स्पेक्ट्रोरेडियोमीटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
स्पेक्ट्रोरेडियोमीटर एक प्रकाश मापक उपकरण है जो प्रकाश स्रोत से उत्सर्जित प्रकाश की तरंग दैर्ध्य और आयाम दोनों को मापने में सक्षम है। स्पेक्ट्रोमीटर डिटेक्टर सरणी पर प्रकाश विवरण की स्थिति के आधार पर तरंग दैर्ध्य में विभेदन करते हैं जिससे पूर्ण स्पेक्ट्रम को एकल अधिग्रहण के साथ प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में गणनाओं का एक आधार माप होता है जो कि गैर-अंशांकित रीडिंग है और इस प्रकार संसूचक की संवेदनशीलता से प्रत्येक तरंग दैर्ध्य पर प्रभाव पड़ता है। [[अंशांकन]] लागू करके, स्पेक्ट्रोमीटर वर्णक्रमीय [[विकिरण]], वर्णक्रमीय चमक और/या वर्णक्रमीय प्रवाह के माप प्रदान करने में सक्षम है। इस डेटा का उपयोग तब अंतर्निहित या पीसी सॉफ़्टवेयर और कई एल्गोरिदम के साथ रीडिंग या इरैडियंस (डब्ल्यू / सेमी 2), इलुमिनेंस (लक्स या एफसी), रेडियंस (डब्ल्यू / एसआर), ल्यूमिनेंस (सीडी), फ्लक्स (लुमेन या वाट) प्रदान करने के लिए किया जाता है।), वार्णिकता, रंग तापमान, शिखर और प्रमुख तरंगदैर्ध्य। कुछ और जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर पैकेज भी दूरी के आधार पर पीएआर μmol/m<sup>2</sup>/s, मेटामेरिज्म, और कैंडीला 2 और 20 डिग्री पर्यवेक्षक, बुनियादी ओवरले तुलना, ट्रांसमिशन और प्रतिबिंब जैसे अभिकलन और सुविधाओं की अनुमति देता है।
'''स्पेक्ट्रोरेडियोमीटर''' एक प्रकाश मापन उपकरण है जो प्रकाश स्रोत से उत्सर्जित तरंग दैर्घ्य और प्रकाश के आयामों को मापने में सक्षम है। स्पेक्ट्रोमीटर खोज सरणी पर प्रकाश विस्तार की स्थिति के आधार पर तरंगदैर्घ्य का उपाय करते हैं ताकि एकल अधिग्रहण के साथ पूर्ण स्पेक्ट्रम प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में एक आधार मापन होता है जो एक विभेदक रीडिंग होता है और इस प्रकार प्रत्येक तरंगदैर्घ्य पर संसूचक की संवेदनशीलता को प्रभावित करता है। [[अंशांकन]] प्रयुक्त करने के द्वारा, स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर विकिरण, वर्णक्रमीय विकिरण और / या वर्णक्रमीय प्रवाह को मापने में सक्षम है। इस डेटा का उपयोग तब निर्मित या पीसी सॉफ्टवेयर और कई कलन विधि के साथ भी किया जाता है जो रीडिंग या प्रकाश-विकिरण (वाट प्रति वर्ग सेंटीमीटर) उपलब्ध कराने के लिए रीडिंग या प्रकाश-विकिरण (वाट प्रति वर्ग सेंटीमीटर), प्रदीप्‍ति घनत्व (डब्ल्यू/एसआर), ल्यूमन्स (सीडी), प्रवाह (ल्यूमन्स या वाट), वार्णिकता, रंग तापमान, श्रंग और प्रमुख तरंग दैर्घ्य उत्त्पन करते हैं। कुछ अधिक जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर पैकेज भी प्रकाश संश्लेषक रूप से सक्रिय विकिरण (पीएआर) μएमओएल/एम<sup>2</sup>/एस (μmol/m<sup>2</sup>/s) की गणना की अनुमति देते हैं, दूरस्थता के आधार पर मेटामेरिज्म (विखंडावस्था), और कैंडेला गणना 2- और 20 डिग्री पर्यवेक्षक की तरह, आधारभूत उपरिशायी तुलना, संचरण और परावर्तन जैसी विशेषताएं सम्मिलित हैं।


स्पेक्ट्रोमीटर कई पैकेजों और आकारों में उपलब्ध हैं जो कई [[तरंग दैर्ध्य]] सीमा का आवरण करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्ध्य (स्पेक्ट्रल) सीमा न केवल झंझरी प्रसार क्षमता से निर्धारित होती है बल्कि संसूचकों की संवेदनशीलता सीमा पर भी निर्भर करती है। अर्धचालक के बैंड गैप द्वारा सीमित सिलिकॉन-आधारित संसूचक 200-1100 एनएम पर प्रतिक्रिया करता है जबकि इनगैस आधारित संसूचक 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के प्रति संवेदनशील है।
कई समूहों और आकारों में स्पेक्ट्रोमीटर उपलब्ध हैं जो कई तरंग दैर्ध्य को कवर करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्घ्य सीमा न केवल स्क्रैट्स डिफ्यूजन क्षमता द्वारा बल्कि संसूचकों की संवेदनशीलता सीमा द्वारा भी निर्धारित की जाती है। सिलिकॉन-आधारित संसूचक लिमिटेड अर्धचालक बैंड अंतर द्वारा 200-1100 एनएम का उत्तर देता है, जबकि गैस-आधारित संसूचक 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के लिए संवेदनशील है।


प्रयोगशाला/शोध स्पेक्ट्रमीटर अक्सर यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरण करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें कूलिंग सिस्टम चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, बेहतर रिज़ॉल्यूशन की अनुमति देने और ब्रॉडबैंड सिस्टम में पाई जाने वाली कुछ अधिक सामान्य त्रुटियों जैसे कि गुमराह प्रकाश और संवेदनशीलता की कमी को दूर करने के लिए दूसरी प्रणाली के साथ जोड़ा जा सकता है।
प्रयोगशाला/शोध स्पेक्ट्रमीटर प्रायः यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरणित करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें शीतलन प्रणाली चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, ब्रॉडबैंड प्रणाली में कुछ और सामान्य त्रुटियाँ जैसे प्रकाश और संवेदनशीलता की त्रुटि को अन्य प्रणाली में जोड़ा जा सकता है ताकि बेहतर उपाय की अनुमति दी जा सके।


संवहन उपकरण एनआईआर को यूवी आवरण करने वाली कई वर्णमाला श्रेणियों के लिए भी उपलब्ध है और कई विभिन्न पैकेज शैलियों और आकार प्रस्तुत करता है। एकीकृत डिस्प्ले वाले हैंड हेल्ड सिस्टम में आमतौर पर प्रकाशिकी और प्री-प्रोग्राम्ड सॉफ्टवेयर के साथ ऑनबोर्ड कंप्यूटर होता है। मिनी स्पेक्ट्रोमीटर का उपयोग हाथ से या लैब में भी किया जा सकता है क्योंकि वे एक पीसी द्वारा संचालित और नियंत्रित होते हैं और एक यूएसबी केबल की आवश्यकता होती है। इनपुट प्रकाशिकी को शामिल किया जा सकता है या आमतौर पर एक फाइबर ऑप्टिक प्रकाश गाइड द्वारा संलग्न किया जाता है। एक चौथाई से छोटे माइक्रो स्पेक्ट्रोमीटर भी हैं जिन्हें एक सिस्टम में एकीकृत किया जा सकता है, या अकेले इस्तेमाल किया जा सकता है।
संवहन उपकरण एनआईआर को यूवी आवरण करने वाली कई वर्णमाला श्रेणियों के लिए भी उपलब्ध है और कई विभिन्न संकुल शैलियों और आकार प्रस्तुत करता है।एकीकृत डिस्प्ले हैंडहेल्ड सिस्टम में सामान्यतः प्रकाशिकी और प्री-प्रोग्रामेड सॉफ्टवेयर के साथ ऑन-बोर्ड कंप्यूटर होते हैं। मिनी स्पेक्ट्रोमीटर का उपयोग हाथ या प्रयोगशाला में भी किया जा सकता है क्योंकि वे एक पीसी द्वारा संचालित और नियंत्रित होते हैं और एक यूएसबी केबल की आवश्यकता होती है। इनपुट प्रकाशिकी को सम्मिलित किया जा सकता है या सामान्यतः एक फाइबर ऑप्टिक प्रकाश गाइड द्वारा संलग्न किया जाता है। छोटे माइक्रो स्पेक्ट्रोमीटर भी होते हैं जिन्हें एक सिस्टम में एकीकृत किया जा सकता है, या अकेले उपयोग किया जा सकता है।


== पृष्ठभूमि ==
== पृष्ठभूमि ==


[[स्पेक्ट्रोरेडियोमेट्री]] का क्षेत्र संकीर्ण तरंग दैर्ध्य अंतराल में पूर्ण रेडियोमेट्रिक मात्रा के मापन से संबंधित है।<ref>Leslie D. Stroebel and Richard D. Zakia (1993). Focal Encyclopedia of Photography (3rd ed. ed.). Focal Press. p. 115. {{ISBN|0-240-51417-3}}</ref> संकीर्ण बैंडविड्थ और तरंग दैर्ध्य वृद्धि के साथ स्पेक्ट्रम का नमूना लेना उपयोगी होता है क्योंकि कई स्रोतों में लाइन संरचनाएं होती हैं <ref>Berns, Roy S. "Precision and Accuracy Measurements." Billmeyer and Saltzman's Principles of Color Technology. 3rd ed. New York: John Wiley & Sons, 2000. 97-100. Print</ref> अक्सर स्पेक्ट्रोरेडियोमेट्री में, वर्णक्रमीय विकिरण वांछित माप होता है। व्यवहार में, औसत वर्णक्रमीय विकिरण को मापा जाता है, गणितीय रूप से सन्निकटन के रूप में दिखाया गया है:
[[स्पेक्ट्रोरेडियोमेट्री]] का क्षेत्र संकीर्ण तरंग दैर्ध्य अंतरालों में पूर्ण रेडियोमेट्रिक मात्राओं के मापन से संबंधित है।<ref>Leslie D. Stroebel and Richard D. Zakia (1993). Focal Encyclopedia of Photography (3rd ed. ed.). Focal Press. p. 115. {{ISBN|0-240-51417-3}}</ref> संकीर्ण बैंडविड्थ और तरंग दैर्ध्य वृद्धि के साथ स्पेक्ट्रम का नमूना लेना उपयोगी होता है क्योंकि कई स्रोतों में रेखा संरचनाएं होती हैं <ref>Berns, Roy S. "Precision and Accuracy Measurements." Billmeyer and Saltzman's Principles of Color Technology. 3rd ed. New York: John Wiley & Sons, 2000. 97-100. Print</ref> स्पेक्ट्रोरेडियोमेट्री में प्रायः, वर्णक्रमीय विकिरण वांछित माप होता है। अभ्यास में औसत वर्णक्रमीय विकिरण को मापा जाता है, जिसे गणितीय रूप से सन्निकटन के रूप में दिखाया जाता है:


: <math>E(\lambda)=\frac{\Delta\Phi}{\Delta A \Delta\lambda}</math>
: <math>E(\lambda)=\frac{\Delta\Phi}{\Delta A \Delta\lambda}</math>
कहाँ <math>E</math> वर्णक्रमीय विकिरण है, <math>\Phi</math> एक तरंग दैर्ध्य अंतराल के भीतर स्रोत (एसआई इकाई: [[वाट]], डब्ल्यू) का उज्ज्वल प्रवाह है <math>\Delta\lambda </math> (एसआई इकाई: [[मीटर]], एम), सतह क्षेत्र पर घटना, <math>A</math> (एसआई इकाई: वर्ग मीटर, मी<sup>2</sup>). वर्णक्रमीय विकिरण के लिए SI इकाई W/m है<sup>3</उप>। हालाँकि यह अक्सर [[नैनोमीटर]] में [[सेंटीमीटर]] और तरंग दैर्ध्य के संदर्भ में क्षेत्र को मापने के लिए अधिक उपयोगी होता है, इस प्रकार वर्णक्रमीय विकिरण की SI इकाइयों के उप-गुणकों का उपयोग किया जाएगा, उदाहरण के लिए μW/cm<sup>2</सुप>*एनएम<ref name=Kostkowski/>
जहाँ <math>E</math> वर्णक्रमीय विकिरण है, <math>\Phi</math> स्रोत का दीप्तिमान प्रवाह है (एसआई इकाई: [[वाट]], डब्ल्यू) तरंग दैर्ध्य अंतराल <math>\Delta\lambda </math> (एसआई इकाई: [[मीटर]], एम) के भीतर, सतह क्षेत्र पर घटना, <math>A</math> (एसआई इकाई: वर्ग मीटर, मी<sup>2</sup>)। स्पेक्ट्रल विकिरण के लिए एसआई इकाई डब्ल्यू/एम<sup>3</sup> है। हालांकि यह प्रायः [[नैनोमीटर]] में [[सेंटीमीटर]] और तरंग दैर्ध्य के स्तिथि में क्षेत्र को मापने के लिए अधिक उपयोगी होता है, इस प्रकार वर्णक्रमीय विकिरण की एसआई इकाइयों के उप-गुणकों का उपयोग किया जाएगा, उदाहरण के लिए μW/cm<sup>2</sup>*nm<ref name="Kostkowski" />


स्पेक्ट्रल विकिरण सामान्य रूप से सतह पर बिंदु से बिंदु तक भिन्न होगा। व्यवहार में, यह ध्यान रखना महत्वपूर्ण है कि कैसे दीप्तिमान प्रवाह दिशा के साथ बदलता है, सतह पर प्रत्येक बिंदु पर स्रोत द्वारा अंतरित ठोस कोण का आकार, और सतह का अभिविन्यास। इन विचारों को देखते हुए, इन निर्भरताओं को ध्यान में रखते हुए समीकरण के अधिक कठोर रूप का उपयोग करना अक्सर अधिक विवेकपूर्ण होता है<ref name=Kostkowski>Kostkowski, Henry J. Reliable Spectroradiometry. La Plata, MD: Spectroradiometry Consulting, 1997. Print.</ref>
वर्णक्रमीय विकिरण सामान्य रूप से सतह पर बिंदु से बिंदु तक भिन्न होता है। व्यवहार में, यह ध्यान रखना महत्वपूर्ण है कि रेडिएंट फ्लक्स किस तरह से दिशा के साथ बदलता है, सतह पर प्रत्येक बिंदु पर स्रोत द्वारा उपशीर्षित ठोस कोण का आकार और सतह के उन्मुखीकरण। इन विचारों को देखते हुए, इन निर्भरताओं <ref name="Kostkowski" /> के हिसाब से समीकरण के अधिक दृढ़ रूप का उपयोग करना प्रायः अधिक विवेकपूर्ण होता है<ref name=Kostkowski>Kostkowski, Henry J. Reliable Spectroradiometry. La Plata, MD: Spectroradiometry Consulting, 1997. Print.</ref>
ध्यान दें कि वर्णक्रमीय उपसर्ग को वर्णक्रमीय सांद्रता के वाक्यांश के संक्षिप्त रूप के रूप में समझा जाना है, जिसे CIE द्वारा समझा और परिभाषित किया गया है, जो किसी दिए गए तरंग दैर्ध्य के दोनों ओर एक अपरिमेय सीमा पर ली गई रेडियोमेट्रिक मात्रा के भागफल के रूप में है।<ref>Sanders, Charles L., and R. Rotter. The Spectroradiometric Measurement of Light Sources. Paris, France: Bureau Central De La CIE, 1984. Print.</ref>


ध्यान दें कि उपसर्ग "स्पेक्ट्रल" को "वर्णक्रमीय एकाग्रता" वाक्यांश के संक्षिप्त नाम के रूप में समझा जाना है जिसे सीआईई द्वारा समझा और परिभाषित किया गया है। "राडोमेट्रिक मात्रा के भागफल को किसी दिए गए तरंग दैर्ध्य के दोनों ओर, सीमा के अनुसार एक असीम सीमा पर लिया जाता है"।<ref>Sanders, Charles L., and R. Rotter. The Spectroradiometric Measurement of Light Sources. Paris, France: Bureau Central De La CIE, 1984. Print.</ref>
== वर्णक्रमीय विद्युत वितरण ==
{{main|वर्णक्रमीय विद्युत वितरण}}


== स्पेक्ट्रल बिजली वितरण ==
एक स्रोत का वर्णक्रमीय विद्युत वितरण (एसपीडी) बताता है कि किसी विशेष तरंग दैर्ध्य और क्षेत्र में कितना प्रवाह संवेदक तक पहुंचता है। यह रेडियोमीट्रिक मात्रा को प्रभावी ढंग से मापा जा रहा प्रति दिन योगदान का प्रतिनिधित्व करता है। स्रोत का एसपीडी सामान्यतः एसपीडी वक्र के रूप में दिखाया जाता है। एसपीडी वक्र प्रकाश स्रोत की रंग विशेषताओं का एक दृश्य प्रतिनिधित्व प्रदान करता है, जो दृश्य स्पेक्ट्रम में विभिन्न तरंग दैर्ध्य पर स्रोत द्वारा उत्सर्जित उज्ज्वल प्रवाह को दिखाता है,<ref>GE Lighting. "Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products." Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products. N.p., n.d. Web. 10 Dec. 2013. <{{cite web |url=http://www.gelighting.com/na/business_lighting/spectral_power_distribution_curves/ |title=Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products |access-date=2013-12-11 |url-status=dead |archive-url=https://web.archive.org/web/20131214001859/http://www.gelighting.com/na/business_lighting/spectral_power_distribution_curves/ |archive-date=2013-12-14 }}></ref> एक मीट्रिक भी है जिसके द्वारा हम प्रकाश स्रोत के रंगों को प्रस्तुत करने की क्षमता का मूल्यांकन कर सकते हैं, अर्थात्, क्या एक निश्चित रंग उत्तेजना को किसी दिए गए प्रकाश के तहत उचित रूप से प्रस्तुत किया जा सकता है।
{{main|spectral power distribution}}
 
किसी स्रोत का स्पेक्ट्रल पावर डिस्ट्रीब्यूशन (एसपीडी) वर्णन करता है कि एक विशेष तरंग दैर्ध्य और क्षेत्र में कितना प्रवाह सेंसर तक पहुंचता है। यह प्रभावी ढंग से मापी जा रही रेडियोमेट्रिक मात्रा में प्रति-तरंग दैर्ध्य योगदान को व्यक्त करता है। किसी स्रोत के एसपीडी को आमतौर पर एसपीडी वक्र के रूप में दिखाया जाता है। एसपीडी वक्र प्रकाश स्रोत की रंग विशेषताओं का एक दृश्य प्रतिनिधित्व प्रदान करते हैं, जो दृश्यमान स्पेक्ट्रम में विभिन्न तरंग दैर्ध्य पर स्रोत द्वारा उत्सर्जित उज्ज्वल प्रवाह दिखाते हैं।<ref>GE Lighting. "Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products." Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products. N.p., n.d. Web. 10 Dec. 2013. <{{cite web |url=http://www.gelighting.com/na/business_lighting/spectral_power_distribution_curves/ |title=Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products |access-date=2013-12-11 |url-status=dead |archive-url=https://web.archive.org/web/20131214001859/http://www.gelighting.com/na/business_lighting/spectral_power_distribution_curves/ |archive-date=2013-12-14 }}></ref> यह एक मीट्रिक भी है जिसके द्वारा हम रंगों को प्रस्तुत करने के लिए एक प्रकाश स्रोत की क्षमता का मूल्यांकन कर सकते हैं, अर्थात, किसी दिए गए प्रदीपक के तहत एक निश्चित रंग प्रोत्साहन ठीक से प्रस्तुत किया जा सकता है या नहीं।
   
   
[[Image:Spectral Power Distributions.png|center|frame|[[गरमागरम प्रकाश बल्ब]] (बाएं) और एक [[फ्लोरोसेंट लैंप]] (दाएं) के लिए विशेषता वर्णक्रमीय बिजली वितरण (एसपीडी)। क्षैतिज अक्ष [[नैनोमीटर]] में हैं और ऊर्ध्वाधर अक्ष मनमाना इकाइयों में सापेक्ष तीव्रता दिखाते हैं।]]
[[Image:Spectral Power Distributions.png|center|frame|तापदीप्त प्रकाश बल्ब (बाएं) और एक [[फ्लोरोसेंट लैंप]] (दाएं) के लिए विशेषता वर्णक्रमीय बिजली वितरण (एसपीडी)। क्षैतिज अक्ष [[नैनोमीटर]] में हैं और ऊर्ध्वाधर अक्ष मनमाना इकाइयों में सापेक्ष तीव्रता दिखाते हैं।]]


== त्रुटि के स्रोत ==
== त्रुटि के स्रोत ==
किसी दिए गए स्पेक्ट्रोरेडियोमेट्रिक सिस्टम की गुणवत्ता उसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली की आपूर्ति और अंशांकन का एक कार्य है। आदर्श प्रयोगशाला स्थितियों के तहत और उच्च प्रशिक्षित विशेषज्ञों के साथ माप में छोटी (कुछ दसवें से कुछ प्रतिशत) त्रुटियां प्राप्त करना संभव है। हालाँकि, कई व्यावहारिक स्थितियों में, 10 प्रतिशत के क्रम में त्रुटियों की संभावना होती है <ref name=Kostkowski/>भौतिक माप लेते समय कई प्रकार की त्रुटियाँ होती हैं। माप की सटीकता के सीमित कारकों के रूप में उल्लेखित तीन बुनियादी प्रकार की त्रुटि यादृच्छिक, व्यवस्थित और आवधिक त्रुटियां हैं <ref name=Schnedier>Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf></ref>
प्रदत्त स्पेक्ट्रोरोमेट्रिक प्रणाली की गुणवत्ता इसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली आपूर्ति और अंशांकन का एक अधिनियम है। आदर्श प्रयोगशाला परिस्थितियों और उच्च प्रशिक्षित विशेषज्ञों के साथ, छोटे (कुछ 10 से कुछ प्रतिशत) त्रुटियों को प्राप्त करना संभव है। हालांकि, कई व्यावहारिक स्थितियों में, त्रुटियाँ 10 प्रतिशत के क्रम में होने की संभावना है।<ref name=Kostkowski/> माप सटीकता के सीमित कारकों के रूप में नोट की गई तीन मूलभूत प्रकार की त्रुटि यादृच्छिक, व्यवस्थित और आवधिक त्रुटियों हैं।<ref name=Schnedier>Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf></ref>
* यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के मामले में, इसे डिटेक्टर, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से शोर के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
* व्यवस्थित त्रुटियां अनुमानित सही मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां आम तौर पर इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, आवारा प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
* आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।<ref name=Schnedier/>


त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्रोरेडियोमेट्री में त्रुटि के कुछ अधिक विशिष्ट कारणों में शामिल हैं:
* यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के स्तिथि में, इसे संसूचक, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से रव के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
* व्यवस्थित त्रुटियां अनुमानित "सही" मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां सामान्यतः इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, अवांछित प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
* आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।<ref name="Schnedier" />


* माप की बहुआयामीता। आउटपुट सिग्नल कई कारकों पर निर्भर है, जिसमें मापा प्रवाह की परिमाण, इसकी दिशा, इसका ध्रुवीकरण और इसकी तरंग दैर्ध्य वितरण शामिल है।
त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्राएडॉमी में कुछ और विशिष्ट कारण हैं:
* मापने के उपकरणों की अशुद्धि, साथ ही उक्त उपकरणों को कैलिब्रेट करने के लिए उपयोग किए जाने वाले मानक, संपूर्ण माप प्रक्रिया के दौरान एक बड़ी त्रुटि बनाने के लिए कैस्केड किए गए, और
* बहुआयामी और उपकरण अस्थिरता त्रुटि को कम करने के लिए मालिकाना तकनीक।<ref name= Kostkowski />
 
गामा-वैज्ञानिक, प्रकाश माप उपकरणों के एक कैलिफोर्निया स्थित निर्माता, सिस्टम अंशांकन, सॉफ्टवेयर और बिजली की आपूर्ति, प्रकाशिकी, या माप इंजन के कारण, उनके स्पेक्ट्रोरेडियोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध करता है।<ref>Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.</ref>


* माप की बहुलता आउटपुट संकेत कई कारकों पर निर्भर करता है, जिसमें प्रवाह की तीव्रता, इसकी दिशा, इसके ध्रुवीकरण और इसके तरंगदैर्घ्य वितरण सम्मिलित हैं।
* मापक उपकरणों की अशुद्धि, साथ ही कथित उपकरणों को कैलिब्रेट करने के लिए प्रयुक्त मानक, संपूर्ण मापन प्रक्रिया के दौरान एक बड़ी त्रुटि उत्पन्न करने के लिए कैस्केड थे, और
* युक्ति अस्थिरता त्रुटियों को न्यून करने के लिए बहुआयामी और स्वामित्व तकनीक।<ref name="Kostkowski" />


गामा-वैज्ञानिक, कैलिफोर्निया स्थित प्रकाश मापन उपकरण के निर्माता ने अपने स्पेक्ट्रोएडोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध किया है, जो या तो सिस्टम अंशांकन, सॉफ्टवेयर और बिजली आपूर्ति, प्रकाशिकी या स्व-मापन इंजन के कारण हैं।<ref>Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.</ref>
== परिभाषाएँ ==
== परिभाषाएँ ==
{{main|Stray light}}
{{main|अवांछित प्रकाश}}


=== आवारा प्रकाश ===
=== अवांछित प्रकाश ===
आवारा प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत डिटेक्टर तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या डिटेक्टर सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल सिग्नल से संबंधित नहीं है। यह प्रकाश के बिखरने और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च क्रम विवर्तन प्रभाव से आ सकता है। डिटेक्टर से पहले क्रम छँटाई फिल्टर स्थापित करके, दूसरे क्रम के प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से कम किया जा सकता है।
अवांछित प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत संसूचक तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या संसूचक सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल संकेत से संबंधित नहीं है। यह प्रकाश प्रकीर्णन और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च आदेश विवर्तन प्रभाव से आ सकता है। संसूचक से पहले क्रम वर्गीकरण निस्यंदक स्थापित करके, दूसरे ऑर्डर प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से न्यून किया जा सकता है।


ए सी डिटेक्टर दृश्यमान और एनआईआर के प्रति संवेदनशीलता लगभग यूवी रेंज की तुलना में परिमाण का एक बड़ा क्रम है। इसका मतलब यह है कि यूवी वर्णक्रमीय स्थिति में पिक्सेल अपने स्वयं के डिज़ाइन किए गए वर्णक्रमीय संकेत की तुलना में दृश्य और एनआईआर में आवारा प्रकाश का अधिक दृढ़ता से जवाब देते हैं। इसलिए, दृश्यमान और एनआईआर पिक्सेल की तुलना में यूवी क्षेत्र में आवारा प्रकाश प्रभाव बहुत अधिक महत्वपूर्ण हैं। यह स्थिति तरंगदैर्घ्य जितनी कम होती जाती है, उतनी ही खराब होती जाती है।
प्रदर्शित होने के लिए एक एसआई संकेतक की संवेदनशीलता और एनआईआर यूवी सीमा से अधिक परिमाण का एक क्रम है। अर्थात्, यूवी वर्णक्रमीय स्थिति पर पिक्सेल दृश्य प्रकाश और एनआईआर पर प्रतिक्रिया करते हैं जो उनके स्वचालित रूप से डिज़ाइन किए गए वर्णक्रमीय संकेत की तुलना में बहुत अधिक दृढ़ता से होते हैं। इसलिए, दृश्य और एनआईआर पिक्सेल की तुलना में यूवी क्षेत्र में विचलन प्रकाश प्रभाव अधिक महत्वपूर्ण हैं। यह स्थिति अल्प तरंगदैर्घ्य हो जाती है।


जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड लाइट को मापते हैं, तो कभी-कभी यूवी रेंज में आवारा प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि डिटेक्टर पिक्सेल पहले से ही स्रोत से पर्याप्त यूवी सिग्नल प्राप्त करने के लिए संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग करने वाले अंशांकन में 350 एनएम से नीचे बड़ी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना आवारा प्रकाश (वास्तविक यूवी प्रकाश के बजाय लंबी तरंग दैर्ध्य हमले) का परिणाम होती है।
जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड प्रकाश को मापते हैं, तो कभी-कभी यूवी सीमा में अवांछित प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि संसूचक पिक्सेल स्रोत से पर्याप्त यूवी संकेत प्राप्त करने के लिए पहले से ही संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग कर अंशांकन में 350 एनएम से नीचे भारी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना अवांछित प्रकाश (वास्तविक यूवी प्रकाश के '''बजाय''' लंबी तरंग दैर्ध्य धर्षण) का परिणाम है।


=== अंशांकन त्रुटियां ===
=== अंशांकन त्रुटियां ===
ऐसी कई कंपनियाँ हैं जो स्पेक्ट्रोमीटरों के लिए अंशांकन की पेशकश करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन करने के लिए एक पता लगाने योग्य, प्रमाणित प्रयोगशाला खोजना महत्वपूर्ण है। अंशांकन प्रमाणपत्र में उपयोग किए गए प्रकाश स्रोत (उदा: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (UVC, UVB, VIS..) के लिए अंशांकन की अनिश्चितता, nm में प्रत्येक तरंग दैर्ध्य, या पूर्ण स्पेक्ट्रम के लिए होना चाहिए। मापा। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर को भी सूचीबद्ध करना चाहिए।
कई कंपनियां हैं जो स्पेक्ट्रोमीटर के लिए अंशांकन की प्रस्तुत करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन के लिए एक संसूचित, प्रमाणित प्रयोगशाला खोजना महत्वपूर्ण है। अंशांकन प्रमाण पत्र में उपयोग किए जाने वाले प्रकाश स्रोत (उदाहरण: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (यूवीसी, यूवीबी, विस..), एनएम में प्रत्येक तरंग दैर्ध्य या पूर्ण स्पेक्ट्रम मापे गए स्पेक्ट्रम के लिए अंशांकन की अनिश्चितता को वर्णित किया जाना चाहिए। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर भी सूचीबद्ध करना चाहिए।


=== गलत सेटिंग्स ===
=== गलत विन्यास ===
एक कैमरे की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एक्सपोजर समय और एकत्र किए जाने वाले नमूनों की मात्रा का चयन करने की अनुमति देते हैं। एकीकरण समय और स्कैन की संख्या निर्धारित करना एक महत्वपूर्ण कदम है। एकीकरण का बहुत लंबा समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में यह एक बड़े सफेद धब्बे के रूप में दिखाई दे सकता है, जबकि स्पेक्ट्रोमीटर में यह डुबकी के रूप में दिखाई दे सकता है, या चोटी को काट सकता है) बहुत कम एकीकरण समय शोर के परिणाम उत्पन्न कर सकता है (कैमरा फोटो में यह एक अंधेरा होगा या धुंधला क्षेत्र, जहां एक स्पेक्ट्रोमीटर के रूप में यह नुकीला या अस्थिर रीडिंग दिखाई दे सकता है)।
कैमरा की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एकत्र किए जाने वाले नमूनों के एक्सपोजर समय और मात्रा का चयन करने की अनुमति देते हैं। एकीकरण का समय और स्कैन की संख्या एक महत्वपूर्ण कदम है। बहुत लंबे समय तक एकीकरण का समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में इसे एक बड़े सफेद पैच के रूप में देखा जा सकता है, जबकि स्पेक्ट्रोमीटर में इसे डिप के रूप में देखा जा सकता है, या शिखर को काटा जा सकता है) बहुत न्यून एकीकरण समय रव परिणाम उत्पन्न कर सकता है (एक कैमरा फोटो में यह एक अंधेरे या धुंधला क्षेत्र होगा, जबकि एक स्पेक्ट्रोमीटर में यह स्पाइक्स या अस्थिर रीडिंग देखा जा सकता है)।


एक्सपोजर समय वह समय है जब माप के दौरान प्रकाश संवेदक पर पड़ता है। इस पैरामीटर को समायोजित करने से उपकरण की समग्र संवेदनशीलता बदल जाती है, जैसा कि कैमरे के लिए एक्सपोजर समय बदलने से होता है। न्यूनतम एकीकरण समय न्यूनतम .5 मिसे और अधिकतम 10 मिनट प्रति स्कैन के साथ अलग-अलग होता है। प्रकाश की तीव्रता के आधार पर एक व्यावहारिक सेटिंग 3 से 999 एमएस की सीमा में है।
एक्सपोजर समय वह समय होता है जब मापन के दौरान संवेदक पर प्रकाश गिरता है। इस पैरामीटर को समायोजित करने से डिवाइस की समग्र संवेदनशीलता बदल जाती है, क्योंकि कैमरा के लिए एक्सपोजर समय बदलता है। न्यूनतम एकीकरण समय न्यूनतम 5 मिमी और अधिकतम 10 मिनट प्रति स्कैन के साथ भिन्न होता है। प्रकाश की तीव्रता पर आधारित एक व्यावहारिक सेटिंग 3 से 999 की सीमा में होती है।


एकीकरण समय को एक सिग्नल के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा S/N अनुपात प्राप्त करता है। (उदा: 60K काउंट या 16K काउंट क्रमशः)
एकीकरण समय को एक संकेत के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा एस/एन अनुपात प्राप्त करता है। (उदा: क्रमशः 60K गणना या 16K गणना)


स्कैन की संख्या इंगित करती है कि कितने मापों का औसत निकाला जाएगा। अन्य चीजें समान होने पर, एकत्रित स्पेक्ट्रा का सिग्नल-टू-शोर अनुपात (एसएनआर) औसतन स्कैन की संख्या एन के वर्गमूल से बेहतर होता है। उदाहरण के लिए, यदि 16 स्पेक्ट्रल स्कैन औसत हैं, तो एसएनआर एक स्कैन के मुकाबले 4 के कारक से बेहतर हो जाता है।
स्कैन की संख्या इंगित करती है कि कितने माप औसत किए जाएंगे। जब अन्य चीजें समान होती हैं, तो औसत पर स्कैन की संख्या n के वर्गमूल से बेहतर होती है. उदाहरण के लिए, यदि 16 वर्णक्रमीय स्कैन औसत हैं, तो एसएनआर 4 गुना अधिक स्कैन करता है।


एस/एन अनुपात इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने तक पहुंचता है। यह इस प्रकाश स्तर पर RMS (रूट मीन स्क्वायर) शोर के लिए सिग्नल काउंट Cs (आमतौर पर पूर्ण पैमाने पर) का अनुपात है। इस शोर में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस शामिल हैं जो इनपुट लाइट द्वारा उत्पन्न काउंट्स से संबंधित हैं और शोर को पढ़ते हैं। प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त होने वाला यह सबसे अच्छा एस/एन अनुपात है।
एस/एन अनुपात को इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने पर पहुंचता है। यह इस प्रकाश स्तर पर संकेत गणना (सामान्यतः पूर्ण पैमाने पर) से आरएमएस (रूट मीन स्क्वायर) रव का अनुपात है। इस रव में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस सम्मिलित है जो इनपुट प्रकाश द्वारा उत्पन्न गणना से संबंधित है और रव को पढ़ता है। यह प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त किया जा सकने वाला सर्वोत्तम एस/एन अनुपात है।


== यह कैसे काम करता है ==
== यह कैसे काम करता है ==


एक स्पेक्ट्रोरेडियोमेट्रिक प्रणाली के आवश्यक घटक इस प्रकार हैं:
स्पेक्ट्रोडायो-मेट्रिक प्रणाली के आवश्यक घटक इस प्रकार हैं:
 
* इनपुट प्रकाशिकी जो स्रोत से विद्युत चुम्बकीय विकिरण को इकट्ठा करते हैं (डिफ्यूज़र, लेंस, फाइबर ऑप्टिक लाइट गाइड)
* एक प्रवेश भट्ठा, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। अधिक रिज़ॉल्यूशन वाला एक छोटा स्लिट, लेकिन कम समग्र संवेदनशीलता
*द्वितीय क्रम के प्रभावों को कम करने के लिए क्रम छँटाई फिल्टर
*कोलिमेटर प्रकाश को झंझरी या प्रिज्म की ओर निर्देशित करता है
* प्रकाश के फैलाव के लिए एक झंझरी या प्रिज्म
* प्रकाश को डिटेक्टर पर संरेखित करने के लिए फ़ोकसिंग प्रकाशिकी
* एक डिटेक्टर, सीएमओएस सेंसर या सीसीडी सरणी
* डेटा को परिभाषित करने और इसे स्टोर करने के लिए एक नियंत्रण और लॉगिंग सिस्टम।<ref name=Bentham>Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf></ref>


* इनपुट ऑप्टिक्स जो स्रोत (विजर, लेंस, फाइबर ऑप्टिक प्रकाश गाइड) से विद्युत चुम्बकीय विकिरण एकत्र करता है।
* गेटवे स्लिट, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। छोटे स्लिट में अधिक रिज़ॉल्यूशन होता है, लेकिन समग्र संवेदनशीलता न्यून होती है।
* दूसरे क्रम के प्रभावों को न्यून करने के लिए ऑर्डर सॉर्टिंग (श्रेणीकरण) फिल्टर का उपयोग करते हैं।
* समांतरित्र प्रकाश को झंझरी या प्रिज्म की ओर निर्देशित करता है।
* प्रकाश के विक्षेपण के लिए झंझरी या प्रिज्म उपयुक्त है।
* प्रकाश को संसूचक पर संरेखित करने के लिए संगमन प्रकाशिकी का प्रयोग किया जाता है।
* संसूचक, सीएमओएस नियंत्रक या सीसीडी पद्धति होती है।  
* डेटा को परिभाषित करने और इसे संग्रहीत करने के लिए एक नियंत्रण और लॉगिंग प्रणाली है।<ref name="Bentham">Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf></ref><br />


=== इनपुट प्रकाशिकी ===
=== इनपुट प्रकाशिकी ===


स्पेक्ट्रोमाडोमीटर के फ्रंट-एंड प्रकाशिकी में लेंस, डिफ्यूज़र और फ़िल्टर शामिल होते हैं जो प्रकाश को संशोधित करते हैं क्योंकि यह पहली बार सिस्टम में प्रवेश करता है। रेडियंस के लिए एक संकीर्ण दृश्य क्षेत्र के साथ एक ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। विकिरण कोसाइन सुधार प्रकाशिकी के लिए आवश्यक हैं। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार का प्रकाश मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, सटीक यूवी माप सुनिश्चित करने के लिए अक्सर ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफ्यूज़र, और बेरियम सल्फेट लेपित एकीकृत क्षेत्रों के बजाय क्वार्ट्ज का उपयोग किया जाता है।<ref name=Bentham/>
स्पेक्ट्रोमापी के फ्रंट-एंड ऑप्टिक्स में लेंस, डिफ्यूजर्स और फिल्टर सम्मिलित हैं जो पहली बार सिस्टम में प्रवेश करने के बाद प्रकाश को संशोधित करते हैं। रेडियंस को एक संकीर्ण दृश्य क्षेत्र के साथ ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। विकिरण कोसाइन संशोधन के लिए प्रकाशिकी की आवश्यकता होती है। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार के प्रकाश को मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, क्वार्ट्ज का उपयोग प्रायः ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफसर्स और बेरियम सल्फेट युक्त एकीकृत पर्याप्तता के प्रति किया जाता है।<ref name=Bentham/>
=== एकवर्णक ===
{{main|एकवर्णक}}


[[Image:Czerny-Turner_Monochromator.svg|thumb|200px|ज़ेर्नी-टर्नर एकवर्णक का आरेख।]]स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, लैंप की स्पेक्ट्रम प्रतिक्रिया बनाने के लिए प्रत्येक तरंगदैर्घ्य पर ध्वनिक प्रकाश की आवश्यकता होगी। मोनोलिथिक का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से ध्वनिक संकेत उत्पन्न करता है। यह अनिवार्य रूप से चर फिल्टर है जो एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को मापी गई प्रकाश के पूर्ण स्पेक्ट्रम से अलग करता है और उस क्षेत्र के बाहर गिरने वाली किसी भी प्रकाश को बाहर निकालता है।<ref name=AAS>American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <{{cite web |url=http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |title=Study Notes: AAS Monochromator |access-date=2013-12-11 |url-status=dead |archive-url=https://archive.today/20131211054338/http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |archive-date=2013-12-11 }}>.</ref>


=== मोनोक्रोमेटर ===
विशिष्ट ध्वनिक इसे तरंग दैर्ध्य-स्थिर तत्व के उपयोग के माध्यम से प्राप्त करता है जैसे प्रवेश और निकास स्लेट, संवैधानिक और फोकस ऑप्टिक्स, और विवर्तन डायाफ्राम या प्रिज्म।<ref name=Schnedier/> आधुनिक अकॉस्टिक्स टैनरीज़ के साथ बनते हैं, और टेक्टन डिसेंटरी का उपयोग लगभग विशेष रूप से स्पेक्ट्रोएडिम्रिक अनुप्रयोगों में किया जाता है। उनकी बहुमुखी प्रतिभा, न्यून आकलन, व्यापक तरंगदैर्घ्य रेंज, न्यून लागत और अधिक निरंतर प्रसार बेहतर हैं।<ref name=AAS/> दोहरे मोनोक्रोमेटर्स का उपयोग अनुप्रयोग के आधार पर किया जा सकता है, जिसमें दोहरे मोनोक्रोमेटर्स सामान्यतः अतिरिक्त प्रसार और झंझरी के बीच गतिरोघक के कारण अधिक सटीकता प्रदान करते हैं।<ref name=Bentham/>
{{main|monochromator}}


[[Image:Czerny-Turner_Monochromator.svg|thumb|200px|ज़ेर्नी-टर्नर मोनोक्रोमेटर का आरेख।]]किसी स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, प्रत्येक तरंग दैर्ध्य पर मोनोक्रोमैटिक प्रकाश की आवश्यकता होगी ताकि प्रदीपक की एक स्पेक्ट्रम प्रतिक्रिया तैयार की जा सके। एक मोनोक्रोमेटर का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से एक मोनोक्रोमैटिक सिग्नल उत्पन्न करता है। यह अनिवार्य रूप से एक चर फिल्टर है, जो मापा प्रकाश के पूर्ण स्पेक्ट्रम से एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को चुनिंदा रूप से अलग और प्रसारित करता है और उस क्षेत्र के बाहर आने वाले किसी भी प्रकाश को बाहर करता है।<ref name=AAS>American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <{{cite web |url=http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |title=Study Notes: AAS Monochromator |access-date=2013-12-11 |url-status=dead |archive-url=https://archive.today/20131211054338/http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |archive-date=2013-12-11 }}>.</ref>
=== संसूचक ===
एक विशिष्ट मोनोक्रोमेटर इसे प्रवेश और निकास स्लिट्स, कोलाइमेटिंग और फोकस प्रकाशिकी, और तरंग दैर्ध्य-फैलाने वाले तत्व जैसे विवर्तन झंझरी या प्रिज्म के उपयोग के माध्यम से प्राप्त करता है।<ref name=Schnedier/>आधुनिक मोनोक्रोमेटर्स विवर्तन झंझरी के साथ निर्मित होते हैं, और विवर्तन झंझरी का उपयोग लगभग विशेष रूप से स्पेक्ट्रोरेडियोमेट्रिक अनुप्रयोगों में किया जाता है। विवर्तन झंझरी उनकी बहुमुखी प्रतिभा, कम क्षीणन, व्यापक तरंग दैर्ध्य रेंज, कम लागत और अधिक निरंतर फैलाव के कारण बेहतर हैं।<ref name=AAS/>सिंगल या डबल मोनोक्रोमेटर्स का उपयोग अनुप्रयोग के आधार पर किया जा सकता है, डबल मोनोक्रोमेटर्स आमतौर पर अतिरिक्त फैलाव और झंझरी के बीच चकरा देने के कारण अधिक सटीकता प्रदान करते हैं।<ref name=Bentham/>
[[File:Pmside.jpg|thumb|upright=0.4|फोटोमल्टीप्लायर]]स्पेक्ट्रोराडीमीटर में उपयोग किया जाने वाला संसूचक तरंग दैर्ध्य द्वारा निर्धारित किया जाता है जिस पर प्रकाश को मापा जा रहा है, साथ ही साथ माप की आवश्यक गतिशील सीमा और संवेदनशीलता। मूल स्पेक्ट्रोमापी संसूचक प्रौद्योगिकी सामान्यतः तीन समूहों में से एक में आती है: फोटोमाइसेसिव संसूचक (जैसे फोटो एमिसिव संसूचक)। फोटोमल्टीप्लायर ट्यूब), अर्धचालक उपकरण (जैसे कि सिलिकॉन) या थर्मल संसूचक (जैसे कि थर्मल संसूचक) थर्मोपाइल।<ref>Ready, Jack. "Optical Detectors and Human Vision." Fundamentals of Photonics (n.d.): n. pag. SPIE. Web. <http://spie.org/Documents/Publications/00%20STEP%20Module%2006.pdf>.</ref>


 
किसी दिए गए संसूचक की वर्णक्रमीय प्रतिक्रिया उसकी मूल सामग्री द्वारा निर्धारित की जाती है। उदाहरण के लिए, फोटोमल्टीप्लायर ट्यूबों में पाए जाने वाले फोटोकैथोड कुछ तत्वों से बनाए जा सकते हैं जो सौर-ब्लिंद होते हैं - यूवी के लिए संवेदनशील और दृश्य या आईआर में प्रकाश के लिए अक्रियाशील होते हैं।<ref>J. W. Campbell, "Developmental Solar Blind Photomultipliers Suitable for Use in the 1450–2800-Å Region," Appl. Opt. 10, 1232-1240 (1971)  
=== डिटेक्टर ===
[[File:Pmside.jpg|thumb|upright=0.4|फोटोमल्टीप्लायर]]एक स्पेक्ट्रोरेडियोमीटर में प्रयुक्त डिटेक्टर तरंग दैर्ध्य द्वारा निर्धारित किया जाता है जिस पर प्रकाश को मापा जा रहा है, साथ ही आवश्यक गतिशील रेंज और माप की संवेदनशीलता। बेसिक स्पेक्ट्रोरेडियोमीटर डिटेक्टर प्रौद्योगिकियां आमतौर पर तीन समूहों में से एक में आती हैं: फोटोमिसिव डिटेक्टर (जैसे [[फोटोमल्टीप्लायर]] ट्यूब), सेमीकंडक्टर डिवाइस (जैसे सिलिकॉन), या थर्मल डिटेक्टर (जैसे थर्मोपाइल)।<ref>Ready, Jack. "Optical Detectors and Human Vision." Fundamentals of Photonics (n.d.): n. pag. SPIE. Web. <http://spie.org/Documents/Publications/00%20STEP%20Module%2006.pdf>.</ref>
किसी दिए गए डिटेक्टर की वर्णक्रमीय प्रतिक्रिया इसकी मूल सामग्री द्वारा निर्धारित की जाती है। उदाहरण के लिए, फोटोमल्टीप्लायर ट्यूबों में पाए जाने वाले फोटोकैथोड्स को कुछ तत्वों से [[ सौर-अंधा तकनीक ]] के लिए निर्मित किया जा सकता है। सोलर-ब्लाइंड - यूवी के प्रति संवेदनशील और दृश्यमान या आईआर में प्रकाश के प्रति गैर-प्रतिक्रियाशील।<ref>J. W. Campbell, "Developmental Solar Blind Photomultipliers Suitable for Use in the 1450–2800-Å Region," Appl. Opt. 10, 1232-1240 (1971)  
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-10-6-1232</ref>
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-10-6-1232</ref>
सीसीडी (चार्ज कपल्ड डिवाइस) सरणियाँ आमतौर पर हजारों या लाखों अलग-अलग डिटेक्टर तत्वों (पिक्सेल के रूप में भी जाना जाता है) और सीएमओएस सेंसर के एक आयामी (रैखिक) या दो आयामी (क्षेत्र) सरणियाँ हैं। इनमें एक सिलिकॉन या InGaAs आधारित मल्टीचैनल ऐरे डिटेक्टर शामिल है जो यूवी, दृश्यमान और निकट-इन्फ्रा लाइट को मापने में सक्षम है।
CMOS (पूरक धातु ऑक्साइड सेमीकंडक्टर) सेंसर एक CCD से भिन्न होते हैं जिसमें वे प्रत्येक फोटोडायोड में एक एम्पलीफायर जोड़ते हैं। इसे एक सक्रिय पिक्सेल सेंसर कहा जाता है क्योंकि एम्पलीफायर पिक्सेल का हिस्सा होता है। ट्रांजिस्टर स्विच प्रत्येक फोटोडायोड को रीडआउट के समय इंट्रापिक्सल एम्पलीफायर से जोड़ता है।
=== नियंत्रण और लॉगिंग सिस्टम ===


लॉगिंग सिस्टम अक्सर केवल एक पर्सनल कंप्यूटर होता है। प्रारंभिक सिग्नल प्रोसेसिंग में, सिग्नल को अक्सर नियंत्रण प्रणाली के उपयोग के लिए प्रवर्धित और परिवर्तित करने की आवश्यकता होती है। वांछित मेट्रिक्स और सुविधाओं का उपयोग सुनिश्चित करने के लिए मोनोक्रोमेटर, डिटेक्टर आउटपुट और कंप्यूटर के बीच संचार की लाइनों को अनुकूलित किया जाना चाहिए।<ref name=Bentham/>स्पेक्ट्रोरेडियोमेट्रिक सिस्टम के साथ शामिल वाणिज्यिक रूप से उपलब्ध सॉफ़्टवेयर अक्सर माप की आगे की गणना के लिए उपयोगी संदर्भ कार्यों के साथ संग्रहीत होते हैं, जैसे सीआईई रंग मिलान कार्य और वी<math>\lambda</math> वक्र।<ref>Apogee Instruments. Spectroradiometer PS-100 (350 - 1000 Nm), PS-200 (300 - 800 Nm), PS-300 (300 - 1000 Nm). N.p.: Apogee Instruments, n.d. Apogee Instruments Spectroradiometer Manual. Web. <http://www.apogeeinstruments.com/content/PS-100_200_300manual.pdf>.</ref>
'''सीसीडी (आवेश युग्मित उपकरण)''' सरणियाँ सामान्यतः हजारों या लाखों अलग-अलग संसूचक तत्वों (पिक्सेल के रूप में भी जाना जाता है) और सीएमओएस संवेदक के एक आयामी (रैखिक) या दो आयामी (क्षेत्र) सरणियाँ हैं। इनमें सिलिकॉन या इंगास आधारित मल्टीचैनल ऐरे संसूचक सम्मिलित है जो यूवी, दृश्यमान और निकट-इन्फ्रा प्रकाश को मापने में सक्षम है।


'''सीएमओएस (पूरक धातु ऑक्साइड अर्धचालक)''' संवेदक सीसीडी से भिन्न होते हैं जिसमें वे प्रत्येक फोटोडायोड में प्रवर्धक जोड़ते हैं। इसे एक सक्रिय पिक्सेल संवेदक कहा जाता है क्योंकि प्रवर्धक पिक्सेल का हिस्सा है। ट्रांजिस्टर स्विच रीडआउट के समय प्रत्येक फोटोडायोड को इंट्रापिक्सल प्रवर्धक से जोड़ते हैं।
=== नियंत्रण और लॉगिंग प्रणाली ===


लॉगिंग प्रणाली प्रायः व्यक्तिगत कंप्यूटर होता है। प्रारंभिक संकेत प्रसंस्करण में, संकेत को प्रायः प्रवर्धन और नियंत्रण प्रणाली के साथ उपयोग के लिए परिवर्तित करने की आवश्यकता होती है। मोनोक्रोमेटर, संसूचक आउटपुट और कंप्यूटर के बीच संचार की लाइनों को अनुकूलित किया जाना चाहिए ताकि वांछित मीट्रिक और सुविधाओं का उपयोग सुनिश्चित किया जा रहा है।<ref name=Bentham/> व्यावसायिक रूप से उपलब्ध सॉफ्टवेयर में सम्मिलित स्पेक्ट्रोडायमेट्रिक प्रणाली प्रायः आगे के माप की गणना के लिए उपयोगी संदर्भ कार्यों के साथ संग्रहीत किया जाता है, जैसे सीआईई रंग मिलान फंक्शन और V<math>\lambda</math> '''वक्र।'''<ref>Apogee Instruments. Spectroradiometer PS-100 (350 - 1000 Nm), PS-200 (300 - 800 Nm), PS-300 (300 - 1000 Nm). N.p.: Apogee Instruments, n.d. Apogee Instruments Spectroradiometer Manual. Web. <http://www.apogeeinstruments.com/content/PS-100_200_300manual.pdf>.</ref>
== अनुप्रयोग ==
== अनुप्रयोग ==


स्पेक्ट्रोमाडोमीटर का उपयोग कई अनुप्रयोगों में किया जाता है, और इसे विभिन्न प्रकार की विशिष्टताओं को पूरा करने के लिए बनाया जा सकता है। उदाहरण अनुप्रयोगों में शामिल हैं:
स्पेक्ट्रोरेडियोमीटर का उपयोग कई अनुप्रयोगों में किया जाता है, और इसे विभिन्न प्रकार के विनिर्देशों को पूरा करने के लिए बनाया जा सकता है। उदाहरण अनुप्रयोगों में सम्मिलित हैं:


* सौर यूवी और यूवीबी विकिरण
* सौर यूवी और यूवीबी विकिरण
Line 111: Line 105:
* प्रदर्शन माप और अंशांकन
* प्रदर्शन माप और अंशांकन
* सीएफएल परीक्षण
* सीएफएल परीक्षण
* ऑयल स्लिक्स का रिमोट डिटेक्शन<ref>Mattson, James S., Harry B. Mark Jr., Arnold Prostak, and Clarence E. Schutt. Potential Application of an Infrared Spectroradiometer for Remote Detection and Identification of Oil Slicks on Water. Tech. 5th ed. Vol. 5. N.p.: n.p., 1971. Print. Retrieved from <http://pubs.acs.org/doi/pdf/10.1021/es60052a004></ref>
* ऑयल स्लिक्स का रिमोट डिटेक्शन <ref>Mattson, James S., Harry B. Mark Jr., Arnold Prostak, and Clarence E. Schutt. Potential Application of an Infrared Spectroradiometer for Remote Detection and Identification of Oil Slicks on Water. Tech. 5th ed. Vol. 5. N.p.: n.p., 1971. Print. Retrieved from <http://pubs.acs.org/doi/pdf/10.1021/es60052a004></ref>
संयंत्र अनुसंधान और विकास <ref>McFarland, M and Kaye, J (1992) Chlorofluorocarbons and Ozone. Photochem. Photobiol. 55 (6) 911-929.</ref>
 
 
== DIY बनाता है ==
तरंग दैर्ध्य को कैलिब्रेट करने के लिए एक सीएफएल लैंप का उपयोग करके, एक ऑप्टिकल डिस्क झंझरी और एक बुनियादी वेब कैमरा का उपयोग करके एक बुनियादी ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण संभव है।<ref>{{cite magazine |title=DIY स्पेक्ट्रोमीटर|url=https://www.wired.com/2012/07/diy-spectrometer/ |magazine=Wired |language=en-us}}</ref> ज्ञात स्पेक्ट्रम के स्रोत का उपयोग कर एक अंशांकन फिर फोटो पिक्सेल की चमक की व्याख्या करके स्पेक्ट्रोमीटर को स्पेक्ट्रोरेडियोमीटर में बदल सकता है।<ref>{{cite web |title=PLab 3 Gain Correction |url=https://publiclab.org/notes/stoft/03-06-2015/plab-3-gain-correction |website=[[Public Lab]]}}</ref> फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से एक DIY बिल्ड प्रभावित होता है: फोटोग्राफिक शोर ([[डार्क फ्रेम घटाव]] की आवश्यकता होती है) और सीसीडी-टू-फोटोग्राफ रूपांतरण में गैर-रैखिकता (संभवतः कच्चे छवि प्रारूप द्वारा हल)।<ref>{{cite web |title=शोर में कमी|url=https://jethomson.wordpress.com/spectrometer-articles/noise-reduction/ |website=Jonathan Thomson's web journal |language=en |date=26 October 2010}}</ref>


संयंत्र अनुसंधान और विकास<ref>McFarland, M and Kaye, J (1992) Chlorofluorocarbons and Ozone. Photochem. Photobiol. 55 (6) 911-929.</ref>


== डीआईवाई निर्माण ==
ऑप्टिकल डिस्क ग्रैटिंग और मूलभूत वेबकैम का उपयोग करके एक मूलभूत ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण करना संभव है, जो तरंग दैर्ध्य को मापने के लिए एक सीएफएल लैंप का उपयोग करता है।<ref>{{cite magazine |title=DIY स्पेक्ट्रोमीटर|url=https://www.wired.com/2012/07/diy-spectrometer/ |magazine=Wired |language=en-us}}</ref> ज्ञात स्पेक्ट्रम के स्रोत का उपयोग करके एक अंशांकन फिर फोटो पिक्सेल की चमक की व्याख्या करके स्पेक्ट्रोमाइडोमीटर में बदल सकता है।<ref>{{cite web |title=PLab 3 Gain Correction |url=https://publiclab.org/notes/stoft/03-06-2015/plab-3-gain-correction |website=[[Public Lab]]}}</ref> डीआईवाई बिल्ड फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से प्रभावित होता है: फोटोग्राफिक रव (काले फ्रेम घटाव की आवश्यकता होती है) और सीसीडी-टू-फोटोग्राफ रूपांतरण में अरेखीय (संभवतः एक रॉ इमेज प्रारूप द्वारा हल) आदि।<ref>{{cite web |title=शोर में कमी|url=https://jethomson.wordpress.com/spectrometer-articles/noise-reduction/ |website=Jonathan Thomson's web journal |language=en |date=26 October 2010}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[रेडियोमीटर]]
* [[रेडियोमीटर]]
Line 132: Line 124:
* [https://www.intl-lighttech.com/basic-light-measurement-principles-chapter-6-light-measurement-tutorial Basic Light Measurement Principles] An article from International Light Technologies on basic principles
* [https://www.intl-lighttech.com/basic-light-measurement-principles-chapter-6-light-measurement-tutorial Basic Light Measurement Principles] An article from International Light Technologies on basic principles
*[https://www.lisungroup.com/products/spectroradiometer/ Spectroradiometer types]
*[https://www.lisungroup.com/products/spectroradiometer/ Spectroradiometer types]
[[Category: विद्युत चुम्बकीय विकिरण मीटर]] [[Category: स्पेक्ट्रोस्कोपी]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Citation Style 1 templates|M]]
[[Category:Collapse templates]]
[[Category:Created On 09/06/2023]]
[[Category:Created On 09/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite magazine]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite magazine]]
[[Category:Wikipedia metatemplates]]
[[Category:विद्युत चुम्बकीय विकिरण मीटर]]
[[Category:स्पेक्ट्रोस्कोपी]]

Latest revision as of 11:10, 1 July 2023

स्पेक्ट्रोरेडियोमीटर एक प्रकाश मापन उपकरण है जो प्रकाश स्रोत से उत्सर्जित तरंग दैर्घ्य और प्रकाश के आयामों को मापने में सक्षम है। स्पेक्ट्रोमीटर खोज सरणी पर प्रकाश विस्तार की स्थिति के आधार पर तरंगदैर्घ्य का उपाय करते हैं ताकि एकल अधिग्रहण के साथ पूर्ण स्पेक्ट्रम प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में एक आधार मापन होता है जो एक विभेदक रीडिंग होता है और इस प्रकार प्रत्येक तरंगदैर्घ्य पर संसूचक की संवेदनशीलता को प्रभावित करता है। अंशांकन प्रयुक्त करने के द्वारा, स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर विकिरण, वर्णक्रमीय विकिरण और / या वर्णक्रमीय प्रवाह को मापने में सक्षम है। इस डेटा का उपयोग तब निर्मित या पीसी सॉफ्टवेयर और कई कलन विधि के साथ भी किया जाता है जो रीडिंग या प्रकाश-विकिरण (वाट प्रति वर्ग सेंटीमीटर) उपलब्ध कराने के लिए रीडिंग या प्रकाश-विकिरण (वाट प्रति वर्ग सेंटीमीटर), प्रदीप्‍ति घनत्व (डब्ल्यू/एसआर), ल्यूमन्स (सीडी), प्रवाह (ल्यूमन्स या वाट), वार्णिकता, रंग तापमान, श्रंग और प्रमुख तरंग दैर्घ्य उत्त्पन करते हैं। कुछ अधिक जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर पैकेज भी प्रकाश संश्लेषक रूप से सक्रिय विकिरण (पीएआर) μएमओएल/एम2/एस (μmol/m2/s) की गणना की अनुमति देते हैं, दूरस्थता के आधार पर मेटामेरिज्म (विखंडावस्था), और कैंडेला गणना 2- और 20 डिग्री पर्यवेक्षक की तरह, आधारभूत उपरिशायी तुलना, संचरण और परावर्तन जैसी विशेषताएं सम्मिलित हैं।

कई समूहों और आकारों में स्पेक्ट्रोमीटर उपलब्ध हैं जो कई तरंग दैर्ध्य को कवर करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्घ्य सीमा न केवल स्क्रैट्स डिफ्यूजन क्षमता द्वारा बल्कि संसूचकों की संवेदनशीलता सीमा द्वारा भी निर्धारित की जाती है। सिलिकॉन-आधारित संसूचक लिमिटेड अर्धचालक बैंड अंतर द्वारा 200-1100 एनएम का उत्तर देता है, जबकि गैस-आधारित संसूचक 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के लिए संवेदनशील है।

प्रयोगशाला/शोध स्पेक्ट्रमीटर प्रायः यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरणित करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें शीतलन प्रणाली चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, ब्रॉडबैंड प्रणाली में कुछ और सामान्य त्रुटियाँ जैसे प्रकाश और संवेदनशीलता की त्रुटि को अन्य प्रणाली में जोड़ा जा सकता है ताकि बेहतर उपाय की अनुमति दी जा सके।

संवहन उपकरण एनआईआर को यूवी आवरण करने वाली कई वर्णमाला श्रेणियों के लिए भी उपलब्ध है और कई विभिन्न संकुल शैलियों और आकार प्रस्तुत करता है।एकीकृत डिस्प्ले हैंडहेल्ड सिस्टम में सामान्यतः प्रकाशिकी और प्री-प्रोग्रामेड सॉफ्टवेयर के साथ ऑन-बोर्ड कंप्यूटर होते हैं। मिनी स्पेक्ट्रोमीटर का उपयोग हाथ या प्रयोगशाला में भी किया जा सकता है क्योंकि वे एक पीसी द्वारा संचालित और नियंत्रित होते हैं और एक यूएसबी केबल की आवश्यकता होती है। इनपुट प्रकाशिकी को सम्मिलित किया जा सकता है या सामान्यतः एक फाइबर ऑप्टिक प्रकाश गाइड द्वारा संलग्न किया जाता है। छोटे माइक्रो स्पेक्ट्रोमीटर भी होते हैं जिन्हें एक सिस्टम में एकीकृत किया जा सकता है, या अकेले उपयोग किया जा सकता है।

पृष्ठभूमि

स्पेक्ट्रोरेडियोमेट्री का क्षेत्र संकीर्ण तरंग दैर्ध्य अंतरालों में पूर्ण रेडियोमेट्रिक मात्राओं के मापन से संबंधित है।[1] संकीर्ण बैंडविड्थ और तरंग दैर्ध्य वृद्धि के साथ स्पेक्ट्रम का नमूना लेना उपयोगी होता है क्योंकि कई स्रोतों में रेखा संरचनाएं होती हैं [2] स्पेक्ट्रोरेडियोमेट्री में प्रायः, वर्णक्रमीय विकिरण वांछित माप होता है। अभ्यास में औसत वर्णक्रमीय विकिरण को मापा जाता है, जिसे गणितीय रूप से सन्निकटन के रूप में दिखाया जाता है:

जहाँ वर्णक्रमीय विकिरण है, स्रोत का दीप्तिमान प्रवाह है (एसआई इकाई: वाट, डब्ल्यू) तरंग दैर्ध्य अंतराल (एसआई इकाई: मीटर, एम) के भीतर, सतह क्षेत्र पर घटना, (एसआई इकाई: वर्ग मीटर, मी2)। स्पेक्ट्रल विकिरण के लिए एसआई इकाई डब्ल्यू/एम3 है। हालांकि यह प्रायः नैनोमीटर में सेंटीमीटर और तरंग दैर्ध्य के स्तिथि में क्षेत्र को मापने के लिए अधिक उपयोगी होता है, इस प्रकार वर्णक्रमीय विकिरण की एसआई इकाइयों के उप-गुणकों का उपयोग किया जाएगा, उदाहरण के लिए μW/cm2*nm[3]

वर्णक्रमीय विकिरण सामान्य रूप से सतह पर बिंदु से बिंदु तक भिन्न होता है। व्यवहार में, यह ध्यान रखना महत्वपूर्ण है कि रेडिएंट फ्लक्स किस तरह से दिशा के साथ बदलता है, सतह पर प्रत्येक बिंदु पर स्रोत द्वारा उपशीर्षित ठोस कोण का आकार और सतह के उन्मुखीकरण। इन विचारों को देखते हुए, इन निर्भरताओं [3] के हिसाब से समीकरण के अधिक दृढ़ रूप का उपयोग करना प्रायः अधिक विवेकपूर्ण होता है[3]

ध्यान दें कि उपसर्ग "स्पेक्ट्रल" को "वर्णक्रमीय एकाग्रता" वाक्यांश के संक्षिप्त नाम के रूप में समझा जाना है जिसे सीआईई द्वारा समझा और परिभाषित किया गया है। "राडोमेट्रिक मात्रा के भागफल को किसी दिए गए तरंग दैर्ध्य के दोनों ओर, सीमा के अनुसार एक असीम सीमा पर लिया जाता है"।[4]

वर्णक्रमीय विद्युत वितरण

एक स्रोत का वर्णक्रमीय विद्युत वितरण (एसपीडी) बताता है कि किसी विशेष तरंग दैर्ध्य और क्षेत्र में कितना प्रवाह संवेदक तक पहुंचता है। यह रेडियोमीट्रिक मात्रा को प्रभावी ढंग से मापा जा रहा प्रति दिन योगदान का प्रतिनिधित्व करता है। स्रोत का एसपीडी सामान्यतः एसपीडी वक्र के रूप में दिखाया जाता है। एसपीडी वक्र प्रकाश स्रोत की रंग विशेषताओं का एक दृश्य प्रतिनिधित्व प्रदान करता है, जो दृश्य स्पेक्ट्रम में विभिन्न तरंग दैर्ध्य पर स्रोत द्वारा उत्सर्जित उज्ज्वल प्रवाह को दिखाता है,[5] एक मीट्रिक भी है जिसके द्वारा हम प्रकाश स्रोत के रंगों को प्रस्तुत करने की क्षमता का मूल्यांकन कर सकते हैं, अर्थात्, क्या एक निश्चित रंग उत्तेजना को किसी दिए गए प्रकाश के तहत उचित रूप से प्रस्तुत किया जा सकता है।

तापदीप्त प्रकाश बल्ब (बाएं) और एक फ्लोरोसेंट लैंप (दाएं) के लिए विशेषता वर्णक्रमीय बिजली वितरण (एसपीडी)। क्षैतिज अक्ष नैनोमीटर में हैं और ऊर्ध्वाधर अक्ष मनमाना इकाइयों में सापेक्ष तीव्रता दिखाते हैं।

त्रुटि के स्रोत

प्रदत्त स्पेक्ट्रोरोमेट्रिक प्रणाली की गुणवत्ता इसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली आपूर्ति और अंशांकन का एक अधिनियम है। आदर्श प्रयोगशाला परिस्थितियों और उच्च प्रशिक्षित विशेषज्ञों के साथ, छोटे (कुछ 10 से कुछ प्रतिशत) त्रुटियों को प्राप्त करना संभव है। हालांकि, कई व्यावहारिक स्थितियों में, त्रुटियाँ 10 प्रतिशत के क्रम में होने की संभावना है।[3] माप सटीकता के सीमित कारकों के रूप में नोट की गई तीन मूलभूत प्रकार की त्रुटि यादृच्छिक, व्यवस्थित और आवधिक त्रुटियों हैं।[6]

  • यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के स्तिथि में, इसे संसूचक, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से रव के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
  • व्यवस्थित त्रुटियां अनुमानित "सही" मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां सामान्यतः इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, अवांछित प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
  • आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।[6]

त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्राएडॉमी में कुछ और विशिष्ट कारण हैं:

  • माप की बहुलता आउटपुट संकेत कई कारकों पर निर्भर करता है, जिसमें प्रवाह की तीव्रता, इसकी दिशा, इसके ध्रुवीकरण और इसके तरंगदैर्घ्य वितरण सम्मिलित हैं।
  • मापक उपकरणों की अशुद्धि, साथ ही कथित उपकरणों को कैलिब्रेट करने के लिए प्रयुक्त मानक, संपूर्ण मापन प्रक्रिया के दौरान एक बड़ी त्रुटि उत्पन्न करने के लिए कैस्केड थे, और
  • युक्ति अस्थिरता त्रुटियों को न्यून करने के लिए बहुआयामी और स्वामित्व तकनीक।[3]

गामा-वैज्ञानिक, कैलिफोर्निया स्थित प्रकाश मापन उपकरण के निर्माता ने अपने स्पेक्ट्रोएडोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध किया है, जो या तो सिस्टम अंशांकन, सॉफ्टवेयर और बिजली आपूर्ति, प्रकाशिकी या स्व-मापन इंजन के कारण हैं।[7]

परिभाषाएँ

अवांछित प्रकाश

अवांछित प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत संसूचक तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या संसूचक सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल संकेत से संबंधित नहीं है। यह प्रकाश प्रकीर्णन और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च आदेश विवर्तन प्रभाव से आ सकता है। संसूचक से पहले क्रम वर्गीकरण निस्यंदक स्थापित करके, दूसरे ऑर्डर प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से न्यून किया जा सकता है।

प्रदर्शित होने के लिए एक एसआई संकेतक की संवेदनशीलता और एनआईआर यूवी सीमा से अधिक परिमाण का एक क्रम है। अर्थात्, यूवी वर्णक्रमीय स्थिति पर पिक्सेल दृश्य प्रकाश और एनआईआर पर प्रतिक्रिया करते हैं जो उनके स्वचालित रूप से डिज़ाइन किए गए वर्णक्रमीय संकेत की तुलना में बहुत अधिक दृढ़ता से होते हैं। इसलिए, दृश्य और एनआईआर पिक्सेल की तुलना में यूवी क्षेत्र में विचलन प्रकाश प्रभाव अधिक महत्वपूर्ण हैं। यह स्थिति अल्प तरंगदैर्घ्य हो जाती है।

जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड प्रकाश को मापते हैं, तो कभी-कभी यूवी सीमा में अवांछित प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि संसूचक पिक्सेल स्रोत से पर्याप्त यूवी संकेत प्राप्त करने के लिए पहले से ही संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग कर अंशांकन में 350 एनएम से नीचे भारी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना अवांछित प्रकाश (वास्तविक यूवी प्रकाश के बजाय लंबी तरंग दैर्ध्य धर्षण) का परिणाम है।

अंशांकन त्रुटियां

कई कंपनियां हैं जो स्पेक्ट्रोमीटर के लिए अंशांकन की प्रस्तुत करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन के लिए एक संसूचित, प्रमाणित प्रयोगशाला खोजना महत्वपूर्ण है। अंशांकन प्रमाण पत्र में उपयोग किए जाने वाले प्रकाश स्रोत (उदाहरण: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (यूवीसी, यूवीबी, विस..), एनएम में प्रत्येक तरंग दैर्ध्य या पूर्ण स्पेक्ट्रम मापे गए स्पेक्ट्रम के लिए अंशांकन की अनिश्चितता को वर्णित किया जाना चाहिए। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर भी सूचीबद्ध करना चाहिए।

गलत विन्यास

कैमरा की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एकत्र किए जाने वाले नमूनों के एक्सपोजर समय और मात्रा का चयन करने की अनुमति देते हैं। एकीकरण का समय और स्कैन की संख्या एक महत्वपूर्ण कदम है। बहुत लंबे समय तक एकीकरण का समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में इसे एक बड़े सफेद पैच के रूप में देखा जा सकता है, जबकि स्पेक्ट्रोमीटर में इसे डिप के रूप में देखा जा सकता है, या शिखर को काटा जा सकता है) बहुत न्यून एकीकरण समय रव परिणाम उत्पन्न कर सकता है (एक कैमरा फोटो में यह एक अंधेरे या धुंधला क्षेत्र होगा, जबकि एक स्पेक्ट्रोमीटर में यह स्पाइक्स या अस्थिर रीडिंग देखा जा सकता है)।

एक्सपोजर समय वह समय होता है जब मापन के दौरान संवेदक पर प्रकाश गिरता है। इस पैरामीटर को समायोजित करने से डिवाइस की समग्र संवेदनशीलता बदल जाती है, क्योंकि कैमरा के लिए एक्सपोजर समय बदलता है। न्यूनतम एकीकरण समय न्यूनतम 5 मिमी और अधिकतम 10 मिनट प्रति स्कैन के साथ भिन्न होता है। प्रकाश की तीव्रता पर आधारित एक व्यावहारिक सेटिंग 3 से 999 की सीमा में होती है।

एकीकरण समय को एक संकेत के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा एस/एन अनुपात प्राप्त करता है। (उदा: क्रमशः 60K गणना या 16K गणना)

स्कैन की संख्या इंगित करती है कि कितने माप औसत किए जाएंगे। जब अन्य चीजें समान होती हैं, तो औसत पर स्कैन की संख्या n के वर्गमूल से बेहतर होती है. उदाहरण के लिए, यदि 16 वर्णक्रमीय स्कैन औसत हैं, तो एसएनआर 4 गुना अधिक स्कैन करता है।

एस/एन अनुपात को इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने पर पहुंचता है। यह इस प्रकाश स्तर पर संकेत गणना (सामान्यतः पूर्ण पैमाने पर) से आरएमएस (रूट मीन स्क्वायर) रव का अनुपात है। इस रव में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस सम्मिलित है जो इनपुट प्रकाश द्वारा उत्पन्न गणना से संबंधित है और रव को पढ़ता है। यह प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त किया जा सकने वाला सर्वोत्तम एस/एन अनुपात है।

यह कैसे काम करता है

स्पेक्ट्रोडायो-मेट्रिक प्रणाली के आवश्यक घटक इस प्रकार हैं:

  • इनपुट ऑप्टिक्स जो स्रोत (विजर, लेंस, फाइबर ऑप्टिक प्रकाश गाइड) से विद्युत चुम्बकीय विकिरण एकत्र करता है।
  • गेटवे स्लिट, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। छोटे स्लिट में अधिक रिज़ॉल्यूशन होता है, लेकिन समग्र संवेदनशीलता न्यून होती है।
  • दूसरे क्रम के प्रभावों को न्यून करने के लिए ऑर्डर सॉर्टिंग (श्रेणीकरण) फिल्टर का उपयोग करते हैं।
  • समांतरित्र प्रकाश को झंझरी या प्रिज्म की ओर निर्देशित करता है।
  • प्रकाश के विक्षेपण के लिए झंझरी या प्रिज्म उपयुक्त है।
  • प्रकाश को संसूचक पर संरेखित करने के लिए संगमन प्रकाशिकी का प्रयोग किया जाता है।
  • संसूचक, सीएमओएस नियंत्रक या सीसीडी पद्धति होती है।  
  • डेटा को परिभाषित करने और इसे संग्रहीत करने के लिए एक नियंत्रण और लॉगिंग प्रणाली है।[8]

इनपुट प्रकाशिकी

स्पेक्ट्रोमापी के फ्रंट-एंड ऑप्टिक्स में लेंस, डिफ्यूजर्स और फिल्टर सम्मिलित हैं जो पहली बार सिस्टम में प्रवेश करने के बाद प्रकाश को संशोधित करते हैं। रेडियंस को एक संकीर्ण दृश्य क्षेत्र के साथ ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। विकिरण कोसाइन संशोधन के लिए प्रकाशिकी की आवश्यकता होती है। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार के प्रकाश को मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, क्वार्ट्ज का उपयोग प्रायः ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफसर्स और बेरियम सल्फेट युक्त एकीकृत पर्याप्तता के प्रति किया जाता है।[8]

एकवर्णक

ज़ेर्नी-टर्नर एकवर्णक का आरेख।

स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, लैंप की स्पेक्ट्रम प्रतिक्रिया बनाने के लिए प्रत्येक तरंगदैर्घ्य पर ध्वनिक प्रकाश की आवश्यकता होगी। मोनोलिथिक का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से ध्वनिक संकेत उत्पन्न करता है। यह अनिवार्य रूप से चर फिल्टर है जो एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को मापी गई प्रकाश के पूर्ण स्पेक्ट्रम से अलग करता है और उस क्षेत्र के बाहर गिरने वाली किसी भी प्रकाश को बाहर निकालता है।[9]

विशिष्ट ध्वनिक इसे तरंग दैर्ध्य-स्थिर तत्व के उपयोग के माध्यम से प्राप्त करता है जैसे प्रवेश और निकास स्लेट, संवैधानिक और फोकस ऑप्टिक्स, और विवर्तन डायाफ्राम या प्रिज्म।[6] आधुनिक अकॉस्टिक्स टैनरीज़ के साथ बनते हैं, और टेक्टन डिसेंटरी का उपयोग लगभग विशेष रूप से स्पेक्ट्रोएडिम्रिक अनुप्रयोगों में किया जाता है। उनकी बहुमुखी प्रतिभा, न्यून आकलन, व्यापक तरंगदैर्घ्य रेंज, न्यून लागत और अधिक निरंतर प्रसार बेहतर हैं।[9] दोहरे मोनोक्रोमेटर्स का उपयोग अनुप्रयोग के आधार पर किया जा सकता है, जिसमें दोहरे मोनोक्रोमेटर्स सामान्यतः अतिरिक्त प्रसार और झंझरी के बीच गतिरोघक के कारण अधिक सटीकता प्रदान करते हैं।[8]

संसूचक

फोटोमल्टीप्लायर

स्पेक्ट्रोराडीमीटर में उपयोग किया जाने वाला संसूचक तरंग दैर्ध्य द्वारा निर्धारित किया जाता है जिस पर प्रकाश को मापा जा रहा है, साथ ही साथ माप की आवश्यक गतिशील सीमा और संवेदनशीलता। मूल स्पेक्ट्रोमापी संसूचक प्रौद्योगिकी सामान्यतः तीन समूहों में से एक में आती है: फोटोमाइसेसिव संसूचक (जैसे फोटो एमिसिव संसूचक)। फोटोमल्टीप्लायर ट्यूब), अर्धचालक उपकरण (जैसे कि सिलिकॉन) या थर्मल संसूचक (जैसे कि थर्मल संसूचक) थर्मोपाइल।[10]

किसी दिए गए संसूचक की वर्णक्रमीय प्रतिक्रिया उसकी मूल सामग्री द्वारा निर्धारित की जाती है। उदाहरण के लिए, फोटोमल्टीप्लायर ट्यूबों में पाए जाने वाले फोटोकैथोड कुछ तत्वों से बनाए जा सकते हैं जो सौर-ब्लिंद होते हैं - यूवी के लिए संवेदनशील और दृश्य या आईआर में प्रकाश के लिए अक्रियाशील होते हैं।[11]

सीसीडी (आवेश युग्मित उपकरण) सरणियाँ सामान्यतः हजारों या लाखों अलग-अलग संसूचक तत्वों (पिक्सेल के रूप में भी जाना जाता है) और सीएमओएस संवेदक के एक आयामी (रैखिक) या दो आयामी (क्षेत्र) सरणियाँ हैं। इनमें सिलिकॉन या इंगास आधारित मल्टीचैनल ऐरे संसूचक सम्मिलित है जो यूवी, दृश्यमान और निकट-इन्फ्रा प्रकाश को मापने में सक्षम है।

सीएमओएस (पूरक धातु ऑक्साइड अर्धचालक) संवेदक सीसीडी से भिन्न होते हैं जिसमें वे प्रत्येक फोटोडायोड में प्रवर्धक जोड़ते हैं। इसे एक सक्रिय पिक्सेल संवेदक कहा जाता है क्योंकि प्रवर्धक पिक्सेल का हिस्सा है। ट्रांजिस्टर स्विच रीडआउट के समय प्रत्येक फोटोडायोड को इंट्रापिक्सल प्रवर्धक से जोड़ते हैं।

नियंत्रण और लॉगिंग प्रणाली

लॉगिंग प्रणाली प्रायः व्यक्तिगत कंप्यूटर होता है। प्रारंभिक संकेत प्रसंस्करण में, संकेत को प्रायः प्रवर्धन और नियंत्रण प्रणाली के साथ उपयोग के लिए परिवर्तित करने की आवश्यकता होती है। मोनोक्रोमेटर, संसूचक आउटपुट और कंप्यूटर के बीच संचार की लाइनों को अनुकूलित किया जाना चाहिए ताकि वांछित मीट्रिक और सुविधाओं का उपयोग सुनिश्चित किया जा रहा है।[8] व्यावसायिक रूप से उपलब्ध सॉफ्टवेयर में सम्मिलित स्पेक्ट्रोडायमेट्रिक प्रणाली प्रायः आगे के माप की गणना के लिए उपयोगी संदर्भ कार्यों के साथ संग्रहीत किया जाता है, जैसे सीआईई रंग मिलान फंक्शन और V वक्र।[12]

अनुप्रयोग

स्पेक्ट्रोरेडियोमीटर का उपयोग कई अनुप्रयोगों में किया जाता है, और इसे विभिन्न प्रकार के विनिर्देशों को पूरा करने के लिए बनाया जा सकता है। उदाहरण अनुप्रयोगों में सम्मिलित हैं:

  • सौर यूवी और यूवीबी विकिरण
  • एलईडी माप
  • प्रदर्शन माप और अंशांकन
  • सीएफएल परीक्षण
  • ऑयल स्लिक्स का रिमोट डिटेक्शन [13]

संयंत्र अनुसंधान और विकास[14]

डीआईवाई निर्माण

ऑप्टिकल डिस्क ग्रैटिंग और मूलभूत वेबकैम का उपयोग करके एक मूलभूत ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण करना संभव है, जो तरंग दैर्ध्य को मापने के लिए एक सीएफएल लैंप का उपयोग करता है।[15] ज्ञात स्पेक्ट्रम के स्रोत का उपयोग करके एक अंशांकन फिर फोटो पिक्सेल की चमक की व्याख्या करके स्पेक्ट्रोमाइडोमीटर में बदल सकता है।[16] डीआईवाई बिल्ड फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से प्रभावित होता है: फोटोग्राफिक रव (काले फ्रेम घटाव की आवश्यकता होती है) और सीसीडी-टू-फोटोग्राफ रूपांतरण में अरेखीय (संभवतः एक रॉ इमेज प्रारूप द्वारा हल) आदि।[17]

यह भी देखें

संदर्भ

  1. Leslie D. Stroebel and Richard D. Zakia (1993). Focal Encyclopedia of Photography (3rd ed. ed.). Focal Press. p. 115. ISBN 0-240-51417-3
  2. Berns, Roy S. "Precision and Accuracy Measurements." Billmeyer and Saltzman's Principles of Color Technology. 3rd ed. New York: John Wiley & Sons, 2000. 97-100. Print
  3. 3.0 3.1 3.2 3.3 3.4 Kostkowski, Henry J. Reliable Spectroradiometry. La Plata, MD: Spectroradiometry Consulting, 1997. Print.
  4. Sanders, Charles L., and R. Rotter. The Spectroradiometric Measurement of Light Sources. Paris, France: Bureau Central De La CIE, 1984. Print.
  5. GE Lighting. "Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products." Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products. N.p., n.d. Web. 10 Dec. 2013. <"Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products". Archived from the original on 2013-12-14. Retrieved 2013-12-11.>
  6. 6.0 6.1 6.2 Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf>
  7. Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.
  8. 8.0 8.1 8.2 8.3 Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf>
  9. 9.0 9.1 American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <"Study Notes: AAS Monochromator". Archived from the original on 2013-12-11. Retrieved 2013-12-11.>.
  10. Ready, Jack. "Optical Detectors and Human Vision." Fundamentals of Photonics (n.d.): n. pag. SPIE. Web. <http://spie.org/Documents/Publications/00%20STEP%20Module%2006.pdf>.
  11. J. W. Campbell, "Developmental Solar Blind Photomultipliers Suitable for Use in the 1450–2800-Å Region," Appl. Opt. 10, 1232-1240 (1971) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-10-6-1232
  12. Apogee Instruments. Spectroradiometer PS-100 (350 - 1000 Nm), PS-200 (300 - 800 Nm), PS-300 (300 - 1000 Nm). N.p.: Apogee Instruments, n.d. Apogee Instruments Spectroradiometer Manual. Web. <http://www.apogeeinstruments.com/content/PS-100_200_300manual.pdf>.
  13. Mattson, James S., Harry B. Mark Jr., Arnold Prostak, and Clarence E. Schutt. Potential Application of an Infrared Spectroradiometer for Remote Detection and Identification of Oil Slicks on Water. Tech. 5th ed. Vol. 5. N.p.: n.p., 1971. Print. Retrieved from <http://pubs.acs.org/doi/pdf/10.1021/es60052a004>
  14. McFarland, M and Kaye, J (1992) Chlorofluorocarbons and Ozone. Photochem. Photobiol. 55 (6) 911-929.
  15. "DIY स्पेक्ट्रोमीटर". Wired (in English).
  16. "PLab 3 Gain Correction". Public Lab.
  17. "शोर में कमी". Jonathan Thomson's web journal (in English). 26 October 2010.


बाहरी संबंध