डीप इनलेस्टिक स्कैटरिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Physical process}}
{{short description|Physical process}}
[[Image:DIS.svg|right|upright=1.1|thumb|एक हैड्रॉन (एच) पर एक लेप्टान (एल) का गहरा अप्रत्यास्थ प्रकीर्णन, पर्टुरेटिव एक्सपेंशन में अग्रणी क्रम में। वर्चुअल फोटॉन (γ<sup>*</sup>) हैड्रोन से क्वार्क (q) को बाहर निकालता है।]]'''गहरा अप्रत्यास्थ प्रकीर्णन''' उस प्रक्रिया को दिया गया नाम है जिसका उपयोग [[इलेक्ट्रॉनों]], म्यूऑन और [[न्युट्रीनो]] का उपयोग करके [[हैड्रोन]] (विशेष रूप से बैरियन, जैसे प्रोटॉन और [[न्यूट्रॉन]]) के अंदर की जांच करने के लिए किया जाता है।<ref name="Devenish">{{cite book|doi=10.1093/acprof:oso/9780198506713.001.0001|title=डीप इनलेस्टिक स्कैटरिंग|year=2003|last1=Devenish|first1=Robin|author1-link=Robin Devenish|last2=Cooper-Sarkar|first2=Amanda|author2-link=Amanda Cooper-Sarkar|isbn=9780198506713}}</ref><ref name="Feltesse">{{cite conference
[[Image:DIS.svg|right|upright=1.1|thumb|एक हैड्रॉन (एच) पर एक लेप्टान (एल) का गहरा अप्रत्यास्थ प्रकीर्णन, पर्टर्बेटिव विस्तार में अग्रणी क्रम में। आभासी फोटॉन (γ<sup>*</sup>) एक क्वार्क (q) को हैड्रॉन से बाहर निकालता है।]]'''गहरा अप्रत्यास्थ प्रकीर्णन''' उस प्रक्रिया को दिया गया नाम है जिसका उपयोग [[इलेक्ट्रॉनों]], म्यूऑन और [[न्युट्रीनो]] का उपयोग करके [[हैड्रोन]] (विशेष रूप से बैरियन, जैसे प्रोटॉन और [[न्यूट्रॉन]]) के अंदर की जांच करने के लिए किया जाता है।<ref name="Devenish">{{cite book|doi=10.1093/acprof:oso/9780198506713.001.0001|title=डीप इनलेस्टिक स्कैटरिंग|year=2003|last1=Devenish|first1=Robin|author1-link=Robin Devenish|last2=Cooper-Sarkar|first2=Amanda|author2-link=Amanda Cooper-Sarkar|isbn=9780198506713}}</ref><ref name="Feltesse">{{cite conference
|first=Joël
|first=Joël
|last=Feltesse
|last=Feltesse
Line 9: Line 9:
|url=https://indico.cern.ch/event/153252/contributions/1396991/
|url=https://indico.cern.ch/event/153252/contributions/1396991/
|doi=10.3204/DESY-PROC-2012-02/6
|doi=10.3204/DESY-PROC-2012-02/6
}}</ref> इसका पहली बार प्रयास 1960 और 1970 के दशक में किया गया था और [[क्वार्क]] की वास्तविकता का पहला ठोस सबूत प्रदान किया गया था, जिसे उस बिंदु तक कई लोग पूरी तरह से गणितीय घटना मानते थे। यह प्रकीर्णन कण की बहुत अधिक ऊर्जा के लिए रदरफोर्ड प्रकीर्णन का विस्तार है और इस प्रकार नाभिक के घटकों के बहुत महीन विभेदन तक विस्तार है।
}}</ref> इसका पहली बार प्रयास 1960 और 1970 के दशक में किया गया था और [[क्वार्क]] की वास्तविकता का पहला ठोस सबूत प्रदान किया गया था, जिसे उस बिंदु तक कई लोग पूरी तरह से गणितीय घटना मानते थे। यह प्रकीर्णन कण की बहुत अधिक ऊर्जा के लिए रदरफोर्ड प्रकीर्णन का विस्तार है और इस प्रकार नाभिक के घटकों के बहुत सूक्ष्म विभेदन तक विस्तार है।


[[हेनरी वे केंडल]], [[जेरोम इसाक फ्रीडमैन]] और रिचर्ड ई. टेलर 1990 के [[नोबेल पुरस्कार]] के संयुक्त प्राप्तकर्ता थे, जिन्होंने "प्रोटॉन और बाध्य न्यूट्रॉन पर इलेक्ट्रॉनों के गहरे अप्रत्यास्थ प्रकीर्णन से संबंधित उनकी अग्रणी जांच के लिए, जो कण भौतिकी में क्वार्क मॉडल के विकास के लिए आवश्यक महत्व रखते है।"<ref name="nobel-citation">{{cite web |url=http://nobelprize.org/nobel_prizes/physics/laureates/1990/ |title=नोबेल पुरस्कार उद्धरण|publisher=Nobelprize.org |access-date=2011-01-08}}</ref>
[[हेनरी वे केंडल]], [[जेरोम इसाक फ्रीडमैन]] और रिचर्ड ई. टेलर 1990 के [[नोबेल पुरस्कार]] के संयुक्त प्राप्तकर्ता थे, जिन्होंने "प्रोटॉन और बाध्य न्यूट्रॉन पर इलेक्ट्रॉनों के गहरे अप्रत्यास्थ प्रकीर्णन से संबंधित उनकी अग्रणी जांच के लिए, जो कण भौतिकी में क्वार्क मॉडल के विकास के लिए आवश्यक महत्व रखते है।"<ref name="nobel-citation">{{cite web |url=http://nobelprize.org/nobel_prizes/physics/laureates/1990/ |title=नोबेल पुरस्कार उद्धरण|publisher=Nobelprize.org |access-date=2011-01-08}}</ref>
== विवरण ==
== विवरण ==
शब्दावली विज्ञान के प्रत्येक भाग को समझाने के लिए, "बिखराव" का तात्पर्य [[लेपटोन]] (इलेक्ट्रॉन, म्यूऑन, आदि) के विक्षेपण से है। विक्षेपण के कोणों को मापने से प्रक्रिया की प्रकृति के बारे में जानकारी मिलती है। अप्रत्यास्थ प्रकीर्णन प्रक्रिया का अर्थ है कि लक्ष्य कुछ गतिज ऊर्जा को अवशोषित करता है। वास्तव में, उपयोग किए गए लेप्टान की बहुत उच्च ऊर्जा पर, लक्ष्य "टूट जाता है" और कई नए कण उत्सर्जित करता है। ये कण हैड्रॉन हैं और, अधिक सरलीकृत करने के लिए, इस प्रक्रिया की लक्ष्य के एक घटक [[क्वार्क]] के रूप में व्याख्या की जाती है जिसे लक्ष्य हैड्रॉन से "बाहर" किया जाता है, और [[क्वार्क कारावास]] के कारण, क्वार्क वास्तव में देखे नहीं जाते हैं, बल्कि [[haronization|हेड्रोनाइजेशन]] द्वारा अवलोकन योग्य कणों का उत्पादन करते हैं। "डीप" लेप्टान की उच्च ऊर्जा को संदर्भित करता है, जो इसे बहुत छोटी [[ पदार्थ तरंग |तरंग दैर्ध्य]] देता है और इसलिए लक्ष्य हैड्रॉन के आकार की तुलना में छोटी दूरी की जांच करने की क्षमता देता है, इसलिए यह हैड्रॉन के "गहरे अंदर" की जांच कर सकता है। साथ ही, ध्यान दें कि पर्टर्बेटिव सिद्धांत (क्वांटम यांत्रिकी) सन्निकटन में यह लेप्टान से उत्सर्जित और लक्ष्य हैड्रॉन द्वारा अवशोषित एक उच्च-ऊर्जा [[आभासी कण|आभासी फोटॉन]] है जो ऊर्जा को इसके घटक क्वार्क में से एक में स्थानांतरित करता है, जैसा कि आसन्न आरेख में है।
शब्दावली विज्ञान के प्रत्येक भाग को समझाने के लिए, "प्रकीर्णन" का तात्पर्य [[लेपटोन]] (इलेक्ट्रॉन, म्यूऑन, आदि) के विक्षेपण से है। विक्षेपण के कोणों को मापने से प्रक्रिया की प्रकृति के बारे में जानकारी मिलती है। अप्रत्यास्थ प्रकीर्णन प्रक्रिया का अर्थ है कि लक्ष्य कुछ गतिज ऊर्जा को अवशोषित करता है। वास्तव में, उपयोग किए गए लेप्टान की बहुत उच्च ऊर्जा पर, लक्ष्य "टूट जाता है" और कई नए कण उत्सर्जित करता है। ये कण हैड्रॉन हैं और, अधिक सरलीकृत करने के लिए, इस प्रक्रिया की लक्ष्य के एक घटक [[क्वार्क]] के रूप में व्याख्या की जाती है जिसे लक्ष्य हैड्रॉन से "बाहर" किया जाता है, और [[क्वार्क कारावास]] के कारण, क्वार्क वास्तव में देखे नहीं जाते हैं, बल्कि [[haronization|हेड्रोनाइजेशन]] द्वारा अवलोकन योग्य कणों का उत्पादन करते हैं। "डीप" लेप्टान की उच्च ऊर्जा को संदर्भित करता है, जो इसे बहुत छोटी [[ पदार्थ तरंग |तरंग दैर्ध्य]] देता है और इसलिए लक्ष्य हैड्रॉन के आकार की तुलना में छोटी दूरी की जांच करने की क्षमता देता है, इसलिए यह हैड्रॉन के "गहरे अंदर" की जांच कर सकता है। साथ ही, ध्यान दें कि पर्टर्बेटिव सिद्धांत (क्वांटम यांत्रिकी) सन्निकटन में यह लेप्टान से उत्सर्जित और लक्ष्य हैड्रॉन द्वारा अवशोषित एक उच्च-ऊर्जा [[आभासी कण|आभासी फोटॉन]] है जो ऊर्जा को इसके घटक क्वार्क में से एक में स्थानांतरित करता है, जैसा कि आसन्न आरेख में है।
== इतिहास ==
== इतिहास ==
{{see also | क्वार्क#इतिहास }}
{{see also | क्वार्क#इतिहास }}


भौतिकी का [[मानक मॉडल]], विशेष रूप से 1960 के दशक में [[मरे गेल-मान]] का काम, [[कण भौतिकी]] में पहले से मौजूद असमान अवधारणाओं को एक, अपेक्षाकृत सरल, योजना में एकजुट करने में सफल रहा था। संक्षेप में, कण तीन प्रकार के थे:
भौतिकी का [[मानक मॉडल]], विशेष रूप से 1960 के दशक में [[मरे गेल-मान]] का काम, [[कण भौतिकी]] में पहले से उपस्थित असमान अवधारणाओं को एक, अपेक्षाकृत सरल, योजना में एकजुट करने में सफल रहा था। संक्षेप में, कण तीन प्रकार के थे:


* लेप्टान, जो कम द्रव्यमान वाले कण थे जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण। इनमें पूर्णांक विद्युत आवेश होता है।
* लेप्टान, जो कम द्रव्यमान वाले कण थे जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण। इनमें पूर्णांक विद्युत आवेश होता है।
* [[गेज बोसोन]], जो बलों का आदान-प्रदान करने वाले कण थे। इनमें द्रव्यमान रहित, आसानी से पहचाने जाने वाले फोटॉन (विद्युत-चुंबकीय बल का वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) [[ग्लुओन]] शामिल हैं जो मजबूत परमाणु बल ले जाते हैं।
* [[गेज बोसोन]], जो बलों का आदान-प्रदान करने वाले कण थे। इनमें द्रव्यमान रहित, आसानी से पहचाने जाने वाले फोटॉन (विद्युत-चुंबकीय बल का वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) [[ग्लुओन]] सम्मलित हैं जो मजबूत परमाणु बल ले जाते हैं।
* क्वार्क, जो विशाल कण थे जो आंशिक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के "निर्माण खंड" हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।
* क्वार्क, जो विशाल कण थे जो आंशिक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के "निर्माण खंड" हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।


[[लेप्टॉन]] का पता 1897 से लगाया गया था, जब जे. जे. थॉमसन ने दिखाया था कि विद्युत धारा इलेक्ट्रॉनों का प्रवाह है। कुछ बोसोन का नियमित रूप से पता लगाया जा रहा था, हालाँकि [[विद्युत शक्ति]] के W<sup>+</sup>, W<sup>−-</sup> और Z<sup>0</sup> कणों को केवल 1980 के दशक की शुरुआत में ही स्पष्ट रूप से देखा गया था, और ग्लून्स को लगभग उसी समय [[हैम्बर्ग]] में [[DESY|देसी]] में मजबूती से दबा दिया गया था। हालाँकि, क्वार्क अभी भी निवारणकर्ता थे।
[[लेप्टॉन]] का पता 1897 से लगाया गया था, जब जे. जे. थॉमसन ने दिखाया था कि विद्युत धारा इलेक्ट्रॉनों का प्रवाह है। कुछ बोसोन का नियमित रूप से पता लगाया जा रहा था, चूंकि [[विद्युत शक्ति]] के W<sup>+</sup>, W<sup>−-</sup> और Z<sup>0</sup> कणों को केवल 1980 के दशक की प्रारंभ में ही स्पष्ट रूप से देखा गया था, और ग्लून्स को प्राय उसी समय [[हैम्बर्ग]] में [[DESY|देसी]] में मजबूती से दबा दिया गया था। चूंकि, क्वार्क अभी भी निवारणकर्ता थे।


20वीं सदी के शुरुआती वर्षों में रदरफोर्ड के अभूतपूर्व प्रयोगों के आधार पर क्वार्क का पता लगाने के विचार तैयार किए गए। रदरफोर्ड ने सोने के परमाणुओं पर [[अल्फा कण|अल्फा कणों]] को फायर करके यह सिद्ध किया था कि परमाणुओं के केंद्र में एक छोटा, विशाल, आवेशित नाभिक होता है। अधिकांश बहुत कम या बिना किसी विचलन के गुजर गए थे, लेकिन कुछ बड़े कोणों से विक्षेपित हो गए थे या तुरंत वापस आ गए थे। इससे पता चला कि परमाणुओं की आंतरिक संरचना और बहुत सारी खाली जगह होती है।
20वीं सदी के प्रारंभी वर्षों में रदरफोर्ड के अभूतपूर्व प्रयोगों के आधार पर क्वार्क का पता लगाने के विचार तैयार किए गए। रदरफोर्ड ने सोने के परमाणुओं पर [[अल्फा कण|अल्फा कणों]] को फायर करके यह सिद्ध किया था कि परमाणुओं के केंद्र में एक छोटा, विशाल, आवेशित नाभिक होता है। अधिकांश बहुत कम या बिना किसी विचलन के गुजर गए थे, लेकिन कुछ बड़े कोणों से विक्षेपित हो गए थे या तुरंत वापस आ गए थे। इससे पता चला कि परमाणुओं की आंतरिक संरचना और बहुत सारी रिक्त जगह होती है।


बेरियोन के अंदरूनी हिस्सों की जांच करने के लिए, एक छोटे, भेदने वाले और आसानी से उत्पन्न होने वाले कण का उपयोग करने की आवश्यकता थी। इलेक्ट्रॉन इस भूमिका के लिए आदर्श थे, क्योंकि वे प्रचुर मात्रा में होते हैं और अपने विद्युत आवेश के कारण आसानी से उच्च ऊर्जा में त्वरित हो जाते हैं। 1968 में, [[स्टैनफोर्ड रैखिक त्वरक केंद्र]] (एसएलएसी) में, परमाणु नाभिक में प्रोटॉन और न्यूट्रॉन पर इलेक्ट्रॉनों को निकाल दिया गया था।<ref name="Bloom">
बेरियोन के अंदरूनी भागो की जांच करने के लिए, एक छोटे, भेदने वाले और आसानी से उत्पन्न होने वाले कण का उपयोग करने की आवश्यकता थी। इलेक्ट्रॉन इस भूमिका के लिए आदर्श थे, क्योंकि वे प्रचुर मात्रा में होते हैं और अपने विद्युत आवेश के कारण आसानी से उच्च ऊर्जा में त्वरित हो जाते हैं। 1968 में, [[स्टैनफोर्ड रैखिक त्वरक केंद्र]] (एसएलएसी) में, परमाणु नाभिक में प्रोटॉन और न्यूट्रॉन पर इलेक्ट्रॉनों को निकाल दिया गया था।<ref name="Bloom">
{{cite journal
{{cite journal
  |author=E. D. Bloom
  |author=E. D. Bloom
Line 56: Line 56:
  |archive-url  = https://web.archive.org/web/20081225093044/http://www.hueuni.edu.vn/hueuni/en/news_detail.php?NewsID=1606&PHPSESSID=909807ffc5b9c0288cc8d137ff063c72
  |archive-url  = https://web.archive.org/web/20081225093044/http://www.hueuni.edu.vn/hueuni/en/news_detail.php?NewsID=1606&PHPSESSID=909807ffc5b9c0288cc8d137ff063c72
  |archive-date = 2008-12-25
  |archive-date = 2008-12-25
}}</ref> बाद में प्रयोग<ref name="Feltesse"/> म्यूऑन और न्यूट्रिनो के साथ किए गए, लेकिन वही सिद्धांत लागू होते हैं।<ref name=Devenish/><ref>{{cite arXiv
}}</ref> पश्चात में प्रयोग<ref name="Feltesse"/> म्यूऑन और न्यूट्रिनो के साथ किए गए, लेकिन वही सिद्धांत लागू होते हैं।<ref name=Devenish/><ref>{{cite arXiv
  | last      = Jaffe
  | last      = Jaffe
  | first      = R.L.
  | first      = R.L.
Line 70: Line 70:
परिणामों के विश्लेषण से यह निष्कर्ष निकला कि हैड्रोन में वास्तव में आंतरिक संरचना होती है।
परिणामों के विश्लेषण से यह निष्कर्ष निकला कि हैड्रोन में वास्तव में आंतरिक संरचना होती है।


प्रयोग महत्वपूर्ण थे क्योंकि उन्होंने न केवल क्वार्क की भौतिक वास्तविकता की पुष्टि की, बल्कि यह भी साबित किया कि मानक मॉडल कण भौतिकविदों के लिए अनुसंधान का सही ढंग था।
प्रयोग महत्वपूर्ण थे क्योंकि उन्होंने न केवल क्वार्क की भौतिक वास्तविकता की पुष्टि की, बल्कि यह भी सिद्ध करना किया कि मानक मॉडल कण भौतिकविदों के लिए अनुसंधान का सही ढंग था।


== यह भी देखें ==
== यह भी देखें ==
Line 81: Line 81:
==अग्रिम पठन==
==अग्रिम पठन==
* {{cite book|doi=10.1088/978-0-7503-1140-3ch18|chapter=गहरा अकुशल इलेक्ट्रॉन-प्रोटॉन प्रकीर्णन|title=परमाणु एवं कण भौतिकी|year=2014|last1=एम्सलर|first1=क्लाउड|isbn=978-0-7503-1140-3}}
* {{cite book|doi=10.1088/978-0-7503-1140-3ch18|chapter=गहरा अकुशल इलेक्ट्रॉन-प्रोटॉन प्रकीर्णन|title=परमाणु एवं कण भौतिकी|year=2014|last1=एम्सलर|first1=क्लाउड|isbn=978-0-7503-1140-3}}
[[Category: बिखरने]] [[Category: प्रायोगिक कण भौतिकी]] [[Category: विज्ञान में 1960 के दशक]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:प्रायोगिक कण भौतिकी]]
[[Category:बिखरने]]
[[Category:विज्ञान में 1960 के दशक]]

Latest revision as of 11:45, 28 June 2023

एक हैड्रॉन (एच) पर एक लेप्टान (एल) का गहरा अप्रत्यास्थ प्रकीर्णन, पर्टर्बेटिव विस्तार में अग्रणी क्रम में। आभासी फोटॉन (γ*) एक क्वार्क (q) को हैड्रॉन से बाहर निकालता है।

गहरा अप्रत्यास्थ प्रकीर्णन उस प्रक्रिया को दिया गया नाम है जिसका उपयोग इलेक्ट्रॉनों, म्यूऑन और न्युट्रीनो का उपयोग करके हैड्रोन (विशेष रूप से बैरियन, जैसे प्रोटॉन और न्यूट्रॉन) के अंदर की जांच करने के लिए किया जाता है।[1][2] इसका पहली बार प्रयास 1960 और 1970 के दशक में किया गया था और क्वार्क की वास्तविकता का पहला ठोस सबूत प्रदान किया गया था, जिसे उस बिंदु तक कई लोग पूरी तरह से गणितीय घटना मानते थे। यह प्रकीर्णन कण की बहुत अधिक ऊर्जा के लिए रदरफोर्ड प्रकीर्णन का विस्तार है और इस प्रकार नाभिक के घटकों के बहुत सूक्ष्म विभेदन तक विस्तार है।

हेनरी वे केंडल, जेरोम इसाक फ्रीडमैन और रिचर्ड ई. टेलर 1990 के नोबेल पुरस्कार के संयुक्त प्राप्तकर्ता थे, जिन्होंने "प्रोटॉन और बाध्य न्यूट्रॉन पर इलेक्ट्रॉनों के गहरे अप्रत्यास्थ प्रकीर्णन से संबंधित उनकी अग्रणी जांच के लिए, जो कण भौतिकी में क्वार्क मॉडल के विकास के लिए आवश्यक महत्व रखते है।"[3]

विवरण

शब्दावली विज्ञान के प्रत्येक भाग को समझाने के लिए, "प्रकीर्णन" का तात्पर्य लेपटोन (इलेक्ट्रॉन, म्यूऑन, आदि) के विक्षेपण से है। विक्षेपण के कोणों को मापने से प्रक्रिया की प्रकृति के बारे में जानकारी मिलती है। अप्रत्यास्थ प्रकीर्णन प्रक्रिया का अर्थ है कि लक्ष्य कुछ गतिज ऊर्जा को अवशोषित करता है। वास्तव में, उपयोग किए गए लेप्टान की बहुत उच्च ऊर्जा पर, लक्ष्य "टूट जाता है" और कई नए कण उत्सर्जित करता है। ये कण हैड्रॉन हैं और, अधिक सरलीकृत करने के लिए, इस प्रक्रिया की लक्ष्य के एक घटक क्वार्क के रूप में व्याख्या की जाती है जिसे लक्ष्य हैड्रॉन से "बाहर" किया जाता है, और क्वार्क कारावास के कारण, क्वार्क वास्तव में देखे नहीं जाते हैं, बल्कि हेड्रोनाइजेशन द्वारा अवलोकन योग्य कणों का उत्पादन करते हैं। "डीप" लेप्टान की उच्च ऊर्जा को संदर्भित करता है, जो इसे बहुत छोटी तरंग दैर्ध्य देता है और इसलिए लक्ष्य हैड्रॉन के आकार की तुलना में छोटी दूरी की जांच करने की क्षमता देता है, इसलिए यह हैड्रॉन के "गहरे अंदर" की जांच कर सकता है। साथ ही, ध्यान दें कि पर्टर्बेटिव सिद्धांत (क्वांटम यांत्रिकी) सन्निकटन में यह लेप्टान से उत्सर्जित और लक्ष्य हैड्रॉन द्वारा अवशोषित एक उच्च-ऊर्जा आभासी फोटॉन है जो ऊर्जा को इसके घटक क्वार्क में से एक में स्थानांतरित करता है, जैसा कि आसन्न आरेख में है।

इतिहास

भौतिकी का मानक मॉडल, विशेष रूप से 1960 के दशक में मरे गेल-मान का काम, कण भौतिकी में पहले से उपस्थित असमान अवधारणाओं को एक, अपेक्षाकृत सरल, योजना में एकजुट करने में सफल रहा था। संक्षेप में, कण तीन प्रकार के थे:

  • लेप्टान, जो कम द्रव्यमान वाले कण थे जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण। इनमें पूर्णांक विद्युत आवेश होता है।
  • गेज बोसोन, जो बलों का आदान-प्रदान करने वाले कण थे। इनमें द्रव्यमान रहित, आसानी से पहचाने जाने वाले फोटॉन (विद्युत-चुंबकीय बल का वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) ग्लुओन सम्मलित हैं जो मजबूत परमाणु बल ले जाते हैं।
  • क्वार्क, जो विशाल कण थे जो आंशिक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के "निर्माण खंड" हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।

लेप्टॉन का पता 1897 से लगाया गया था, जब जे. जे. थॉमसन ने दिखाया था कि विद्युत धारा इलेक्ट्रॉनों का प्रवाह है। कुछ बोसोन का नियमित रूप से पता लगाया जा रहा था, चूंकि विद्युत शक्ति के W+, W−- और Z0 कणों को केवल 1980 के दशक की प्रारंभ में ही स्पष्ट रूप से देखा गया था, और ग्लून्स को प्राय उसी समय हैम्बर्ग में देसी में मजबूती से दबा दिया गया था। चूंकि, क्वार्क अभी भी निवारणकर्ता थे।

20वीं सदी के प्रारंभी वर्षों में रदरफोर्ड के अभूतपूर्व प्रयोगों के आधार पर क्वार्क का पता लगाने के विचार तैयार किए गए। रदरफोर्ड ने सोने के परमाणुओं पर अल्फा कणों को फायर करके यह सिद्ध किया था कि परमाणुओं के केंद्र में एक छोटा, विशाल, आवेशित नाभिक होता है। अधिकांश बहुत कम या बिना किसी विचलन के गुजर गए थे, लेकिन कुछ बड़े कोणों से विक्षेपित हो गए थे या तुरंत वापस आ गए थे। इससे पता चला कि परमाणुओं की आंतरिक संरचना और बहुत सारी रिक्त जगह होती है।

बेरियोन के अंदरूनी भागो की जांच करने के लिए, एक छोटे, भेदने वाले और आसानी से उत्पन्न होने वाले कण का उपयोग करने की आवश्यकता थी। इलेक्ट्रॉन इस भूमिका के लिए आदर्श थे, क्योंकि वे प्रचुर मात्रा में होते हैं और अपने विद्युत आवेश के कारण आसानी से उच्च ऊर्जा में त्वरित हो जाते हैं। 1968 में, स्टैनफोर्ड रैखिक त्वरक केंद्र (एसएलएसी) में, परमाणु नाभिक में प्रोटॉन और न्यूट्रॉन पर इलेक्ट्रॉनों को निकाल दिया गया था।[4][5][6] पश्चात में प्रयोग[2] म्यूऑन और न्यूट्रिनो के साथ किए गए, लेकिन वही सिद्धांत लागू होते हैं।[1][7]

टक्कर कुछ गतिज ऊर्जा को अवशोषित करती है, और इस प्रकार यह अप्रत्यास्थ प्रकीर्णन प्रक्रिया होती है। यह रदरफोर्ड प्रकीर्णन के विपरीत है, जो अप्रत्यास्थ है: गतिज ऊर्जा का कोई नुकसान नहीं है। इलेक्ट्रॉन नाभिक से निकलता है, और इसके प्रक्षेप पथ और वेग का पता लगाया जा सकता है।

परिणामों के विश्लेषण से यह निष्कर्ष निकला कि हैड्रोन में वास्तव में आंतरिक संरचना होती है।

प्रयोग महत्वपूर्ण थे क्योंकि उन्होंने न केवल क्वार्क की भौतिक वास्तविकता की पुष्टि की, बल्कि यह भी सिद्ध करना किया कि मानक मॉडल कण भौतिकविदों के लिए अनुसंधान का सही ढंग था।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Devenish, Robin; Cooper-Sarkar, Amanda (2003). डीप इनलेस्टिक स्कैटरिंग. doi:10.1093/acprof:oso/9780198506713.001.0001. ISBN 9780198506713.
  2. 2.0 2.1 Feltesse, Joël (March 2012). Introduction to Deep Inelastic Scattering: Past and Present. XX International Workshop on Deep-Inelastic Scattering and Related Subjects. University of Bonn. doi:10.3204/DESY-PROC-2012-02/6.
  3. "नोबेल पुरस्कार उद्धरण". Nobelprize.org. Retrieved 2011-01-08.
  4. E. D. Bloom; et al. (1969). "High-Energy Inelastic ep Scattering at 6° and 10°". Physical Review Letters. 23 (16): 930–934. Bibcode:1969PhRvL..23..930B. doi:10.1103/PhysRevLett.23.930.
  5. M. Breidenbach; et al. (1969). "Observed Behavior of Highly Inelastic Electron–Proton Scattering". Physical Review Letters. 23 (16): 935–939. Bibcode:1969PhRvL..23..935B. doi:10.1103/PhysRevLett.23.935. OSTI 1444731. S2CID 2575595.
  6. J. I. Friedman. "The Road to the Nobel Prize". Hue University. Archived from the original on 2008-12-25. Retrieved 2012-02-25.
  7. Jaffe, R.L. (1985). "Deep Inelastic Scattering with Application to Nuclear Targets". arXiv:2212.05616 [hep-ph].

अग्रिम पठन

  • एम्सलर, क्लाउड (2014). "गहरा अकुशल इलेक्ट्रॉन-प्रोटॉन प्रकीर्णन". परमाणु एवं कण भौतिकी. doi:10.1088/978-0-7503-1140-3ch18. ISBN 978-0-7503-1140-3.