विद्युत चालक: Difference between revisions
No edit summary |
No edit summary |
||
(29 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Object or material which allows the flow of electric charge with little energy loss}} | {{short description|Object or material which allows the flow of electric charge with little energy loss}} | ||
[[File:Electrical wires near Putim.jpg|thumb|right|ओवरहेड कंडक्टर | [[File:Electrical wires near Putim.jpg|thumb|right|ओवरहेड कंडक्टर बिजली उत्पादन स्टेशनों से ग्राहकों तक ले जाते हैं।]] | ||
{{Electromagnetism|cTopic=Electrostatics}} | {{Electromagnetism|cTopic=Electrostatics}} | ||
भौतिकी और इलेक्ट्रिकल इंजीनियरिंग में, | भौतिकी और इलेक्ट्रिकल इंजीनियरिंग में, अर्धचालक एक वस्तु या एक प्रकार की सामग्री है जो अधिक दिशाओं में आवेश (विद्युत प्रवाह) के प्रवाह की अनुमति देता है। धातु से बने सामग्री आम विद्युत चालक हैं। (विद्युत प्रवाह) कुछ मामलों में नकारात्मक रूप से आवेश किए गए इलेक्ट्रॉनों, सकारात्मक रूप से आवेश किए गए छेदीये और सकारात्मक या नकारात्मक आयनों के प्रवाह से उत्पन्न होता है। | ||
एक बंद विद्युत परिपथ के भीतर प्रवाह | एक बंद विद्युत परिपथ के भीतर प्रवाह विद्युत धारा के लिए, एक आवेशित कण विद्युत धारा या(विद्युत धारा स्रोत) के लिए धारा उत्पन्न करने वाले घटक से यात्रा करना आवश्यक नहीं है। इसके बजाय, आवेश किए गए कण को बस अपने समीप दिए हुए,जो ''<nowiki/>'''समीप होना''<nowiki/>' ''चाहिये। अनिवार्य रूप से जो हो रहा है वह मोबाइल आवेश वाहक के बीच गति हस्तांतरण की एक लंबी श्रृंखला है; अर्धचालक के ड्रूड मॉडल ने इस प्रक्रिया का अधिक कठोरता से वर्णन किया है। यह गति हस्तांतरण मॉडल धातु एक अर्धचालक के लिए एक आदर्श विकल्प बनाता है; धातुओं, विशेषता से, इलेक्ट्रॉनों का एक स्थानीयकृत समुद्र के पास होता है जो इलेक्ट्रॉनों को टकराने के लिए पर्याप्त गतिशीलता देता है और इस प्रकार एक गति हस्तांतरण को प्रभावित करता है। | ||
जैसा कि ऊपर चर्चा की गई है, इलेक्ट्रॉन धातुओं में प्राथमिक | जैसा कि ऊपर चर्चा की गई है, इलेक्ट्रॉन धातुओं में प्राथमिक अधिवक्ता हैं; हालांकि, अन्य उपकरण जैसे कि बैटरी के धनायनित विद्युत अपघट्य (O), या ईंधन सेल के प्रोटॉन अर्धचालक के मोबाइल प्रोटॉन सकारात्मक आवेश वाहक पर निर्भर करते हैं। विसंवाहक कुछ मोबाइल आवेश के साथ गैर-संचालन सामग्री हैं जो केवल महत्वहीन विद्युत धाराओं का समर्थन करते हैं। | ||
== प्रतिरोध और चालन == | == प्रतिरोध और चालन == | ||
[[File:Resistivity geometry.png|thumb|दोनों छोरों पर विद्युत संपर्कों के साथ प्रतिरोधक सामग्री का एक टुकड़ा।]] | [[File:Resistivity geometry.png|thumb|दोनों छोरों पर विद्युत संपर्कों के साथ प्रतिरोधक सामग्री का एक टुकड़ा।]] | ||
{{main|विद्युत प्रतिरोध और चालकता}} | {{main|विद्युत प्रतिरोध और चालकता}} | ||
किसी दिए गए | किसी दिए गए अर्धचालक का प्रतिरोध उस सामग्री पर निर्भर करता है, जो इससे बना है, और उसके आयामों पर, किसी दिए गए सामग्री के लिए, प्रतिरोध क्रॉस-अनुभागीय क्षेत्र के विपरीत आनुपातिक है।<ref name=": 0>{{Cite web|url=https://web.stanford.edu/class/ee281/materials/references/WireResistances.pdf|title=Wire Sizes and Resistance|access-date=2018-01-14}}</ref>उदाहरण के लिए, एक मोटी तांबे के तार में अन्यथा-समान पतले तांबे के तार की तुलना में कम प्रतिरोध होता है। इसके अलावा, किसी दिए गए सामग्री के लिए, प्रतिरोध लंबाई के लिए आनुपातिक है;उदाहरण के लिए, एक लंबे तांबे के तार में एक अन्यथा-समान छोटे तांबे के तार की तुलना में अधिक प्रतिरोध होता है। प्रतिरोध '''{{math|''R''}}''' और चालकता '''{{math|''G''}}''' वर्दी क्रॉस सेक्शन के एक अर्धचालक के रूप में गणना की जा सकती है<ref name=": 0 /> | ||
: <math> | : <math> | ||
Line 20: | Line 20: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
कहाँ पे <math>\ell</math> | कहाँ पे <math>\ell</math> अर्धचालक की लंबाई है, मीटर में मापा जाता है [एम], ए [[ वर्ग मीटर ]] में मापा गया अर्धचालक का क्रॉस-सेक्शन क्षेत्र है [एम<sup>2</sup>], σ ([[Index.php?title=सिग्मा (letter)|सिग्मा]]) विद्युत चालकता है जिसे सीमेंस प्रति मीटर में मापा जाता है (एस·एम<sup>−1</sup>), और पी (आरएचओह) सामग्री का विद्युत प्रतिरोधकता (जिसे विशिष्ट विद्युत प्रतिरोध भी कहा जाता है), जो ओम-मीटर (ऑफ़ · एम) में मापा जाता है। प्रतिरोधकता और चालकता आनुपातिक स्थिरांक हैं, और इसलिए केवल उस सामग्री पर निर्भर करती है जो तार से बना होता है, न कि तार की ज्यामिति। प्रतिरोधकता और चालकता पारस्परिक हैं: <math>\rho=1/\sigma</math>।प्रतिरोधकता विद्युत प्रवाह का विरोध करने के लिए सामग्री की क्षमता का एक माध्यम है। | ||
यह सूत्र सटीक नहीं है: यह मानता है कि | यह सूत्र सटीक नहीं है: यह मानता है कि विद्युत धारा घनत्व अर्धचालक में पूरी तरह से समान है, जो व्यावहारिक स्थिति में हमेशा सच नहीं होता है। हालांकि, यह सूत्र अभी भी तारों जैसे लंबे पतले अर्धचालको के लिए एक अच्छी समीपता प्रदान करता है। | ||
एक और स्थिति यह सूत्र वैकल्पिक | एक और स्थिति यह सूत्र वैकल्पिक विद्युत धारा (एसी) के साथ सही नहीं है, क्योंकि त्वचा का प्रभाव अर्धचालक के केंद्र के पास विद्युत धारा प्रवाह को रोकता है। फिर, ज्यामितीय क्रॉस-सेक्शन प्रभावी क्रॉस-सेक्शन से अलग होता है जिसमें वास्तव में करंट प्रवाहित होता है, इसलिए प्रतिरोध अपेक्षा से अधिक है। इसी तरह, यदि दो अर्धचालक एसी करंट ले जाने वाले एक -दूसरे के पास हैं, तो निकटता प्रभाव के कारण उनके प्रतिरोध बढ़ते हैं। वाणिज्यिक शक्ति आवृत्ति पर, ये प्रभाव बड़ी धाराओं को ले जाने वाले बड़े अर्धचालको के लिए महत्वपूर्ण हैं, जैसे कि एक विद्युत सबस्टेशन में बसबार,<ref>फ़िंक और बीटी, इलेक्ट्रिकल इंजीनियर्स के लिए मानक हैंडबुक 11 वें संस्करण, पृष्ठ 17-19</ref>या कुछ सौ से अधिक विद्युत्-धारा की इकाई ले जाने वाले बड़े पावर केबल। | ||
तार की ज्यामिति के अलावा, तापमान का | तार की ज्यामिति के अलावा, तापमान का अर्धचालको की प्रभावकारिता पर भी महत्वपूर्ण प्रभाव पड़ता है। तापमान दो मुख्य तरीकों से अर्धचालको को प्रभावित करता है, पहला यह है कि सामग्री गर्मी के आवेदन के तहत विस्तार कर सकती है। सामग्री का विस्तार करने वाली राशि सामग्री के लिए विशिष्ट [[ थर्मल विस्तार गुणांक ]] द्वारा नियंत्रित होती है। इस तरह के एक विस्तार (या संकुचन) अर्धचालक की ज्यामिति को बदल देंगे और इसलिए इसकी विशेषता प्रतिरोध है। हालांकि, यह प्रभाव आम तौर पर 10 के आदेश पर छोटा होता है<sup>−6</sup> तापमान में वृद्धि से सामग्री के भीतर उत्पन्न फोनन की संख्या भी बढ़ेगी। एक फोनन अनिवार्य रूप से एक जाली कंपन है, या सामग्री के परमाणुओं का एक छोटा, हार्मोनिक गतिज गति है। एक पिनबॉल मशीन के झटकों की तरह, फोनन इलेक्ट्रॉनों के मार्ग को बाधित करने के लिए काम करते हैं, जिससे बिखरने के लिए एम। यह इलेक्ट्रॉन अलग-अलग हो जाने से इलेक्ट्रॉन टकराव की संख्या में कमी आएगी और इसलिए विद्युत धारा हस्तांतरित की कुल मात्रा में कमी आएगी। | ||
== | == सुचालक सामग्री == | ||
{{main|विद्युत प्रतिरोधकता और चालकता}} | {{main|विद्युत प्रतिरोधकता और चालकता}} | ||
{{further|कॉपर कंडक्टर | {{further|कॉपर कंडक्टर|एल्युमिनियम बिल्डिंग वायरिंग}} | ||
{| class="wikitable floatright" | {| class="wikitable floatright" | ||
|- | |- | ||
! | ! सामग्री !! ρ [Ω·m] at 20°C !! σ [{{sfrac|S|m}}] at 20°C | ||
|- | |- | ||
| | | सिल्वर, एजी || 1.59 × 10<sup>−8</sup> || 6.30 × 10<sup>7</sup> | ||
|- | |- | ||
| | | कॉपर, घन || 1.68 × 10<sup>−8</sup> || 5.96 × 10<sup>7</sup> | ||
|- | |- | ||
| | | एल्युमिनियम, अल || 2.82 × 10<sup>−8</sup>|| 3.50 × 10<sup>7</sup> | ||
|} | |} | ||
चालन सामग्री में धातु, इलेक्ट्रोलाइट्स, | चालन सामग्री में धातु, इलेक्ट्रोलाइट्स, अतिचालक, अर्धचालकों, जीवाणु और कुछ गैर धातु अर्धचालक जैसे काला सीसा और प्रवाहकीय बहुलक शामिल हैं। | ||
ताँबा में एक बेहतर चालकता है। एनील्ड कॉपर अंतर्राष्ट्रीय मानक है जिसमें अन्य सभी विद्युत अर्धचालको की तुलना की जाती है; अंतर्राष्ट्रीय एनील्ड कॉपर मानक चालकता है {{val|58|u=एमएस|up=एम}}, हालांकि अल्ट्रा-प्यूर कॉपर 101% आईएसीएस से थोड़ा अधिक हो सकता है। विद्युत अनुप्रयोगों के लिए उपयोग किए जाने वाले तांबे का मुख्य ग्रेड, जैसे कि निर्माण तार, मोटर वाइंडिंग, केबल और बसबार, ऑक्सीजन मुक्त तांबा विनिर्देश है। इलेक्ट्रोलाइटिक-टफ पिच (ईटीपी) ताँबा (सीडब्ल्यू004ए या एएसटीएम पदनाम सी100140)। यदि उच्च चालकता तांबे को वेल्डेड या ब्रेज़्ड या कम करने वाले वातावरण में उपयोग किया जाना चाहिए, तो ऑक्सीजन मुक्त तांबा | ऑक्सीजन मुक्त उच्च चालकता तांबा (सीडब्ल्यू008ए या एएसटीएम पदनाम सी10100) का उपयोग किया जा सकता है।<ref>{{cite web |url=http://www.copperinfo.co.uk/alloys/copper/ |title=High conductivity coppers (electrical) |publisher=Copper Development Association (U.K.) |access-date=2013-06-01 |url-status=dead |archive-url=https://web.archive.org/web/20130720000331/http://www.copperinfo.co.uk/alloys/copper/ |archive-date=2013-07-20 }}</ref>टांका लगाने या क्लैंपिंग द्वारा जोड़ में आसानी के कारण, तांबा अभी भी अधिकांश हल्के-गेज तारों के लिए सबसे आम विकल्प है। | |||
चांदी तांबे की तुलना में 6% अधिक प्रवाहकीय है, लेकिन लागत के कारण यह ज्यादातर मामलों में | चांदी तांबे की तुलना में 6% अधिक प्रवाहकीय है, लेकिन लागत के कारण यह ज्यादातर मामलों में उपयोगी नहीं है। हालांकि, इसका उपयोग विशेष उपकरणों में किया जाता है, जैसे कि उपग्रह, और उच्च आवृत्तियों पर त्वचा के प्रभाव के नुकसान को कम करने के लिए एक पतली चढ़ाना के रूप में। पारिवारिक रूप से, {{convert|14700|ST|t}} संयुक्त राज्य अमेरिका के ट्रेजरी से ऋण पर चांदी का उपयोग द्वितीय विश्व युद्ध के दौरान कैलुट्रोन मैग्नेट बनाने में इस्तेमाल किया गया था, जो तांबे की युद्धकालीन कमी के कारण था। | ||
एल्यूमीनियम तार इलेक्ट्रिक पावर ट्रांसमिशन और वितरण में सबसे आम धातु है । यद्यपि क्रॉस-सेक्शनल क्षेत्र द्वारा तांबे की चालकता का केवल 61%, इसका निचला घनत्व इसे द्रव्यमान द्वारा प्रवाहकीय के रूप में दोगुना बनाता है। चूंकि एल्यूमीनियम वजन से तांबे की लागत लगभग एक-तिहाई है, इसलिए बड़े | एल्यूमीनियम तार इलेक्ट्रिक पावर ट्रांसमिशन और वितरण में सबसे आम धातु है । यद्यपि क्रॉस-सेक्शनल क्षेत्र द्वारा तांबे की चालकता का केवल 61%, इसका निचला घनत्व इसे द्रव्यमान द्वारा प्रवाहकीय के रूप में दोगुना बनाता है। चूंकि एल्यूमीनियम वजन से तांबे की लागत लगभग एक-तिहाई है, इसलिए बड़े अर्धचालक की आवश्यकता होने पर आर्थिक लाभ काफी हैं। | ||
एल्यूमीनियम वायरिंग के नुकसान इसके यांत्रिक और रासायनिक गुणों में निहित हैं। यह आसानी से एक इन्सुलेट ऑक्साइड बनाता है, जिससे कनेक्शन गर्म हो जाता है। कनेक्टर्स के लिए उपयोग की जाने वाली पीतल की सामग्री की तुलना में थर्मल विस्तार का इसका बड़ा गुणांक कनेक्शन को ढीला करने का कारण बनता है। एल्यूमीनियम भी | एल्यूमीनियम वायरिंग के नुकसान इसके यांत्रिक और रासायनिक गुणों में निहित हैं। यह आसानी से एक इन्सुलेट ऑक्साइड बनाता है, जिससे कनेक्शन गर्म हो जाता है। कनेक्टर्स के लिए उपयोग की जाने वाली पीतल की सामग्री की तुलना में थर्मल विस्तार का इसका बड़ा गुणांक कनेक्शन को ढीला करने का कारण बनता है। एल्यूमीनियम भी लुढ़क सकता है, धीरे -धीरे लोड के तहत विकृत हो सकता है, जो कनेक्शन को भी ढीला करता है। इन प्रभावों को उपयुक्त रूप से डिज़ाइन किए गए कनेक्टर्स और इंस्टॉलेशन में अतिरिक्त देखभाल के साथ कम किया जा सकता है, लेकिन उन्होंने एल्यूमीनियम बिल्डिंग वायरिंग को अलोकप्रिय सेवा ड्रॉप के अतीत में बनाया है। | ||
ऑक्टेन जैसे कार्बनिक यौगिक, जिसमें 8 कार्बन परमाणु और 18 हाइड्रोजन परमाणु होते हैं, बिजली का संचालन नहीं कर सकते। तेल हाइड्रोकार्बन होते हैं, क्योंकि कार्बन में टेट्रैकोवेलेंसी की संपत्ति होती है और हाइड्रोजन जैसे अन्य तत्वों के साथ सहसंयोजक बांड बनाते हैं, क्योंकि यह इलेक्ट्रॉनों को नहीं खोता है या प्राप्त नहीं करता है, इस प्रकार आयनों का निर्माण नहीं करता है। सहसंयोजक बॉन्ड केवल इलेक्ट्रॉनों का साझाकरण हैं। इसलिए, जब बिजली इसके माध्यम से पारित हो जाती है तो आयनों का कोई पृथक्करण नहीं होता है। केवल सहसंयोजक बॉन्ड के साथ यौगिकों से बने तरल पदार्थ बिजली का संचालन नहीं कर सकते। कुछ कार्बनिक [[ आयनिक तरल ]] पदार्थ, इसके विपरीत, एक आचरण कर सकते हैंविद्युत प्रवाह। | ऑक्टेन जैसे कार्बनिक यौगिक, जिसमें 8 कार्बन परमाणु और 18 हाइड्रोजन परमाणु होते हैं, बिजली का संचालन नहीं कर सकते। तेल हाइड्रोकार्बन होते हैं, क्योंकि कार्बन में टेट्रैकोवेलेंसी की संपत्ति होती है और हाइड्रोजन जैसे अन्य तत्वों के साथ सहसंयोजक बांड बनाते हैं, क्योंकि यह इलेक्ट्रॉनों को नहीं खोता है या प्राप्त नहीं करता है, इस प्रकार आयनों का निर्माण नहीं करता है। सहसंयोजक बॉन्ड केवल इलेक्ट्रॉनों का साझाकरण हैं। इसलिए, जब बिजली इसके माध्यम से पारित हो जाती है तो आयनों का कोई पृथक्करण नहीं होता है। केवल सहसंयोजक बॉन्ड के साथ यौगिकों से बने तरल पदार्थ बिजली का संचालन नहीं कर सकते। कुछ कार्बनिक [[ आयनिक तरल ]] पदार्थ, इसके विपरीत, एक आचरण कर सकते हैंविद्युत प्रवाह। | ||
जबकि शुद्ध पानी एक विद्युत | जबकि शुद्ध पानी एक विद्युत चालक नहीं है, यहां तक कि आयनिक अशुद्धियों का एक छोटा सा हिस्सा, जैसे कि नमक, तेजी से इसे एक अर्धचालक में बदल सकता है। | ||
== तार का आकार == | == तार का आकार == | ||
तारों को उनके | तारों को उनके संपर्क क्षेत्र द्वारा मापा जाता है। कई देशों में, आकार वर्ग मिलीमीटर में व्यक्त किया जाता है। उत्तरी अमेरिका में, अर्धचालको को छोटे लोगों के लिए अमेरिकी तार गेज द्वारा मापा जाता है, और बड़े लोगों के लिए पारिभाषिक मिल्स। | ||
== | == सुचालक विद्युत धारा == | ||
एक | एक अर्धचालक की स्पष्टीकरण, अर्थात्, विद्युत धारा की मात्रा वह ले जा सकती है, इसके विद्युत प्रतिरोध से संबंधित है: एक कम-प्रतिरोध अर्धचालक विद्युत धारा का एक बड़ा मूल्य हो सकता है। प्रतिरोध, बदले में, अर्धचालक द्वारा निर्धारित किया जाता है (जैसा कि ऊपर वर्णित है) और अर्धचालक के आकार का। किसी दिए गए सामग्री के लिए, एक बड़े क्रॉस-सेक्शनल क्षेत्र वाले अर्धचालको में छोटे क्रॉस-सेक्शनल क्षेत्र वाले अर्धचालको की तुलना में कम प्रतिरोध होता है। | ||
केवल अर्धचालको के लिए, अंतिम सीमा वह बिंदु है जिस पर प्रतिरोध के लिए खो गई शक्ति अर्धचालक को पिघलाने का कारण बनती है। फ़्यूज़ के अलावा, वास्तविक दुनिया में अधिकांश अर्धचालक इस सीमा से बहुत नीचे संचालित होते हैं। उदाहरण के लिए, घरेलू वायरिंग आमतौर पर पीवीसी रोधन के साथ स्वाभाविक है जो केवल लगभग 60 और एनबीएसपी; ° सी तक संचालित करने के लिए है। जो मूल्य निर्धारित किया जाता है, इसलिए, इस तरह के तारों में विद्युत धारा को सीमित किया जाना चाहिए ताकि यह कभी भी 60 और एनबीएसपी से ऊपर तांबे के अर्धचालक को गर्म न करे; और आग का जोखिम न हो। अन्य, अधिक महंगे रोधन जैसे टेफ्लॉन या फाइबर ग्लास बहुत अधिक तापमान पर संचालन की अनुमति दे सकते हैं। | |||
== आइसोट्रॉपी == | == आइसोट्रॉपी == | ||
यदि किसी विद्युत क्षेत्र को किसी सामग्री पर लागू किया जाता है, और परिणामस्वरूप प्रेरित विद्युत प्रवाह एक ही दिशा में होता है, तो सामग्री को एक | यदि किसी विद्युत क्षेत्र को किसी सामग्री पर लागू किया जाता है, और परिणामस्वरूप प्रेरित विद्युत प्रवाह एक ही दिशा में होता है, तो सामग्री को एक समदैशिक विद्युतीय अर्धचालक कहा जाता है। यदि परिणामस्वरूप विद्युत प्रवाह लागू विद्युत क्षेत्र से एक अलग दिशा में है, तो सामग्री को एनिसोट्रोपिक विद्युत अर्धचालक कहा जाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 103: | Line 103: | ||
{{DEFAULTSORT:Electrical Conductor}} | {{DEFAULTSORT:Electrical Conductor}} | ||
[[Category:Machine Translated Page]] | |||
[[Category:AC with 0 elements|Electrical Conductor]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Electrical Conductor]] | |||
[[Category:Articles with short description|Electrical Conductor]] | |||
[[Category:Exclude in print|Electrical Conductor]] | |||
[[Category:Interwiki category linking templates|Electrical Conductor]] | |||
[[Category:Interwiki link templates|Electrical Conductor]] | |||
[[Category:Pages with script errors|Electrical Conductor]] | |||
[[Category:Short description with empty Wikidata description|Electrical Conductor]] | |||
[[Category:Templates that add a tracking category|Electrical Conductor]] | |||
[[Category:Templates using TemplateData|Electrical Conductor]] | |||
[[Category:Wikimedia Commons templates|Electrical Conductor]] |
Latest revision as of 09:43, 21 October 2022
Articles about |
Electromagnetism |
---|
भौतिकी और इलेक्ट्रिकल इंजीनियरिंग में, अर्धचालक एक वस्तु या एक प्रकार की सामग्री है जो अधिक दिशाओं में आवेश (विद्युत प्रवाह) के प्रवाह की अनुमति देता है। धातु से बने सामग्री आम विद्युत चालक हैं। (विद्युत प्रवाह) कुछ मामलों में नकारात्मक रूप से आवेश किए गए इलेक्ट्रॉनों, सकारात्मक रूप से आवेश किए गए छेदीये और सकारात्मक या नकारात्मक आयनों के प्रवाह से उत्पन्न होता है।
एक बंद विद्युत परिपथ के भीतर प्रवाह विद्युत धारा के लिए, एक आवेशित कण विद्युत धारा या(विद्युत धारा स्रोत) के लिए धारा उत्पन्न करने वाले घटक से यात्रा करना आवश्यक नहीं है। इसके बजाय, आवेश किए गए कण को बस अपने समीप दिए हुए,जो 'समीप होना' चाहिये। अनिवार्य रूप से जो हो रहा है वह मोबाइल आवेश वाहक के बीच गति हस्तांतरण की एक लंबी श्रृंखला है; अर्धचालक के ड्रूड मॉडल ने इस प्रक्रिया का अधिक कठोरता से वर्णन किया है। यह गति हस्तांतरण मॉडल धातु एक अर्धचालक के लिए एक आदर्श विकल्प बनाता है; धातुओं, विशेषता से, इलेक्ट्रॉनों का एक स्थानीयकृत समुद्र के पास होता है जो इलेक्ट्रॉनों को टकराने के लिए पर्याप्त गतिशीलता देता है और इस प्रकार एक गति हस्तांतरण को प्रभावित करता है।
जैसा कि ऊपर चर्चा की गई है, इलेक्ट्रॉन धातुओं में प्राथमिक अधिवक्ता हैं; हालांकि, अन्य उपकरण जैसे कि बैटरी के धनायनित विद्युत अपघट्य (O), या ईंधन सेल के प्रोटॉन अर्धचालक के मोबाइल प्रोटॉन सकारात्मक आवेश वाहक पर निर्भर करते हैं। विसंवाहक कुछ मोबाइल आवेश के साथ गैर-संचालन सामग्री हैं जो केवल महत्वहीन विद्युत धाराओं का समर्थन करते हैं।
प्रतिरोध और चालन
किसी दिए गए अर्धचालक का प्रतिरोध उस सामग्री पर निर्भर करता है, जो इससे बना है, और उसके आयामों पर, किसी दिए गए सामग्री के लिए, प्रतिरोध क्रॉस-अनुभागीय क्षेत्र के विपरीत आनुपातिक है।[1]उदाहरण के लिए, एक मोटी तांबे के तार में अन्यथा-समान पतले तांबे के तार की तुलना में कम प्रतिरोध होता है। इसके अलावा, किसी दिए गए सामग्री के लिए, प्रतिरोध लंबाई के लिए आनुपातिक है;उदाहरण के लिए, एक लंबे तांबे के तार में एक अन्यथा-समान छोटे तांबे के तार की तुलना में अधिक प्रतिरोध होता है। प्रतिरोध R और चालकता G वर्दी क्रॉस सेक्शन के एक अर्धचालक के रूप में गणना की जा सकती है[1]
कहाँ पे अर्धचालक की लंबाई है, मीटर में मापा जाता है [एम], ए वर्ग मीटर में मापा गया अर्धचालक का क्रॉस-सेक्शन क्षेत्र है [एम2], σ (सिग्मा) विद्युत चालकता है जिसे सीमेंस प्रति मीटर में मापा जाता है (एस·एम−1), और पी (आरएचओह) सामग्री का विद्युत प्रतिरोधकता (जिसे विशिष्ट विद्युत प्रतिरोध भी कहा जाता है), जो ओम-मीटर (ऑफ़ · एम) में मापा जाता है। प्रतिरोधकता और चालकता आनुपातिक स्थिरांक हैं, और इसलिए केवल उस सामग्री पर निर्भर करती है जो तार से बना होता है, न कि तार की ज्यामिति। प्रतिरोधकता और चालकता पारस्परिक हैं: ।प्रतिरोधकता विद्युत प्रवाह का विरोध करने के लिए सामग्री की क्षमता का एक माध्यम है।
यह सूत्र सटीक नहीं है: यह मानता है कि विद्युत धारा घनत्व अर्धचालक में पूरी तरह से समान है, जो व्यावहारिक स्थिति में हमेशा सच नहीं होता है। हालांकि, यह सूत्र अभी भी तारों जैसे लंबे पतले अर्धचालको के लिए एक अच्छी समीपता प्रदान करता है।
एक और स्थिति यह सूत्र वैकल्पिक विद्युत धारा (एसी) के साथ सही नहीं है, क्योंकि त्वचा का प्रभाव अर्धचालक के केंद्र के पास विद्युत धारा प्रवाह को रोकता है। फिर, ज्यामितीय क्रॉस-सेक्शन प्रभावी क्रॉस-सेक्शन से अलग होता है जिसमें वास्तव में करंट प्रवाहित होता है, इसलिए प्रतिरोध अपेक्षा से अधिक है। इसी तरह, यदि दो अर्धचालक एसी करंट ले जाने वाले एक -दूसरे के पास हैं, तो निकटता प्रभाव के कारण उनके प्रतिरोध बढ़ते हैं। वाणिज्यिक शक्ति आवृत्ति पर, ये प्रभाव बड़ी धाराओं को ले जाने वाले बड़े अर्धचालको के लिए महत्वपूर्ण हैं, जैसे कि एक विद्युत सबस्टेशन में बसबार,[2]या कुछ सौ से अधिक विद्युत्-धारा की इकाई ले जाने वाले बड़े पावर केबल।
तार की ज्यामिति के अलावा, तापमान का अर्धचालको की प्रभावकारिता पर भी महत्वपूर्ण प्रभाव पड़ता है। तापमान दो मुख्य तरीकों से अर्धचालको को प्रभावित करता है, पहला यह है कि सामग्री गर्मी के आवेदन के तहत विस्तार कर सकती है। सामग्री का विस्तार करने वाली राशि सामग्री के लिए विशिष्ट थर्मल विस्तार गुणांक द्वारा नियंत्रित होती है। इस तरह के एक विस्तार (या संकुचन) अर्धचालक की ज्यामिति को बदल देंगे और इसलिए इसकी विशेषता प्रतिरोध है। हालांकि, यह प्रभाव आम तौर पर 10 के आदेश पर छोटा होता है−6 तापमान में वृद्धि से सामग्री के भीतर उत्पन्न फोनन की संख्या भी बढ़ेगी। एक फोनन अनिवार्य रूप से एक जाली कंपन है, या सामग्री के परमाणुओं का एक छोटा, हार्मोनिक गतिज गति है। एक पिनबॉल मशीन के झटकों की तरह, फोनन इलेक्ट्रॉनों के मार्ग को बाधित करने के लिए काम करते हैं, जिससे बिखरने के लिए एम। यह इलेक्ट्रॉन अलग-अलग हो जाने से इलेक्ट्रॉन टकराव की संख्या में कमी आएगी और इसलिए विद्युत धारा हस्तांतरित की कुल मात्रा में कमी आएगी।
सुचालक सामग्री
सामग्री | ρ [Ω·m] at 20°C | σ [S/m] at 20°C |
---|---|---|
सिल्वर, एजी | 1.59 × 10−8 | 6.30 × 107 |
कॉपर, घन | 1.68 × 10−8 | 5.96 × 107 |
एल्युमिनियम, अल | 2.82 × 10−8 | 3.50 × 107 |
चालन सामग्री में धातु, इलेक्ट्रोलाइट्स, अतिचालक, अर्धचालकों, जीवाणु और कुछ गैर धातु अर्धचालक जैसे काला सीसा और प्रवाहकीय बहुलक शामिल हैं।
ताँबा में एक बेहतर चालकता है। एनील्ड कॉपर अंतर्राष्ट्रीय मानक है जिसमें अन्य सभी विद्युत अर्धचालको की तुलना की जाती है; अंतर्राष्ट्रीय एनील्ड कॉपर मानक चालकता है 58 एमएस/एम, हालांकि अल्ट्रा-प्यूर कॉपर 101% आईएसीएस से थोड़ा अधिक हो सकता है। विद्युत अनुप्रयोगों के लिए उपयोग किए जाने वाले तांबे का मुख्य ग्रेड, जैसे कि निर्माण तार, मोटर वाइंडिंग, केबल और बसबार, ऑक्सीजन मुक्त तांबा विनिर्देश है। इलेक्ट्रोलाइटिक-टफ पिच (ईटीपी) ताँबा (सीडब्ल्यू004ए या एएसटीएम पदनाम सी100140)। यदि उच्च चालकता तांबे को वेल्डेड या ब्रेज़्ड या कम करने वाले वातावरण में उपयोग किया जाना चाहिए, तो ऑक्सीजन मुक्त तांबा | ऑक्सीजन मुक्त उच्च चालकता तांबा (सीडब्ल्यू008ए या एएसटीएम पदनाम सी10100) का उपयोग किया जा सकता है।[3]टांका लगाने या क्लैंपिंग द्वारा जोड़ में आसानी के कारण, तांबा अभी भी अधिकांश हल्के-गेज तारों के लिए सबसे आम विकल्प है।
चांदी तांबे की तुलना में 6% अधिक प्रवाहकीय है, लेकिन लागत के कारण यह ज्यादातर मामलों में उपयोगी नहीं है। हालांकि, इसका उपयोग विशेष उपकरणों में किया जाता है, जैसे कि उपग्रह, और उच्च आवृत्तियों पर त्वचा के प्रभाव के नुकसान को कम करने के लिए एक पतली चढ़ाना के रूप में। पारिवारिक रूप से, 14,700 short tons (13,300 t) संयुक्त राज्य अमेरिका के ट्रेजरी से ऋण पर चांदी का उपयोग द्वितीय विश्व युद्ध के दौरान कैलुट्रोन मैग्नेट बनाने में इस्तेमाल किया गया था, जो तांबे की युद्धकालीन कमी के कारण था।
एल्यूमीनियम तार इलेक्ट्रिक पावर ट्रांसमिशन और वितरण में सबसे आम धातु है । यद्यपि क्रॉस-सेक्शनल क्षेत्र द्वारा तांबे की चालकता का केवल 61%, इसका निचला घनत्व इसे द्रव्यमान द्वारा प्रवाहकीय के रूप में दोगुना बनाता है। चूंकि एल्यूमीनियम वजन से तांबे की लागत लगभग एक-तिहाई है, इसलिए बड़े अर्धचालक की आवश्यकता होने पर आर्थिक लाभ काफी हैं।
एल्यूमीनियम वायरिंग के नुकसान इसके यांत्रिक और रासायनिक गुणों में निहित हैं। यह आसानी से एक इन्सुलेट ऑक्साइड बनाता है, जिससे कनेक्शन गर्म हो जाता है। कनेक्टर्स के लिए उपयोग की जाने वाली पीतल की सामग्री की तुलना में थर्मल विस्तार का इसका बड़ा गुणांक कनेक्शन को ढीला करने का कारण बनता है। एल्यूमीनियम भी लुढ़क सकता है, धीरे -धीरे लोड के तहत विकृत हो सकता है, जो कनेक्शन को भी ढीला करता है। इन प्रभावों को उपयुक्त रूप से डिज़ाइन किए गए कनेक्टर्स और इंस्टॉलेशन में अतिरिक्त देखभाल के साथ कम किया जा सकता है, लेकिन उन्होंने एल्यूमीनियम बिल्डिंग वायरिंग को अलोकप्रिय सेवा ड्रॉप के अतीत में बनाया है।
ऑक्टेन जैसे कार्बनिक यौगिक, जिसमें 8 कार्बन परमाणु और 18 हाइड्रोजन परमाणु होते हैं, बिजली का संचालन नहीं कर सकते। तेल हाइड्रोकार्बन होते हैं, क्योंकि कार्बन में टेट्रैकोवेलेंसी की संपत्ति होती है और हाइड्रोजन जैसे अन्य तत्वों के साथ सहसंयोजक बांड बनाते हैं, क्योंकि यह इलेक्ट्रॉनों को नहीं खोता है या प्राप्त नहीं करता है, इस प्रकार आयनों का निर्माण नहीं करता है। सहसंयोजक बॉन्ड केवल इलेक्ट्रॉनों का साझाकरण हैं। इसलिए, जब बिजली इसके माध्यम से पारित हो जाती है तो आयनों का कोई पृथक्करण नहीं होता है। केवल सहसंयोजक बॉन्ड के साथ यौगिकों से बने तरल पदार्थ बिजली का संचालन नहीं कर सकते। कुछ कार्बनिक आयनिक तरल पदार्थ, इसके विपरीत, एक आचरण कर सकते हैंविद्युत प्रवाह।
जबकि शुद्ध पानी एक विद्युत चालक नहीं है, यहां तक कि आयनिक अशुद्धियों का एक छोटा सा हिस्सा, जैसे कि नमक, तेजी से इसे एक अर्धचालक में बदल सकता है।
तार का आकार
तारों को उनके संपर्क क्षेत्र द्वारा मापा जाता है। कई देशों में, आकार वर्ग मिलीमीटर में व्यक्त किया जाता है। उत्तरी अमेरिका में, अर्धचालको को छोटे लोगों के लिए अमेरिकी तार गेज द्वारा मापा जाता है, और बड़े लोगों के लिए पारिभाषिक मिल्स।
सुचालक विद्युत धारा
एक अर्धचालक की स्पष्टीकरण, अर्थात्, विद्युत धारा की मात्रा वह ले जा सकती है, इसके विद्युत प्रतिरोध से संबंधित है: एक कम-प्रतिरोध अर्धचालक विद्युत धारा का एक बड़ा मूल्य हो सकता है। प्रतिरोध, बदले में, अर्धचालक द्वारा निर्धारित किया जाता है (जैसा कि ऊपर वर्णित है) और अर्धचालक के आकार का। किसी दिए गए सामग्री के लिए, एक बड़े क्रॉस-सेक्शनल क्षेत्र वाले अर्धचालको में छोटे क्रॉस-सेक्शनल क्षेत्र वाले अर्धचालको की तुलना में कम प्रतिरोध होता है।
केवल अर्धचालको के लिए, अंतिम सीमा वह बिंदु है जिस पर प्रतिरोध के लिए खो गई शक्ति अर्धचालक को पिघलाने का कारण बनती है। फ़्यूज़ के अलावा, वास्तविक दुनिया में अधिकांश अर्धचालक इस सीमा से बहुत नीचे संचालित होते हैं। उदाहरण के लिए, घरेलू वायरिंग आमतौर पर पीवीसी रोधन के साथ स्वाभाविक है जो केवल लगभग 60 और एनबीएसपी; ° सी तक संचालित करने के लिए है। जो मूल्य निर्धारित किया जाता है, इसलिए, इस तरह के तारों में विद्युत धारा को सीमित किया जाना चाहिए ताकि यह कभी भी 60 और एनबीएसपी से ऊपर तांबे के अर्धचालक को गर्म न करे; और आग का जोखिम न हो। अन्य, अधिक महंगे रोधन जैसे टेफ्लॉन या फाइबर ग्लास बहुत अधिक तापमान पर संचालन की अनुमति दे सकते हैं।
आइसोट्रॉपी
यदि किसी विद्युत क्षेत्र को किसी सामग्री पर लागू किया जाता है, और परिणामस्वरूप प्रेरित विद्युत प्रवाह एक ही दिशा में होता है, तो सामग्री को एक समदैशिक विद्युतीय अर्धचालक कहा जाता है। यदि परिणामस्वरूप विद्युत प्रवाह लागू विद्युत क्षेत्र से एक अलग दिशा में है, तो सामग्री को एनिसोट्रोपिक विद्युत अर्धचालक कहा जाता है।
यह भी देखें
εr″/εr′ | Current conduction | Field propagation |
---|---|---|
0 | perfect dielectric lossless medium | |
≪ 1 | low-conductivity material poor conductor |
low-loss medium good dielectric |
≈ 1 | lossy conducting material | lossy propagation medium |
≫ 1 | high-conductivity material good conductor |
high-loss medium poor dielectric |
∞ | perfect conductor |
- बंडल कंडक्टर
- चार्ज ट्रांसफर कॉम्प्लेक्स
- विद्युत प्रतिरोधकता और चालकता
- चौथा रेल
- अतिरिक्त रेखा
- स्टीफन ग्रे, पहले विद्युत कंडक्टर और इंसुलेटर की पहचान करने के लिए
- सुपरकंडक्टिविटी
- तीसरी रेल
संदर्भ
- ↑ 1.0 1.1 "Wire Sizes and Resistance" (PDF). Retrieved 2018-01-14.
- ↑ फ़िंक और बीटी, इलेक्ट्रिकल इंजीनियर्स के लिए मानक हैंडबुक 11 वें संस्करण, पृष्ठ 17-19
- ↑ "High conductivity coppers (electrical)". Copper Development Association (U.K.). Archived from the original on 2013-07-20. Retrieved 2013-06-01.
अग्रिम पठन
अग्रणी और ऐतिहासिक पुस्तकें
- विलियम हेनरी प्रीस।विद्युत कंडक्टरों पर।1883।
- ओलिवर हेविसाइड।बिजली के कागजात।मैकमिलन, 1894।
संदर्भ पुस्तकें
- एएसटीएम मानकों की वार्षिक पुस्तक: इलेक्ट्रिकल कंडक्टर। अमेरिकन सोसाइटी फार टेस्टिंग एंड मैटरियल्स।(प्रत्येक वर्ष)
- आईईटी वायरिंग नियम। इंजीनियरिंग और प्रौद्योगिकी के लिए संस्थान।]
बाहरी संबंध
- BBC: Key Stage 2 Bitesize: Electrical Conductors
- The discovery of conductors and insulators by Gray, Dufay and Franklin.