन्यास तर्कों को ध्यान में रखते हुए सभी शक्ति अनुमानों के आधार के रूप में लिया जाता है।
# गतिविधि कारकों गेटा निरूपित हर समय वृत्त अनुप्रयोग गेट ्स का प्रतिशत निविष्ट प्रतिरूप की परवाह किए बिना निश्चित माना जाता है।
# गतिविधि कारकों द्वारा निरूपित हर समय वृत्त अनुप्रयोग द्वार ्स का प्रतिशत निविष्ट प्रतिरूप की परवाह किए बिना निश्चित माना जाता है।
# विशिष्ट अनुप्रयोग गेट ्स ऊर्जा निविष्ट डेटा के पूरी तरह से अनियमित एकसमान तपता हुआ अनभिप्रेत (यूडब्ल्यूएन) वितरण गेटा विशेषित है। इसका तात्पर्य यह है कि परिपथ के निष्क्रिय होने या अधिकतम भार पर ध्यान दिए बिना शक्ति का अनुमान समान है क्योंकि यह यूडब्ल्यूएन प्रतिरूपण इस बात की अनदेखी करता है कि विभिन्न निवेशित वितरण गेट और मापांक की शक्ति खपत को कैसे प्रभावित करते हैं।<ref>[http://delivery.acm.org/10.1145/250000/244548/p158-raghunathan.pdf?ip=103.27.8.42&id=244548&acc=ACTIVE%20SERVICE&key=045416EF4DDA69D9%2EF8E7F338DF557316%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=504808115&CFTOKEN=79046804&__acm__=1429710434_0d9c0bce018bcd071c079ecb15be69e8 "Register-Transfer Level Estimation Techniques for Switching Activity and Power Consumption"]</ref>
# विशिष्ट अनुप्रयोग द्वार ्स ऊर्जा निविष्ट डेटा के पूरी तरह से अनियमित एकसमान तपता हुआ अनभिप्रेत (यूडब्ल्यूएन) वितरण द्वारा विशेषित है। इसका तात्पर्य यह है कि परिपथ के निष्क्रिय होने या अधिकतम भार पर ध्यान दिए बिना शक्ति का अनुमान समान है क्योंकि यह यूडब्ल्यूएन प्रतिरूपण इस बात की अनदेखी करता है कि विभिन्न निवेशित वितरण द्वार और मापांक की शक्ति खपत को कैसे प्रभावित करते हैं।<ref>[http://delivery.acm.org/10.1145/250000/244548/p158-raghunathan.pdf?ip=103.27.8.42&id=244548&acc=ACTIVE%20SERVICE&key=045416EF4DDA69D9%2EF8E7F338DF557316%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=504808115&CFTOKEN=79046804&__acm__=1429710434_0d9c0bce018bcd071c079ecb15be69e8 "Register-Transfer Level Estimation Techniques for Switching Activity and Power Consumption"]</ref>
* '''श्रेणी परतंत्र शक्ति प्रतिरूपण:-''' यह पद्धति पिछले दृष्टिकोण की तुलना में थोड़ा बेहतर है क्योंकि यह विभिन्न प्रकार के कार्यात्मक खण्डों के लिए अनुकूलित अनुमान तकनीकों को ध्यान में रखता है और इस प्रकार प्रतिरूपण सटीकता को बढ़ाने की कोशिश करता है जो की पिछली तकनीक में ऐसा नहीं था जैसे कि तकनीक, स्मृति, परस्पर और समय शक्ति का आकलन स्वतंत्र मामले के समान ही किया जाता है। बुनियादी परिवर्तित ऊर्जा निवेशित तीन (एएनडी) गेट पर आधारित होती है। और इसकी गणना प्रौद्योगिकी मापदंडों से की जाती है। उपयोगकर्ता गेटा प्रदान की गई गेट की चौड़ाई, टोक्स और धातु की चौड़ाई।
* '''श्रेणी परतंत्र शक्ति प्रतिरूपण:-''' यह पद्धति पिछले दृष्टिकोण की तुलना में थोड़ा बेहतर है क्योंकि यह विभिन्न प्रकार के कार्यात्मक खण्डों के लिए अनुकूलित अनुमान तर्कों को ध्यान में रखता है और इस प्रकार प्रतिरूपण सटीकता को बढ़ाने की कोशिश करता है जो की पिछली तर्क में ऐसा नहीं था जैसे कि तर्क, स्मृति, परस्पर और समय शक्ति का आकलन स्वतंत्र मामले के समान ही किया जाता है। बुनियादी परिवर्तित ऊर्जा निवेशित तीन (एएनडी) द्वार पर आधारित होती है। और इसकी गणना प्रौद्योगिकी मापदंडों से की जाती है। उपयोगकर्ता द्वारा प्रदान की गई द्वार की चौड़ाई, टोक्स और धातु की चौड़ाई।


<div शैली="पाठ-संरेखण:" केंद्र>
<div शैली="पाठ-संरेखण:" केंद्र>
Line 95: Line 91:
'''कमियाँ:'''
'''कमियाँ:'''


# परिपथ गतिविधियों को सटीक रूप से प्रतिरूपण नहीं किया जाता है क्योंकि संपूर्ण टूकडें के लिए सभी गतिविधियों को कारक माना जाता है। जो उपयोगकर्ता गेटा प्रदान किए गए भरोसेमंद भी नहीं है। तथ्य की बात के रूप में गतिविधि कारक पूरे टूकडें में अलग-अलग होंगे इसलिए यह बहुत सटीक नहीं है तथा त्रुटि की संभावना अधिक होती है। यह एक समस्या की ओर अग्रषित होता है। भले ही प्रतिरूपण टूकडें गेटा समस्त बिजली की खपत के लिए सही अनुमान देता है, प्रतिरूप के अनुसार बिजली वितरण काफी गलत है।
# परिपथ गतिविधियों को सटीक रूप से प्रतिरूपण नहीं किया जाता है क्योंकि संपूर्ण टूकडें के लिए सभी गतिविधियों को कारक माना जाता है। जो उपयोगकर्ता द्वारा प्रदान किए गए भरोसेमंद भी नहीं है। तथ्य की बात के रूप में गतिविधि कारक पूरे टूकडें में अलग-अलग होंगे इसलिए यह बहुत सटीक नहीं है तथा त्रुटि की संभावना अधिक होती है। यह एक समस्या की ओर अग्रषित होता है। भले ही प्रतिरूपण टूकडें द्वारा समस्त बिजली की खपत के लिए सही अनुमान देता है, प्रतिरूप के अनुसार बिजली वितरण काफी गलत है।
# चयनित गतिविधियाँ कारक को समस्त सही शक्ति प्रदान करते है, लेकिन तकनीक, समय, स्मृति आदि में शक्ति का टूटना सटीक नही होता है। इसलिए यह उपकरण सीईएस की तुलना में बहुत अलग या बेहतर नहीं है।
# चयनित गतिविधियाँ कारक को समस्त सही शक्ति प्रदान करते है, लेकिन तर्क, समय, स्मृति आदि में शक्ति का टूटना सटीक नही होता है। इसलिए यह उपकरण सीईएस की तुलना में बहुत अलग या बेहतर नहीं है।
</div>
</div>


=== पूर्व विशेषता वाले कक्ष पुस्तकालय ===
=== पूर्व विशेषता वाले कक्ष पुस्तकालय ===
ये तकनीकी तरीके, स्मृति और अनभिप्रेत के लिए अलग-अलग शक्ति प्रतिरूपण होने के कारण विभिन्न कार्यात्मक खण्डों के शक्ति अनुमान को अनुकूलित करती है, जो कि प्रवर्धक योजक इत्यादि जैसे कार्यात्मक भागों की पूरी पुस्तकालय को व्यक्तिगत रूप से चिह्नित करने के लिए  [[ ऊर्जा घटक |ऊर्जा घटक]]  सन्निकटन (पीएफए) विधि का सुझाव देते है।जो की तकनीक खण्डों के लिए एकल गेट -समतुल्य का प्रतिरूपण है।  
ये तर्की तरीके, स्मृति और अनभिप्रेत के लिए अलग-अलग शक्ति प्रतिरूपण होने के कारण विभिन्न कार्यात्मक खण्डों के शक्ति अनुमान को अनुकूलित करती है, जो कि प्रवर्धक योजक इत्यादि जैसे कार्यात्मक भागों की पूरी पुस्तकालय को व्यक्तिगत रूप से चिह्नित करने के लिए  [[ ऊर्जा घटक |ऊर्जा घटक]]  सन्निकटन (पीएफए) विधि का सुझाव देते है।जो की तर्क खण्डों के लिए एकल द्वार -समतुल्य का प्रतिरूपण है।  


संपूर्ण टूकडें पर शक्ति अभिव्यक्ति गेटा अनुमानित है।  
संपूर्ण टूकडें पर शक्ति अभिव्यक्ति द्वारा अनुमानित है।  


<math>\displaystyle P = \sum_{i \in \text{all blocks}} K_i G_i f_i</math>
<math>\displaystyle P = \sum_{i \in \text{all blocks}} K_i G_i f_i</math>
Line 109: Line 105:


==== उदाहरण ====
==== उदाहरण ====
गुणक की हार्डवेयर जटिलता को दर्शाने वाला <math>G_i</math> निवेशित शब्द की लंबाई के वर्ग से संबंधित है अर्थात एन2 जहां एन शब्द की लंबाई है। सक्रियण आवृत्ति वह दर है जिसके गेटा निरूपित  प्रतीको (एल्गोरिथम) गेटा गुणा किया जाता है।  <math>f_{mult}</math> और पीएफए ​​स्थिरांक, <math>K_{mult}</math>, पिछले गुणक रचनाओ से आनुभविक रूप से निकाला जाता है और 5वी  पर 1.2 माइक्रोन तकनीक के लिए लगभग 15 fW/bit2-Hz दिखाया जाता है। उपरोक्त मान्यताओं के आधार पर गुणक के लिए परिणामी शक्ति प्रतिरूपण है।  
गुणक की हार्डवेयर जटिलता को दर्शाने वाला <math>G_i</math> निवेशित शब्द की लंबाई के वर्ग से संबंधित है अर्थात एन2 जहां एन शब्द की लंबाई है। सक्रियण आवृत्ति वह दर है जिसके द्वारा निरूपित  प्रतीको (एल्गोरिथम) द्वारा गुणा किया जाता है।  <math>f_{mult}</math> और पीएफए ​​स्थिरांक, <math>K_{mult}</math>, पिछले गुणक रचनाओ से आनुभविक रूप से निकाला जाता है और 5वी  पर 1.2 माइक्रोन तर्क के लिए लगभग 15 fW/bit2-Hz दिखाया जाता है। उपरोक्त मान्यताओं के आधार पर गुणक के लिए परिणामी शक्ति प्रतिरूपण है।  
<div शैली = पाठ-संरेखण: केंद्र; >
<div शैली = पाठ-संरेखण: केंद्र; >
<math>\displaystyle P_\text{mult} = K_\text{mult} N^2 f_\text{mult}</math>
<math>\displaystyle P_\text{mult} = K_\text{mult} N^2 f_\text{mult}</math>
Line 132: Line 128:


=== शक्ति का अनुमान ===
=== शक्ति का अनुमान ===
* गेट समकक्ष
* द्वार समकक्ष
* [[ पावर ऑप्टिमाइजेशन (ईडीए) | शक्ति अनुकूलन (ईडीए)]]
* [[ पावर ऑप्टिमाइजेशन (ईडीए) | शक्ति अनुकूलन (ईडीए)]]
* [[ गाऊसी शोर |  सामान्य वितरण उद्वाचित दोष (गाऊसी नोईस )]]
* [[ गाऊसी शोर |  सामान्य वितरण उद्वाचित दोष (गाऊसी नोईस )]]
Line 140: Line 136:


{{Digital systems}}
{{Digital systems}}
{{DEFAULTSORT:Register Transfer Level}}[[Category: इलेक्ट्रॉनिक डिजाइन स्वचालन]]
{{DEFAULTSORT:Register Transfer Level}}




==


 
[[Category:All Wikipedia articles written in American English|Register Transfer Level]]
[[Category: Machine Translated Page]]
[[Category:All articles needing additional references|Register Transfer Level]]
[[Category:Articles needing additional references from December 2009|Register Transfer Level]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Register Transfer Level]]
[[Category:Articles with invalid date parameter in template|Register Transfer Level]]
[[Category:Articles with short description|Register Transfer Level]]
[[Category:Collapse templates|Register Transfer Level]]
[[Category:Machine Translated Page|Register Transfer Level]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Register Transfer Level]]
[[Category:Pages with script errors|Register Transfer Level]]
[[Category:Short description with empty Wikidata description|Register Transfer Level]]
[[Category:Sidebars with styles needing conversion|Register Transfer Level]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats|Register Transfer Level]]
[[Category:Templates that are not mobile friendly|Register Transfer Level]]
[[Category:Templates using TemplateData|Register Transfer Level]]
[[Category:Use American English from April 2019|Register Transfer Level]]
[[Category:Wikipedia metatemplates|Register Transfer Level]]
[[Category:इलेक्ट्रॉनिक डिजाइन स्वचालन|Register Transfer Level]]

Latest revision as of 15:39, 24 August 2023

एकीकृत परिपथ संरचना में रजिस्टर-ट्रांसफर लेवल (RTL) एक संक्षेपण संरचना है जो हार्डवेयर रजिस्टर के बीच संकेत (डाटा) के प्रवाह और संकेतों पर किए गए तर्क संगत संक्रिया के संदर्भ में एक तुल्यकालिक परिपथ को प्रदर्शित करता है।

रजिस्टर-ट्रांसफर लेवल का उपयोग हार्डवेयर डिस्क्रिप्शन लैंग्वेज (HDL) जैसे दृढ़ता पूर्वक और वीएचडीएल में एक परिपथ में उच्च-स्तरीय प्रतिनिधित्व बनाने के लिए जानकारी दी गयी है, जिससे निचले स्तर के प्रतिनिधित्व और वास्तविक तार स्थापन प्राप्त किया जा सकता है। आरटीएल स्तर पर डिजाइन आधुनिक अंकीय डिजाइन एक ऐसा विशिष्ट अभ्यास है।[1] जो सॉफ्टवेयर संकलन डिजाइन के विपरीत, जहां रजिस्टर-ट्रांसफर लेवल एक मध्यवर्ती प्रतिनिधित्व है और निम्नतम स्तर पर आरटीएल स्तर सामान्य दिये गए है जिस पर परिपथ अभिकल्पक के रूप में काम करते हैं। वास्तव में परिपथ संश्लेषण में दिये गए रजिस्टर स्थानांतरण स्तर प्रतिनिधित्व और लक्ष्य जाल के समान बीच में एक मध्यवर्ती भाषा का कभी-कभी उपयोग किया जाता है। जैसे जाल के समान विपरीत सेल कार्य और उनके अनेक फलक रजिस्टर निर्माण उपलब्ध हैं।[2] उदाहरणों में (फआईआरआरटीएल) और (आरटीएलआईएल) शामिल हैं।

लेन-देन-स्तरीय प्रतिरूपण इलेक्ट्रॉनिक अभिकल्पक(डिज़ाइन) स्वचालन का एक उच्च स्तर है।

आरटीएल(RTL) विवरण

निर्विष्ट के प्रत्येक बढ़ते किनारे पर उत्पादक बांधने के साथ एक साधारण परिपथ का उदाहरण है। जो प्रतिवर्ती परिपथ में सटीक विधि से संयोजन तर्क बनाता है, और रजिस्टर स्थिति रखता है।

एक समकालिक परिपथ में दो प्रकार के तत्व होते हैं। अनुक्रमिक तर्क और संयोजन तर्क । रजिस्टर (आमतौर पर डी फ्लिप-फ्लॉप के रूप में कार्यान्वित) परिपथ के संचालन को घड़ी संकेतों के किनारों पर समकालिक करते हैं, और ये परिपथ में एकमात्र स्मृति गुण वाले तत्व होते हैं। संयुक्त तर्क परिपथ में सभी तार्किक फलन के रूप में कार्य करते है और इसमें आमतौर पर तार्किक गेट होते हैं।

उदाहरण के लिए एक बहुत ही सरल समकालिक परिपथ चित्र में दिखाया गया है। तार्किक गेट एक रजिस्टर के उत्पादन वाले क्यू से रजिस्टर के निवेश वाले डी परिपथ से जुड़ा होता है। एक परिपथ बनाने के लिए जो घड़ी के प्रत्येक बढ़ते किनारे पर अपनी स्थिति बदलता है, इस परिपथ में संयोजन तरीके से परिवर्तित होता है।

हार्डवेयर डिस्क्रिप्शन लैंग्वेज (एचडीएल) के साथ अंकीय एकीकृत परिपथ डिजाइन करते समय, संरचना आमतौर पर स्थानातरण स्तर या प्रतिवर्ती गेट स्तर की तुलना में उच्च स्तर की अमूर्तता पर अभियंत्रित होते हैं। एचडीएल में अभिकल्पक रजिस्टरों की घोषणा करता है (जो मोटे तौर पर कंप्यूटर प्रोग्रामिंग भाषाओं में चर के अनुरूप होता है), प्रोग्रामिंग भाषाओं से परिचित निर्माणों का उपयोग करके संयोजन तर्क का वर्णन करता है और अगर तब यह अंकगणितीय संचालन भी करता है। तब इस स्तर को रजिस्टर-स्थानातरण स्तर कहा जाता है। यह शब्द तथ्य को इस तरह से संदर्भित करता है कि आरटीएल रजिस्टरों के बीच संकेतों के प्रवाह का वर्णन करने पर केंद्रित है।

इसको एक उदाहरण के रूप में ऊपर वर्णित परिपथ को वीएचडीएल में निम्नानुसार वर्णित किया जा सकता है:

D <= not Q;

process (clk)

begin

if rising_edge (clk) then

Q <= D;

end if;

end process;

संश्लेषण के लिए एक ईडीए उपकरण का उपयोग करते हुए, इस विवरण को आम तौर पर एएसआईसी या एफपीजीए के लिए समकक्ष हार्डवेयर कार्यान्वयन पंक्ति में सीधे अनुवादित किया जा सकता है। यह तर्क संश्लेषण से तर्क अनुकूलन भी करता है।

रजिस्टर-ट्रांसफर लेवल पर कुछ प्रकार के परिपथों को पहचाना जा सकता है। यदि किसी रजिस्टर के उत्पादन से उसके निवेश तक का तर्क एक चक्रीय पथ है। तो परिपथ को एक परिमित-स्थिति उपकरण कहा जाता है या इसे अनुक्रमिक तर्क भी कहा जा सकता है। यदि बिना चक्र के एक रजिस्टर से दूसरे रजिस्टर में तार्किक पथ हैं, तो इसे पाइपलाइन (कंप्यूटिंग) कहा जाता है।

परिपथ परिकलन चक्र में आरटीएल(RTL)

आरटीएल का उपयोग एकीकृत परिपथ परिकलन चक्र के अंकीय तर्क चरण में किया जाता है।

एक आरटीएल विवरण आमतौर पर एक तर्क संश्लेषण प्रक्रिया सामग्री उपकरण द्वारा परिपथ के जाल के समान | द्वार -स्तरीय विवरण में परिवर्तित किया जाता है। भौतिक एकीकृत परिपथ बनाने के लिए संश्लेषण परिणामों का उपयोग स्थानन (प्लेसमेंट) और अनुमार्गण (रूटिंग) उपकरण द्वारा किया जाता है।

तर्क अनुकरण उपकरण इसकी शुद्धता को सत्यापित करने के लिए संरचना के आरटीएल विवरण का उपयोग कर सकते हैं।

आरटीएल(RTL) के लिए शक्ति आकलन तकनीक

परिपथ स्तर के लिए सबसे सटीक बिजली विश्लेषण उपकरण उपलब्ध हैं, लेकिन दुर्भाग्य से, बटन के साथ भी उपकरण स्तरीय प्रतिरूपण के बजाय, परिपथ स्तर पर उपकरण में नुकसान होता है। जैसे कि वे या तो बहुत धीमे होते हैं या तो बहुत अधिक मेमोरी की आवश्यकता होती है जिससे बड़ी टुकड़े संचालन में बाधा जाता है। इनमें से अधिकांश तनाव जैसे अनुकारी और संरचनाओं द्वारा कई वर्षों से प्रदर्शन विश्लेषण उपकरण के रूप में उपयोग किए जाते हैं। इन नुकसानों के कारण द्वार -स्तरीय बिजली आकलन उपकरण कुछ स्वीकृति प्राप्त करने लगे हैं। जहां तेजी से, संभाव्य तकनीकों ने पैर जमाना शुरू कर दिया है। लेकिन इसका व्यापार भी बंद है क्योंकि सटीकता की लागत पर गति प्राप्त की जाती है, खासकर सहसंबद्ध संकेतों की उपस्थिति में। वर्षों से यह महसूस किया गया है कि कम बिजली परिकलन में सबसे बड़ी जीत परिपथ और गेट स्तरीय अनुकूलन से नहीं आ सकती है, जबकि स्थापत्य व्यवस्था और कलनविधि अनुकूलन का बिजली की खपत पर सबसे अधिक प्रभाव पड़ता है। इसलिए, उपकरण विकसित करने वाले के झुकाव में बिजली के लिए उच्च-स्तरीय विश्लेषण और अनुकूलन उपकरण की ओर एक बदलाव आया है।

प्रेरणा

यह सर्वविदित है कि यदि अमूर्तता के स्तर पर अनुकूलन किया जाता है तो अधिक महत्वपूर्ण बिजली कटौती संभव है। जैसे कि आर्किटेक्चरल और एल्गोरिथम स्तर की तरह, जो सर्किट या द्वार स्तर से अधिक हैं [3] यह उपकरण बनाने वाले को नए स्थापत्य स्तर और शक्ति विश्लेशित उपकरणों के विकास पर ध्यान केंद्रित करने के लिए आवश्यक प्रेरणा प्रदान करता है। इसका मतलब यह नहीं है कि निचले स्तर के उपकरण महत्वहीन हैं। इसके बजाय, उपकरणों की प्रत्येक परत एक आधार प्रदान करती है जिस पर अगले स्तर का निर्माण किया जा सकता है। निचले स्तर पर अनुमान तर्कों के सार का उपयोग उच्च स्तर पर मामूली संशोधनों के साथ किया जा सकता है।

आरटीएल(RTL) या स्थापत्य स्तर पर शक्ति आकलन करने के लाभ

  • संरचनात्मक अनुकूलन और दुविधापूर्ण संरचना प्रवाह में बहुत जल्दी करने के लिए संरचना के रजिस्टर-ट्रांसफर लेवल विवरण का उपयोग करते हैं।
  • आरटीएल विवरण में कार्यात्मक खंडों की उपस्थिति बड़े टूकडें के लिए भी वास्तुशिल्प संरचना की जटिलता को और अधिक प्रबंधनीय बनाती है क्योंकि आरटीएल में द्वार या परिपथ स्तरीय विवरणों की तुलना में पर्याप्त रूप से बड़े कणमयता पूर्ण होते है।

द्वार समकक्ष[4]

यह द्वार समकक्ष की अवधारणा पर आधारित एक तर्क है। जो टूकडें स्थापत्य कला की जटिलता को लगभग द्वार समकक्षों के संदर्भ में वर्णित किया जा सकता है जहां द्वार समकक्ष गणना में विशेष कार्य को लागू करने के लिए आवश्यक संदर्भो द्वारा औसत संख्या निर्दिष्ट करती है। किसी विशेष कार्य के लिए आवश्यक कुल शक्ति का अनुमान द्वार समकक्षों की अनुमानित संख्या को प्रति द्वार औसत बिजली की खपत से गुणा करके लगाया जाता है। निर्देशित द्वार कोई भी हो सकता है । उदाहरण -(एनएएनडी) द्वार ।

द्वार समतुल्य तर्क के उदाहरण

  • वर्ग-स्वतंत्र शक्ति प्रतिरूपण :- यह एक ऐसी तर्क है जो द्वार समकक्षों के संदर्भ में रचना की जटिलता के बारे में जानकारी के आधार पर खंड क्षेत्र, शक्ति और बिजली विसरण का अनुमान लगाने की कोशिश करती है। कार्यक्षमता को विभिन्न टुकणों में विभाजित किया गया है लेकिन टुकणों की कार्यक्षमता के बारे में कोई भी भेद नहीं किया गया है अर्थात, यह मूल रूप से वर्ग स्वतंत्र है। यह खंड अनुमान प्रणाली (सीईएस) द्वारा उपयोग की जाने वाली तर्क है।
  • उपयोग करने के तरीके:
  1. गिनने के उपकरण, विसंकेतक (डिकोडर), प्रवर्धक, मेमोरी आदि जैसे कार्यात्मक खंडों की पहचान करें।
  2. द्वार समकक्षों के संदर्भ में एक जटिलता निर्दिष्ट करें। जीई की संख्या प्रत्येक इकाई के लिए सीधे उपयोगकर्ता से निवेश के रूप में ली जाती है या पुस्तकालय से सिंचित (फीड) की जाती है।

जहां, Etyp सक्रिय होने पर, द्वार समकक्ष द्वारा अनुमानित औसत विलुप्त ऊर्जा है। सक्रिय घटक, Aint हर समय वृत्त अनुप्रयोगों द्वारा औसत प्रतिशत को दर्शाता है। और इसे क्रिया से क्रिया में भिन्न होने की अनुमति होती है। संधारित्र भार, CL , निर्गतांक भार के साथ-साथ तारों का एक संयोजन है। तारों की धारिता की गणना के लिए औसत तार की लंबाई का अनुमान लगाया जा सकता है। यह उपयोगकर्ता द्वारा प्रदान किया जाता है रेंट्स के नियम के व्युत्पन्न का उपयोग करके फिर से संयमित किया जाता है।

धारणाएं:
  1. एकल संदर्भ द्वार को विभिन्न परिपथ शैलियों, समय की रणनीतियों या अभिन्यास तर्कों को ध्यान में रखते हुए सभी शक्ति अनुमानों के आधार के रूप में लिया जाता है।
  2. गतिविधि कारकों द्वारा निरूपित हर समय वृत्त अनुप्रयोग द्वार ्स का प्रतिशत निविष्ट प्रतिरूप की परवाह किए बिना निश्चित माना जाता है।
  3. विशिष्ट अनुप्रयोग द्वार ्स ऊर्जा निविष्ट डेटा के पूरी तरह से अनियमित एकसमान तपता हुआ अनभिप्रेत (यूडब्ल्यूएन) वितरण द्वारा विशेषित है। इसका तात्पर्य यह है कि परिपथ के निष्क्रिय होने या अधिकतम भार पर ध्यान दिए बिना शक्ति का अनुमान समान है क्योंकि यह यूडब्ल्यूएन प्रतिरूपण इस बात की अनदेखी करता है कि विभिन्न निवेशित वितरण द्वार और मापांक की शक्ति खपत को कैसे प्रभावित करते हैं।[5]
  • श्रेणी परतंत्र शक्ति प्रतिरूपण:- यह पद्धति पिछले दृष्टिकोण की तुलना में थोड़ा बेहतर है क्योंकि यह विभिन्न प्रकार के कार्यात्मक खण्डों के लिए अनुकूलित अनुमान तर्कों को ध्यान में रखता है और इस प्रकार प्रतिरूपण सटीकता को बढ़ाने की कोशिश करता है जो की पिछली तर्क में ऐसा नहीं था जैसे कि तर्क, स्मृति, परस्पर और समय शक्ति का आकलन स्वतंत्र मामले के समान ही किया जाता है। बुनियादी परिवर्तित ऊर्जा निवेशित तीन (एएनडी) द्वार पर आधारित होती है। और इसकी गणना प्रौद्योगिकी मापदंडों से की जाती है। उपयोगकर्ता द्वारा प्रदान की गई द्वार की चौड़ाई, टोक्स और धातु की चौड़ाई।

जहां Cwire छोटे पंक्ति में तारों धारिता प्रति इकाई की लंबाई को दर्शाता है और Ccell छोटे पंक्ति से लटकने वाले एकल खाने के कारण भार को दर्शाता है

साधारण परिपथ एच-ट्री वितरित जालतंत्र की धारणा पर आधारित है। गतिविधि को यूडब्ल्यूएन प्रतिरूप का उपयोग करके तैयार किया जाता है। जैसा कि समीकरण से देखा जा सकता है कि प्रत्येक घटक में बिजली खपत स्मृति सरणी के स्तंभ (Ncol) और पंक्तियों (Nrow) की संख्या से संबंधित है।

कमियाँ:

  1. परिपथ गतिविधियों को सटीक रूप से प्रतिरूपण नहीं किया जाता है क्योंकि संपूर्ण टूकडें के लिए सभी गतिविधियों को कारक माना जाता है। जो उपयोगकर्ता द्वारा प्रदान किए गए भरोसेमंद भी नहीं है। तथ्य की बात के रूप में गतिविधि कारक पूरे टूकडें में अलग-अलग होंगे इसलिए यह बहुत सटीक नहीं है तथा त्रुटि की संभावना अधिक होती है। यह एक समस्या की ओर अग्रषित होता है। भले ही प्रतिरूपण टूकडें द्वारा समस्त बिजली की खपत के लिए सही अनुमान देता है, प्रतिरूप के अनुसार बिजली वितरण काफी गलत है।
  2. चयनित गतिविधियाँ कारक को समस्त सही शक्ति प्रदान करते है, लेकिन तर्क, समय, स्मृति आदि में शक्ति का टूटना सटीक नही होता है। इसलिए यह उपकरण सीईएस की तुलना में बहुत अलग या बेहतर नहीं है।

पूर्व विशेषता वाले कक्ष पुस्तकालय

ये तर्की तरीके, स्मृति और अनभिप्रेत के लिए अलग-अलग शक्ति प्रतिरूपण होने के कारण विभिन्न कार्यात्मक खण्डों के शक्ति अनुमान को अनुकूलित करती है, जो कि प्रवर्धक योजक इत्यादि जैसे कार्यात्मक भागों की पूरी पुस्तकालय को व्यक्तिगत रूप से चिह्नित करने के लिए ऊर्जा घटक सन्निकटन (पीएफए) विधि का सुझाव देते है।जो की तर्क खण्डों के लिए एकल द्वार -समतुल्य का प्रतिरूपण है।

संपूर्ण टूकडें पर शक्ति अभिव्यक्ति द्वारा अनुमानित है।

जहां के पीएफए आनुपातिकता स्थिरांक है। जो ईटीएच कार्यात्मक तत्व की विशेषता है हार्डवेयर जटिलता का माप है, और सक्रियण आवृत्ति को दर्शाता है।

उदाहरण

गुणक की हार्डवेयर जटिलता को दर्शाने वाला निवेशित शब्द की लंबाई के वर्ग से संबंधित है अर्थात एन2 जहां एन शब्द की लंबाई है। सक्रियण आवृत्ति वह दर है जिसके द्वारा निरूपित प्रतीको (एल्गोरिथम) द्वारा गुणा किया जाता है। और पीएफए ​​स्थिरांक, , पिछले गुणक रचनाओ से आनुभविक रूप से निकाला जाता है और 5वी पर 1.2 माइक्रोन तर्क के लिए लगभग 15 fW/bit2-Hz दिखाया जाता है। उपरोक्त मान्यताओं के आधार पर गुणक के लिए परिणामी शक्ति प्रतिरूपण है।

लाभ:

  • उस खंडों के लिए जो भी जटिलता पैरामीटर उपयुक्त हैं, उनके संदर्भ में अनुकूलन संभव है। उदाहरण गुणक के लिए शब्द की लंबाई का वर्ग उपयुक्त था। स्मृति, बिट्स में भंडारण क्षमता का उपयोग किया जाता है और निविष्ट/उत्पादन उपकरणों के लिए एकमात्र शब्द की लंबाई ही पर्याप्त है।

कमज़ोरी:

  • इसमें निहित धारणा यह है कि निवेशित गुणक गतिविधि को प्रभावित नहीं करते हैं जो इस तथ्य के विपरीत है कि पीएफए ​​स्थिरांक संख्यावृद्धि संचालन से जुड़ी आंतरिक गतिविधि को ग्रहण करने का प्रयास होता है क्योंकि इसे स्थिर माना जाता है।

16x16 गुणक के लिए अनुमान त्रुटि (स्विच-स्तर अनुकरण के सापेक्ष) का प्रयोग किया जाता है और यह देखा गया है कि जब निवेषित की गतिशील दूरी गुणक शब्द की लंबाई पर पूरी तरह से ग्रहण नहीं करती है तो यूडब्ल्यूएन प्रतिरूपण बेहद गलत हो जाता है।[6] दिये गए अच्छे अभिकल्पक शब्द की लंबाई के उपयोग को अधिकतम करने का प्रयास करते हैं। फिर भी, 50-100% की सीमा में त्रुटियां असामान्य नहीं हैं। यह आंकड़ा स्पष्ट रूप से यूडब्ल्यूएन प्रतिरूपण में एक दोष को सुझाव देता है।

यह भी देखें

शक्ति का अनुमान

संदर्भ

  1. Frank Vahid (2010). Digital Design with RTL Design, Verilog and VHDL (2nd ed.). John Wiley and Sons. p. 247. ISBN 978-0-470-53108-2.
  2. Yosys Manual (RTLIL)
  3. "Power Estimation Techniques for Integrated Circuits "
  4. "Low-Power Architectural Design Methodologies "
  5. "Register-Transfer Level Estimation Techniques for Switching Activity and Power Consumption"
  6. "Power Macromodeling for High Level Power Estimationy"