पैनल डेटा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Longitudinal statistical study}}
{{Short description|Longitudinal statistical study}}
{{More footnotes|date=June 2020}}
{{More footnotes|date=जून 2020}}
सांख्यिकी और [[अर्थमिति]] में, पैनल आँकड़े और अनुदैर्ध्य आँकड़े<ref>{{cite book|title=अनुदैर्ध्य डेटा का विश्लेषण|url=https://archive.org/details/analysislongitud00digg_730|url-access=limited|last=Diggle|first=Peter J.|last2=Heagerty|first2=Patrick|last3=Liang|first3=Kung-Yee|last4=Zeger|first4=Scott L.|publisher=Oxford University Press|year=2002|isbn=0-19-852484-6|edition=2nd|page=[https://archive.org/details/analysislongitud00digg_730/page/n19 2]}}</ref><ref>{{cite book|title=अनुप्रयुक्त अनुदैर्ध्य विश्लेषण|last=Fitzmaurice|first=Garrett M.|last2=Laird|first2=Nan M.|last3=Ware|first3=James H.|publisher=John Wiley & Sons|year=2004|isbn=0-471-21487-6|location=Hoboken|page=2}}</ref> दोनों बहु-आयामी [[डेटा सेट|आँकड़े]] हैं जिनमें समय के साथ माप शामिल हैं। पैनल आँकड़े अनुदैर्ध्य आँकड़े का एक उपसमुच्चय है जहां अवलोकन हर बार समान विषयों के लिए होते हैं।
[[सांख्यिकी]] और [[अर्थमिति]] में, '''पट्टिका आँकड़ा''' और '''अनुदैर्ध्य आँकड़ा''' <ref>{{cite book|title=अनुदैर्ध्य डेटा का विश्लेषण|url=https://archive.org/details/analysislongitud00digg_730|url-access=limited|last=Diggle|first=Peter J.|last2=Heagerty|first2=Patrick|last3=Liang|first3=Kung-Yee|last4=Zeger|first4=Scott L.|publisher=Oxford University Press|year=2002|isbn=0-19-852484-6|edition=2nd|page=[https://archive.org/details/analysislongitud00digg_730/page/n19 2]}}</ref><ref>{{cite book|title=अनुप्रयुक्त अनुदैर्ध्य विश्लेषण|last=Fitzmaurice|first=Garrett M.|last2=Laird|first2=Nan M.|last3=Ware|first3=James H.|publisher=John Wiley & Sons|year=2004|isbn=0-471-21487-6|location=Hoboken|page=2}}</ref> दोनों बहु-आयामी [[डेटा सेट|डेटा]] हैं जिनमें समय के साथ माप सम्मिलित हैं। पट्टिका आँकड़ा अनुदैर्ध्य डेटा का एक उपसमुच्चय है जहां अवलोकन हर बार समान विषयों के लिए होते हैं।


टाइम सीरीज़ और [[क्रास सेक्शनल डाटा]] को पैनल आँकड़े के विशेष मामलों के रूप में माना जा सकता है जो केवल एक आयाम में हैं (एक पैनल सदस्य या पूर्व के लिए अलग अलग, बाद के लिए एक समय बिंदु)। एक साहित्य खोज में अक्सर [[समय श्रृंखला]], क्रॉस-सेक्शनल या पैनल आँकड़े शामिल होते है। क्रॉस-पैनल आँकड़े (CPD) गणितीय और सांख्यिकीय विज्ञान में जानकारी का एक नवीन अभी तक कम अप्रमाणित वाला स्रोत है। CPD अन्य अनुसंधान प्रणालियों से अलग है क्योंकि यह स्पष्ट रूप से दिखाता है कि देशों के बीच स्वतंत्र और परतंत्र चर कैसे बदल सकते हैं। यह पैनल आँकड़े संग्रह शोधकर्ताओं को कई क्रॉस-सेक्शन और समय अवधि में चर के बीच संबंध की जांच करने और अन्य देशों में नीतिगत कार्यों के परिणामों का विश्लेषण करने की अनुमति देता है।<ref>{{Cite journal |last=Zaman |first=Khalid |date=2023-01-24 |title=क्रॉस-पैनल डेटा तकनीकों पर एक नोट|url=https://zenodo.org/record/7565625 |journal=Latest Developments in Econometrics |volume=1 |issue=1 |pages=1–7 |doi=10.5281/zenodo.7565625}}</ref>
[[काल श्रेणी]] और [[क्रास सेक्शनल डाटा|अनुप्रस्थ काट]] डेटा को पट्टिका आँकड़ा की विशेष स्थित के रूप में माना जा सकता है जो केवल एक आयाम में हैं (एक पैनल सदस्य या पूर्व के लिए अलग अलग, बाद के लिए एक समय बिंदु)। एक साहित्य खोज में अक्सर [[समय श्रृंखला]], अनुप्रस्थ काट या पट्टिका आँकड़ा सम्मिलित होते है। अनुप्रस्थ-पट्टिका आँकड़ा (सीपीडी) गणितीय और सांख्यिकीय विज्ञान में जानकारी का एक अभिनव अभी तक कम सराहना वाला स्रोत है। सीपीडी अन्य अनुसंधान प्रणालियों से अलग है क्योंकि यह स्पष्ट रूप से दिखाता है कि देशों के बीच स्वतंत्र और परतंत्र चर कैसे बदल सकते हैं। यह पट्टिका आँकड़ा संग्रह शोधकर्ताओं को कई अनुप्रस्थ काट और समय आवर्त में चर के बीच संबंध की जांच करने और अन्य देशों में नीतिगत कार्यों के परिणामों का विश्लेषण करने की अनुमति देता है।<ref>{{Cite journal |last=Zaman |first=Khalid |date=2023-01-24 |title=क्रॉस-पैनल डेटा तकनीकों पर एक नोट|url=https://zenodo.org/record/7565625 |journal=Latest Developments in Econometrics |volume=1 |issue=1 |pages=1–7 |doi=10.5281/zenodo.7565625}}</ref>


पैनल आँकड़े का उपयोग करने वाले अध्ययन को अनुदैर्ध्य अध्ययन या पैनल अध्ययन कहा जाता है।
पट्टिका आँकड़ा का उपयोग करने वाले अध्ययन को अनुदैर्ध्य अध्ययन या पट्टिका अध्ययन कहा जाता है।


== उदाहरण ==
== उदाहरण ==
{| class="wikitable sortable" style="display:inline-table"
{| class="wikitable sortable" style="display:inline-table"
|+ MRPP balanced panel
|+ एमआरपीपी असंतुलित पट्टिका
|-
|-
! scope="col" | person
! scope="col" | व्यक्ति
! scope="col" | year
! scope="col" | वर्ष
! scope="col" | income
! scope="col" | आय
! scope="col" | age
! scope="col" | आयु
! scope="col" | sex
! scope="col" | लिंग
|-
|-
| 1 || 2016 || 1300 || 27 || 1
| 1 || 2016 || 1300 || 27 || 1
Line 30: Line 30:
|}
|}
{| class="wikitable sortable" style="display:inline-table"
{| class="wikitable sortable" style="display:inline-table"
|+ MRPP unbalanced panel
|+ एमआरपीपी असंतुलित पट्टिका
|-
|-
! scope="col" | person
! scope="col" | व्यक्ति
! scope="col" | year
! scope="col" | वर्ष
! scope="col" | income
! scope="col" | आय
! scope="col" | age
! scope="col" | आयु
! scope="col" | sex
! scope="col" | लिंग
|-
|-
| 1 || 2016 || 1600 || 23 || 1
| 1 || 2016 || 1600 || 23 || 1
Line 50: Line 50:
| 3 || 2017 || 3300 || 34 || 1
| 3 || 2017 || 3300 || 34 || 1
|}
|}
उपरोक्त एकाधिक प्रतिक्रिया क्रमचय प्रक्रिया (MRPP) उदाहरण में, पैनल संरचना वाले दो आँकड़ेसेट दिखाए गए हैं और इसका उद्देश्य यह परीक्षण करना है कि नमूना आँकड़े में लोगों के बीच कोई महत्वपूर्ण अंतर है या नहीं। व्यक्तिगत विशेषताओं (आय, आयु, लिंग) को अलग-अलग व्यक्तियों और अलग-अलग वर्षों के लिए एकत्र किया जाता है। पहले आँकड़ेसेट में तीन साल (2016, 2017, 2018) तक हर साल दो व्यक्तियों (1, 2) का अवलोकन किया जाता है। दूसरे आँकड़ेसेट में, तीन व्यक्तियों (1, 2, 3) को तीन वर्षों (2016, 2017, 2018) में क्रमशः दो बार (व्यक्ति 1), तीन बार (व्यक्ति 2), और एक बार (व्यक्ति 3) देखा गया है। ; विशेष रूप से, व्यक्ति 1 वर्ष 2018 में नहीं देखा गया है और व्यक्ति 3 2016 या 2018 में नहीं देखा गया है।
उपरोक्त एकाधिक प्रतिक्रिया क्रमचय प्रक्रिया (एमआरपीपी) उदाहरण में, पैनल संरचना वाले दो डेटासेट दिखाए गए हैं और इसका उद्देश्य यह परीक्षण करना है कि प्रतिचय डेटा में लोगों के बीच कोई महत्वपूर्ण अंतर है या नहीं। व्यक्तिगत विशेषताओं (आय, आयु, लिंग) को अलग-अलग व्यक्तियों और अलग-अलग वर्षों के लिए एकत्र किया जाता है। पहले डेटासेट में तीन वर्ष  (2016, 2017, 2018) के लिए प्रत्येक वर्ष दो व्यक्तियों (1, 2) का अवलोकन किया जाता है। दूसरे डेटासेट में, तीन व्यक्तियों (1, 2, 3) को तीन वर्षों (2016, 2017, 2018) में क्रमशः दो बार (व्यक्ति 1), तीन बार (व्यक्ति 2), और एक बार (व्यक्ति 3) देखा गया है। विशेष रूप से, व्यक्ति 1 वर्ष 2018 में नहीं देखा गया है और व्यक्ति 3 2016 या 2018 में नहीं देखा गया है।


एक संतुलित पैनल (उदाहरण के लिए, उपरोक्त पहला आँकड़ेसेट) एक आँकड़ेसेट है जिसमें ''प्रत्येक'' पैनल सदस्य (अर्थात, व्यक्ति) ''प्रत्येक'' वर्ष मनाया जाता है। नतीजतन, यदि एक संतुलित पैनल में ''एन'' पैनल के सदस्य और ''टी'' अवधि शामिल हैं, तो आँकड़ेसेट में टिप्पणियों की संख्या (''एन'') जरूरी है {{math|''n'' {{=}} ''N''&times;''T''}}.
एक [[संतुलित पैनल]] (उदाहरण के लिए, उपरोक्त पहला डेटासेट) एक डेटासेट है जिसमें ''प्रत्येक'' पैनल सदस्य (अर्थात, व्यक्ति) ''प्रत्येक'' वर्ष मनाया जाता है। परिणामस्वरूप, यदि एक संतुलित पैनल में ''N'' पैनल के सदस्य और ''T'' आवर्त सम्मिलित हैं, तो डेटासेट में अवलोकनों की संख्या (''n'') आवश्यक रूप से {{math|''n'' {{=}} ''N''&times;''T''}} है।


एक असंतुलित पैनल (उदाहरण के लिए, ऊपर दिया गया दूसरा आँकड़ेसेट) एक आँकड़ेसेट है जिसमें हर अवधि में ''कम से कम एक'' पैनल सदस्य नहीं देखा जाता है। इसलिए, यदि एक असंतुलित पैनल में ''एन'' पैनल के सदस्य और ''टी'' अवधि शामिल हैं, तो निम्नलिखित सख्त असमानता आँकड़ेसेट में टिप्पणियों की संख्या (''एन'') के लिए लागू होती है: {{math|''n'' &lt; ''N''&times;''T''}}.
एक [[असंतुलित पैनल]] (जैसे, ऊपर दिया गया दूसरा डेटासेट) एक डेटासेट है जिसमें ''कम से कम एक'' पैनल सदस्य प्रत्येक अवधि में नहीं देखा जाता है। इसलिए, यदि एक असंतुलित पैनल में ''N'' पैनल के सदस्य और ''T'' अवधि सम्मिलित हैं, तो डेटासेट में प्रेक्षणों की संख्या (''n'') के लिए निम्न सख्त असमानता लागू होती ह, {{math|''n'' &lt; ''N''&times;''T''}}


उपरोक्त दोनों आँकड़ेसेट लंबे प्रारूप में संरचित हैं, जहां एक पंक्ति प्रति समय एक अवलोकन रखती है। पैनल आँकड़े की संरचना का एक अन्य तरीका व्यापक प्रारूप होगा जहां एक पंक्ति समय में ''सभी'' बिंदुओं के लिए एक अवलोकन इकाई का प्रतिनिधित्व करती है (उदाहरण के लिए, विस्तृत प्रारूप में केवल दो (पहला उदाहरण) या तीन (दूसरा उदाहरण) पंक्तियां होंगी प्रत्येक समय-भिन्न चर (आय, आयु) के लिए अतिरिक्त कॉलम वाले आँकड़े।
उपरोक्त दोनों डेटासेट लंबे प्रारूप में संरचित हैं, जहां एक पंक्ति प्रति समय एक अवलोकन रखती है। पट्टिका आँकड़ा की संरचना का एक अन्य तरीका व्यापक प्रारूप होगा जहां एक पंक्ति समय में ''सभी'' बिंदुओं के लिए एक अवलोकन इकाई का प्रतिनिधित्व करती है (उदाहरण के लिए, विस्तृत प्रारूप में डेटा केवल दो (पहला उदाहरण) या तीन (दूसरा उदाहरण) पंक्तियाँ होंगी, जिसमें प्रत्येक समय-भिन्न चर (आय, आयु) के लिए अतिरिक्त स्तम्भ होंगे।)


== विश्लेषण ==
== विश्लेषण ==
{{Main|Panel analysis}}
{{Main|पैनल विश्लेषण}}


एक पैनल का रूप है
एक पैनल का रूप


: <math>X_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T, </math>
: <math>X_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T, </math>
कहाँ <math>i</math> व्यक्तिगत आयाम है और <math>t</math> समय आयाम है। एक सामान्य पैनल आँकड़े प्रतिगमन मॉडल के रूप में लिखा गया है <math>y_{it} = \alpha + \beta' X_{it} + u_{it}.</math>
है जहाँ <math>i</math> व्यक्तिगत आयाम है और <math>t</math> समय आयाम है। एक सामान्य पट्टिका आँकड़ा प्रतिगमन प्रारूप  <math>y_{it} = \alpha + \beta' X_{it} + u_{it}.</math>के रूप में लिखा जाता है।
इस सामान्य मॉडल की सटीक संरचना पर विभिन्न धारणाएँ बनाई जा सकती हैं। [[निश्चित प्रभाव मॉडल]] और [[यादृच्छिक प्रभाव मॉडल]] दो महत्वपूर्ण मॉडल हैं।


एक सामान्य पैनल आँकड़े मॉडल पर विचार करें:
इस सामान्य प्रारूप की सटीक संरचना पर विभिन्न धारणाएँ बनाई जा सकती हैं। [[निश्चित प्रभाव मॉडल|निश्चित प्रभाव]] [[प्रारूप]]  और [[यादृच्छिक प्रभाव मॉडल|अनियमित प्रभाव]] [[प्रारूप]] दो महत्वपूर्ण प्रारूप हैं।
 
एक सामान्य पट्टिका आँकड़ा प्रारूप पर विचार करें,


: <math>y_{it} = \alpha + \beta' X_{it} + u_{it}, </math>
: <math>y_{it} = \alpha + \beta' X_{it} + u_{it}, </math>
: <math>u_{it} = \mu_i + v_{it}.</math>
: <math>u_{it} = \mu_i + v_{it}.</math>


<math>\mu_i</math> व्यक्तिगत-विशिष्ट, समय-अपरिवर्तनीय प्रभाव हैं (उदाहरण के लिए देशों के एक पैनल में इसमें भूगोल, जलवायु आदि शामिल हो सकते हैं) जो समय के साथ तय होते हैं। जबकि <math>v_{it}</math> एक समय-भिन्न यादृच्छिक घटक है।
<math>\mu_i</math> व्यक्तिगत-विशिष्ट, समय-अपरिवर्तनीय प्रभाव हैं (उदाहरण के लिए देशों के एक पैनल में इसमें भूगोल, जलवायु आदि सम्मिलित हो सकते हैं) जो समय के साथ तय होते हैं। जबकि <math>v_{it}</math> एक समय-भिन्न यादृच्छिक घटक है।


अगर <math>\mu_i</math> अप्रमाणित है, और कम से कम एक स्वतंत्र चर के साथ सहसंबद्ध है, तो यह एक मानक सामान्य न्यूनतम वर्ग प्रतिगमन में छोड़े गए चर पूर्वाग्रह का कारण होगा। हालाँकि, पैनल आँकड़े विधियाँ, जैसे कि निश्चित प्रभाव अनुमानक या वैकल्पिक रूप से, [[प्रथम-अंतर अनुमानक]] का उपयोग इसे नियंत्रित करने के लिए किया जा सकता है।
यदि <math>\mu_i</math> का अवलोकन नहीं किया गया है, और कम से कम एक स्वतंत्र चर के साथ सहसंबद्ध है, तो यह एक मानक [[ओएलएस]] प्रतिगमन में छोड़े गए चर पूर्वाग्रह का कारण होगा। हालाँकि, पट्टिका आँकड़ा विधियाँ, जैसे कि निश्चित प्रभाव अनुमानक या वैकल्पिक रूप से, [[प्रथम-अंतर अनुमानक]] का उपयोग इसे नियंत्रित करने के लिए किया जा सकता है।


अगर <math>\mu_i</math> किसी भी स्वतंत्र चर के साथ सहसंबद्ध नहीं है, साधारण न्यूनतम वर्ग रैखिक प्रतिगमन विधियों का उपयोग प्रतिगमन मापदंडों के निष्पक्ष और सुसंगत अनुमानों को प्राप्त करने के लिए किया जा सकता है। हालाँकि, क्योंकि <math>\mu_i</math> समय के साथ तय हो जाता है, यह प्रतिगमन की त्रुटि अवधि में क्रमिक सहसंबंध को प्रेरित करेगा। इसका मतलब है कि अधिक कुशल आकलन तकनीक उपलब्ध हैं। यादृच्छिक प्रभाव एक ऐसी विधि है: यह व्यवहार्य सामान्यीकृत कम से कम वर्गों का एक विशेष मामला है जो अनुक्रमिक सहसंबंध की संरचना के लिए नियंत्रित करता है जो प्रेरित होता है <math>\mu_i</math>.
यदि <math>\mu_i</math> किसी भी स्वतंत्र चर के साथ सहसंबद्ध नहीं है, तो प्रतिगमन मापदंडों के निष्पक्ष और सुसंगत अनुमानों को प्राप्त करने के लिए साधारण न्यूनतम वर्ग रैखिक प्रतिगमन विधियों का उपयोग किया जा सकता है। हालाँकि, क्योंकि <math>\mu_i</math> समय के साथ तय हो जाता है, यह प्रतिगमन की अशुद्धि आवर्त में क्रमिक सहसंबंध को प्रेरित करेगा। इसका मतलब है कि अधिक कुशल आकलन तकनीक उपलब्ध हैं। यादृच्छिक प्रभाव एक ऐसी विधि है, यह व्यवहार्य [[सामान्यीकृत कम से कम वर्गों]] की एक विशेष स्थिति है जो <math>\mu_i</math> से प्रेरित अनुक्रमिक सहसंबंध की संरचना के लिए नियंत्रित करता है।


=== गतिशील पैनल आँकड़े ===
=== गतिशील पट्टिका आँकड़ा ===


डायनेमिक पैनल आँकड़े उस मामले का वर्णन करता है जहां आश्रित चर के [[लैग ऑपरेटर]] को प्रतिगामी के रूप में उपयोग किया जाता है:
गतिशील पट्टिका आँकड़ा उस स्थिति का वर्णन करता है जहां निर्भर चर के [[अंतराल]] को प्रतिगामी के रूप में उपयोग किया जाता है,


: <math>y_{it} = \alpha + \beta' X_{it} +\gamma y_{it-1}+ u_{it}, </math>
: <math>y_{it} = \alpha + \beta' X_{it} +\gamma y_{it-1}+ u_{it}, </math>
लैग्ड डिपेंडेंट वेरिएबल की उपस्थिति सख्त [[एक्सोजेनिटी (अर्थमिति)]] का उल्लंघन करती है, यानी [[एंडोजीनिटी (अर्थमिति)]] हो सकती है। निश्चित प्रभाव अनुमानक और प्रथम अंतर अनुमानक दोनों सख्त बहिर्जातता की धारणा पर भरोसा करते हैं। इसलिए, अगर <math>u_{i}</math> माना जाता है कि एक स्वतंत्र चर के साथ सहसंबद्ध है, एक वैकल्पिक अनुमान तकनीक का उपयोग किया जाना चाहिए। इस स्थिति में वाद्य चर या GMM तकनीकों का आमतौर पर उपयोग किया जाता है, जैसे कि अरेलानो-बॉन्ड अनुमानक।
लैग्ड निर्भर चर की उपस्थिति सख्त [[बहिर्जनिक]] का उल्लंघन करती है, यानी [[अंतर्जातता]] हो सकती है। निश्चित प्रभाव अनुमानक और प्रथम अंतर अनुमानक दोनों सख्त बहिर्जातता की धारणा पर भरोसा करते हैं। इसलिए, यदि <math>u_{i}</math> को एक स्वतंत्र चर के साथ सहसंबद्ध माना जाता है, तो एक वैकल्पिक अनुमान तकनीक का उपयोग किया जाना चाहिए। इस स्थिति में वाद्य चर या जीएमएम तकनीकों जैसे कि [[अरेलानो-बॉन्ड अनुमानक]] का आमतौर पर उपयोग किया जाता है।


== आँकड़े सेट जिनमें एक पैनल डिज़ाइन है ==
== डेटा सेट जिनमें एक पैनल पारूप होता है ==


*[[रूस अनुदैर्ध्य निगरानी सर्वेक्षण]] (आरएलएमएस)
*[[रूस अनुदैर्ध्य निगरानी सर्वेक्षण]] (आरएलएमएस)
* जर्मन [[सामाजिक-आर्थिक पैनल]] (एसओईपी)
* जर्मन [[सामाजिक-आर्थिक पैनल]] (एसओईपी)
*ऑस्ट्रेलिया सर्वेक्षण में घरेलू, आय और श्रम गतिशीलता (हिल्डा)
*[[ऑस्ट्रेलिया सर्वेक्षण]] (हिल्डा) [[में घरेलू, आय और श्रम गतिशीलता]]
*[[ ब्रिटिश घरेलू पैनल सर्वेक्षण ]] (बीएचपीएस)
*[[ ब्रिटिश घरेलू पैनल सर्वेक्षण ]] (बीएचपीएस)
*[[पारिवारिक आय और रोजगार का सर्वेक्षण]] (SoFIE)
*[[पारिवारिक आय और रोजगार का सर्वेक्षण]] (सोफी)
*आय और कार्यक्रम भागीदारी का सर्वेक्षण (एसआईपीपी)
*[[आय और कार्यक्रम भागीदारी का सर्वेक्षण]] (एसआईपीपी)
*[[एलएलएमडीबी]] (एलएलएमडीबी)
*[[आजीवन श्रम बाजार डाटाबेस]] (एलएलएमडीबी)
*[https://www.lissdata.nl/होम लॉन्गिट्यूडिनल इंटरनेट स्टडीज फॉर द सोशल साइंसेज (एलआईएसएस])
*[https://www.lissdata.nl/होम सामाजिक विज्ञान के लिए अनुदैर्ध्य इंटरनेट अध्ययन (एलआईएसएस])
*आय गतिकी का पैनल अध्ययन (PSID)
*[[आय गतिकी का पैनल अध्ययन]] (पीएसआईडी)
*[[कोरियाई श्रम और आय पैनल अध्ययन]] (केएलआईपीएस)
*[[कोरियाई श्रम और आय पैनल अध्ययन]] (केएलआईपीएस)
*[[चीन परिवार पैनल अध्ययन]] (सीएफपीएस)
*[[चीन परिवार पैनल अध्ययन]] (सीएफपीएस)
*[[ जर्मन परिवार पैनल ]] (पेयरफैम)
*[[ जर्मन परिवार पैनल | जर्मन परिवार पैनल]] (पेयरफैम)
*[[राष्ट्रीय अनुदैर्ध्य सर्वेक्षण]] (एनएलएसवाई)
*[[राष्ट्रीय अनुदैर्ध्य सर्वेक्षण]] (एनएलएसवाई)
*[[श्रम बल सर्वेक्षण]] (एलएफएस)
*[[श्रम बल सर्वेक्षण]] (एलएफएस)
*[[कोरियाई युवा पैनल]] (YP)
*[[कोरियाई युवा पैनल]] (वाईपी)
*[[उम्र बढ़ने का कोरियाई अनुदैर्ध्य अध्ययन]] (केएलओएसए)
*[[उम्र बढ़ने का कोरियाई अनुदैर्ध्य अध्ययन|वृद्धावस्था का कोरियाई अनुदैर्ध्य अध्ययन]] (केएलओएसए)


== आँकड़े सेट जिनमें बहु-आयामी पैनल डिज़ाइन == है
डेटा सेट जिसमें बहु-आयामी पैनल प्रारूप होता है
{{Main|Multidimensional panel data}}
{{Main|बहुआयामी पैनल डेटा}}


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 124: Line 125:
*[https://web.archive.org/web/20110719101922/http://www.pairfam.uni-bremen.de/en/study.html pairfam]
*[https://web.archive.org/web/20110719101922/http://www.pairfam.uni-bremen.de/en/study.html pairfam]
*[https://web.archive.org/web/20140416182301/http://survey.keis.or.kr/ENCOMAM0000N.do Korea Employment Survey]
*[https://web.archive.org/web/20140416182301/http://survey.keis.or.kr/ENCOMAM0000N.do Korea Employment Survey]
[[Category: पैनल डेटा | पैनल डेटा ]] [[Category: बहुभिन्नरूपी समय शृंखला|पी]] [[Category: सांख्यिकीय डेटा प्रकार]] [[Category: गणितीय और मात्रात्मक तरीके (अर्थशास्त्र)]]


[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:Articles lacking in-text citations from जून 2020]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 01/06/2023]]
[[Category:Created On 01/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:गणितीय और मात्रात्मक तरीके (अर्थशास्त्र)]]
[[Category:पैनल डेटा| पैनल डेटा ]]
[[Category:बहुभिन्नरूपी समय शृंखला|पी]]
[[Category:सांख्यिकीय डेटा प्रकार]]

Latest revision as of 10:40, 1 July 2023

सांख्यिकी और अर्थमिति में, पट्टिका आँकड़ा और अनुदैर्ध्य आँकड़ा [1][2] दोनों बहु-आयामी डेटा हैं जिनमें समय के साथ माप सम्मिलित हैं। पट्टिका आँकड़ा अनुदैर्ध्य डेटा का एक उपसमुच्चय है जहां अवलोकन हर बार समान विषयों के लिए होते हैं।

काल श्रेणी और अनुप्रस्थ काट डेटा को पट्टिका आँकड़ा की विशेष स्थित के रूप में माना जा सकता है जो केवल एक आयाम में हैं (एक पैनल सदस्य या पूर्व के लिए अलग अलग, बाद के लिए एक समय बिंदु)। एक साहित्य खोज में अक्सर समय श्रृंखला, अनुप्रस्थ काट या पट्टिका आँकड़ा सम्मिलित होते है। अनुप्रस्थ-पट्टिका आँकड़ा (सीपीडी) गणितीय और सांख्यिकीय विज्ञान में जानकारी का एक अभिनव अभी तक कम सराहना वाला स्रोत है। सीपीडी अन्य अनुसंधान प्रणालियों से अलग है क्योंकि यह स्पष्ट रूप से दिखाता है कि देशों के बीच स्वतंत्र और परतंत्र चर कैसे बदल सकते हैं। यह पट्टिका आँकड़ा संग्रह शोधकर्ताओं को कई अनुप्रस्थ काट और समय आवर्त में चर के बीच संबंध की जांच करने और अन्य देशों में नीतिगत कार्यों के परिणामों का विश्लेषण करने की अनुमति देता है।[3]

पट्टिका आँकड़ा का उपयोग करने वाले अध्ययन को अनुदैर्ध्य अध्ययन या पट्टिका अध्ययन कहा जाता है।

उदाहरण

एमआरपीपी असंतुलित पट्टिका
व्यक्ति वर्ष आय आयु लिंग
1 2016 1300 27 1
1 2017 1600 28 1
1 2018 2000 29 1
2 2016 2000 38 2
2 2017 2300 39 2
2 2018 2400 40 2
एमआरपीपी असंतुलित पट्टिका
व्यक्ति वर्ष आय आयु लिंग
1 2016 1600 23 1
1 2017 1500 24 1
2 2016 1900 41 2
2 2017 2000 42 2
2 2018 2100 43 2
3 2017 3300 34 1

उपरोक्त एकाधिक प्रतिक्रिया क्रमचय प्रक्रिया (एमआरपीपी) उदाहरण में, पैनल संरचना वाले दो डेटासेट दिखाए गए हैं और इसका उद्देश्य यह परीक्षण करना है कि प्रतिचय डेटा में लोगों के बीच कोई महत्वपूर्ण अंतर है या नहीं। व्यक्तिगत विशेषताओं (आय, आयु, लिंग) को अलग-अलग व्यक्तियों और अलग-अलग वर्षों के लिए एकत्र किया जाता है। पहले डेटासेट में तीन वर्ष (2016, 2017, 2018) के लिए प्रत्येक वर्ष दो व्यक्तियों (1, 2) का अवलोकन किया जाता है। दूसरे डेटासेट में, तीन व्यक्तियों (1, 2, 3) को तीन वर्षों (2016, 2017, 2018) में क्रमशः दो बार (व्यक्ति 1), तीन बार (व्यक्ति 2), और एक बार (व्यक्ति 3) देखा गया है। विशेष रूप से, व्यक्ति 1 वर्ष 2018 में नहीं देखा गया है और व्यक्ति 3 2016 या 2018 में नहीं देखा गया है।

एक संतुलित पैनल (उदाहरण के लिए, उपरोक्त पहला डेटासेट) एक डेटासेट है जिसमें प्रत्येक पैनल सदस्य (अर्थात, व्यक्ति) प्रत्येक वर्ष मनाया जाता है। परिणामस्वरूप, यदि एक संतुलित पैनल में N पैनल के सदस्य और T आवर्त सम्मिलित हैं, तो डेटासेट में अवलोकनों की संख्या (n) आवश्यक रूप से n = N×T है।

एक असंतुलित पैनल (जैसे, ऊपर दिया गया दूसरा डेटासेट) एक डेटासेट है जिसमें कम से कम एक पैनल सदस्य प्रत्येक अवधि में नहीं देखा जाता है। इसलिए, यदि एक असंतुलित पैनल में N पैनल के सदस्य और T अवधि सम्मिलित हैं, तो डेटासेट में प्रेक्षणों की संख्या (n) के लिए निम्न सख्त असमानता लागू होती ह, n < N×T

उपरोक्त दोनों डेटासेट लंबे प्रारूप में संरचित हैं, जहां एक पंक्ति प्रति समय एक अवलोकन रखती है। पट्टिका आँकड़ा की संरचना का एक अन्य तरीका व्यापक प्रारूप होगा जहां एक पंक्ति समय में सभी बिंदुओं के लिए एक अवलोकन इकाई का प्रतिनिधित्व करती है (उदाहरण के लिए, विस्तृत प्रारूप में डेटा केवल दो (पहला उदाहरण) या तीन (दूसरा उदाहरण) पंक्तियाँ होंगी, जिसमें प्रत्येक समय-भिन्न चर (आय, आयु) के लिए अतिरिक्त स्तम्भ होंगे।)

विश्लेषण

एक पैनल का रूप

है जहाँ व्यक्तिगत आयाम है और समय आयाम है। एक सामान्य पट्टिका आँकड़ा प्रतिगमन प्रारूप के रूप में लिखा जाता है।

इस सामान्य प्रारूप की सटीक संरचना पर विभिन्न धारणाएँ बनाई जा सकती हैं। निश्चित प्रभाव प्रारूप और अनियमित प्रभाव प्रारूप दो महत्वपूर्ण प्रारूप हैं।

एक सामान्य पट्टिका आँकड़ा प्रारूप पर विचार करें,

व्यक्तिगत-विशिष्ट, समय-अपरिवर्तनीय प्रभाव हैं (उदाहरण के लिए देशों के एक पैनल में इसमें भूगोल, जलवायु आदि सम्मिलित हो सकते हैं) जो समय के साथ तय होते हैं। जबकि एक समय-भिन्न यादृच्छिक घटक है।

यदि का अवलोकन नहीं किया गया है, और कम से कम एक स्वतंत्र चर के साथ सहसंबद्ध है, तो यह एक मानक ओएलएस प्रतिगमन में छोड़े गए चर पूर्वाग्रह का कारण होगा। हालाँकि, पट्टिका आँकड़ा विधियाँ, जैसे कि निश्चित प्रभाव अनुमानक या वैकल्पिक रूप से, प्रथम-अंतर अनुमानक का उपयोग इसे नियंत्रित करने के लिए किया जा सकता है।

यदि किसी भी स्वतंत्र चर के साथ सहसंबद्ध नहीं है, तो प्रतिगमन मापदंडों के निष्पक्ष और सुसंगत अनुमानों को प्राप्त करने के लिए साधारण न्यूनतम वर्ग रैखिक प्रतिगमन विधियों का उपयोग किया जा सकता है। हालाँकि, क्योंकि समय के साथ तय हो जाता है, यह प्रतिगमन की अशुद्धि आवर्त में क्रमिक सहसंबंध को प्रेरित करेगा। इसका मतलब है कि अधिक कुशल आकलन तकनीक उपलब्ध हैं। यादृच्छिक प्रभाव एक ऐसी विधि है, यह व्यवहार्य सामान्यीकृत कम से कम वर्गों की एक विशेष स्थिति है जो से प्रेरित अनुक्रमिक सहसंबंध की संरचना के लिए नियंत्रित करता है।

गतिशील पट्टिका आँकड़ा

गतिशील पट्टिका आँकड़ा उस स्थिति का वर्णन करता है जहां निर्भर चर के अंतराल को प्रतिगामी के रूप में उपयोग किया जाता है,

लैग्ड निर्भर चर की उपस्थिति सख्त बहिर्जनिक का उल्लंघन करती है, यानी अंतर्जातता हो सकती है। निश्चित प्रभाव अनुमानक और प्रथम अंतर अनुमानक दोनों सख्त बहिर्जातता की धारणा पर भरोसा करते हैं। इसलिए, यदि को एक स्वतंत्र चर के साथ सहसंबद्ध माना जाता है, तो एक वैकल्पिक अनुमान तकनीक का उपयोग किया जाना चाहिए। इस स्थिति में वाद्य चर या जीएमएम तकनीकों जैसे कि अरेलानो-बॉन्ड अनुमानक का आमतौर पर उपयोग किया जाता है।

डेटा सेट जिनमें एक पैनल पारूप होता है

डेटा सेट जिसमें बहु-आयामी पैनल प्रारूप होता है

टिप्पणियाँ

  1. Diggle, Peter J.; Heagerty, Patrick; Liang, Kung-Yee; Zeger, Scott L. (2002). अनुदैर्ध्य डेटा का विश्लेषण (2nd ed.). Oxford University Press. p. 2. ISBN 0-19-852484-6.
  2. Fitzmaurice, Garrett M.; Laird, Nan M.; Ware, James H. (2004). अनुप्रयुक्त अनुदैर्ध्य विश्लेषण. Hoboken: John Wiley & Sons. p. 2. ISBN 0-471-21487-6.
  3. Zaman, Khalid (2023-01-24). "क्रॉस-पैनल डेटा तकनीकों पर एक नोट". Latest Developments in Econometrics. 1 (1): 1–7. doi:10.5281/zenodo.7565625.


संदर्भ

  • Baltagi, Badi H. (2008). Econometric Analysis of Panel Data (Fourth ed.). Chichester: John Wiley & Sons. ISBN 978-0-470-51886-1.
  • Davies, A.; Lahiri, K. (1995). "A New Framework for Testing Rationality and Measuring Aggregate Shocks Using Panel Data". Journal of Econometrics. 68 (1): 205–227. doi:10.1016/0304-4076(94)01649-K.
  • Davies, A.; Lahiri, K. (2000). "Re-examining the Rational Expectations Hypothesis Using Panel Data on Multi-Period Forecasts". Analysis of Panels and Limited Dependent Variable Models. Cambridge: Cambridge University Press. pp. 226–254. ISBN 0-521-63169-6.
  • Frees, E. (2004). Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. New York: Cambridge University Press. ISBN 0-521-82828-7.
  • Hsiao, Cheng (2003). Analysis of Panel Data (Second ed.). New York: Cambridge University Press. ISBN 0-521-52271-4.


बाहरी संबंध