सूचकांक-मिलान सामग्री: Difference between revisions
No edit summary |
|||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
[[प्रकाशिकी]] में, सूचकांक-मिलान सामग्री एक पदार्थ है, सामान्यतः एक तरल, सीमेंट (चिपकने वाला), या [[जेल]], जिसमें [[अपवर्तन]] का एक सूचकांक होता है जो किसी अन्य वस्तु (जैसे लेंस, सामग्री, फाइबर-ऑप्टिक, आदि) के नज़दीक होता है। | [[प्रकाशिकी]] में, '''सूचकांक-मिलान सामग्री''' एक पदार्थ है, सामान्यतः एक तरल, सीमेंट (चिपकने वाला), या [[जेल]], जिसमें [[अपवर्तन]] का एक सूचकांक होता है जो किसी अन्य वस्तु (जैसे लेंस, सामग्री, फाइबर-ऑप्टिक, आदि) के नज़दीक होता है। | ||
जब समान सूचकांक वाले दो पदार्थ संपर्क में होते हैं, तो प्रकाश एक से दूसरे में जाता है, न तो फ्रेनेल प्रतिबिंब और न ही अपवर्तन। जैसे, उनका उपयोग विज्ञान, इंजीनियरिंग और कला में विभिन्न उद्देश्यों के लिए किया जाता है। | जब समान सूचकांक वाले दो पदार्थ संपर्क में होते हैं, तो प्रकाश एक से दूसरे में जाता है, न तो फ्रेनेल प्रतिबिंब और न ही अपवर्तन। जैसे, उनका उपयोग विज्ञान, इंजीनियरिंग और कला में विभिन्न उद्देश्यों के लिए किया जाता है। | ||
उदाहरण के लिए, एक लोकप्रिय घरेलू प्रयोग में, एक कांच की छड़ को सूचकांक-मिलान वाले पारदर्शी द्रव जैसे खनिज | उदाहरण के लिए, एक लोकप्रिय घरेलू प्रयोग में, एक कांच की छड़ को सूचकांक-मिलान वाले पारदर्शी द्रव जैसे खनिज मिनरल स्पिरिट्स में डुबो कर लगभग अदृश्य बना दिया जाता है।<ref>[http://www.optics4kids.org/home/content/classroom-activities/medium/lose-a-glass-in-a-glass/ Optics For Kids - "Lose a glass in a glass" home experiment]</ref> | ||
== माइक्रोस्कोपी == | == माइक्रोस्कोपी == | ||
{{main|ऑइल इमर्श़न}} | {{main|ऑइल इमर्श़न}} | ||
ऑप्टिकल [[माइक्रोस्कोप]] में, | ऑप्टिकल [[माइक्रोस्कोप]] में, ऑइल इमर्श़न एक ऐसी तकनीक है जिसका उपयोग माइक्रोस्कोप के [[ऑप्टिकल संकल्प|ऑप्टिकल विभेदन]] को बढ़ाने के लिए किया जाता है। यह [[उद्देश्य (प्रकाशिकी)]] और नमूने दोनों को उच्च [[अपवर्तक सूचकांक]] के पारदर्शी तेल में डुबो कर प्राप्त किया जाता है, जिससे वस्तुनिष्ठ लेंस के [[संख्यात्मक छिद्र]] में वृद्धि होती है। | ||
ऑइल इमर्श़न पारदर्शी तेल होते हैं जिनमें माइक्रोस्कोपी में उपयोग के लिए आवश्यक विशिष्ट ऑप्टिकल और चिपचिपापन गुण होते हैं। उपयोग किए जाने वाले विशिष्ट तेलों में 1.515 के आसपास अपवर्तन का सूचकांक होता है।<ref>[http://www.olympusmicro.com/primer/anatomy/immersion.html "Microscope Objectives: Immersion Media"] {{Webarchive|url=https://web.archive.org/web/20160304192541/http://www.olympusmicro.com/primer/anatomy/immersion.html |date=2016-03-04 }} by Mortimer Abramowitz and Michael W. Davidson, ''[[Olympus Corporation|Olympus]] Microscopy Resource Center'' (website), 2002.</ref> | ऑइल इमर्श़न पारदर्शी तेल होते हैं जिनमें माइक्रोस्कोपी में उपयोग के लिए आवश्यक विशिष्ट ऑप्टिकल और चिपचिपापन गुण होते हैं। उपयोग किए जाने वाले विशिष्ट तेलों में 1.515 के आसपास अपवर्तन का सूचकांक होता है।<ref>[http://www.olympusmicro.com/primer/anatomy/immersion.html "Microscope Objectives: Immersion Media"] {{Webarchive|url=https://web.archive.org/web/20160304192541/http://www.olympusmicro.com/primer/anatomy/immersion.html |date=2016-03-04 }} by Mortimer Abramowitz and Michael W. Davidson, ''[[Olympus Corporation|Olympus]] Microscopy Resource Center'' (website), 2002.</ref> ऑइल इमर्श़न उद्देश्य एक वस्तुनिष्ठ लेंस है जिसे विशेष रूप से इस तरह से उपयोग करने के लिए डिज़ाइन किया गया है। तेल के सूचकांक को सामान्यतः माइक्रोस्कोप लेंस ग्लास और [[ कवर पर्ची |कवर स्लिप]] के सूचकांक से मिलान करने के लिए चुना जाता है। | ||
अधिक जानकारी के लिए, मुख्य लेख, | अधिक जानकारी के लिए, मुख्य लेख, ऑइल इमर्श़न देखें। कुछ सूक्ष्मदर्शी तेल के अलावा अन्य सूचकांक-मिलान सामग्री का भी उपयोग करते हैं; [[जल विसर्जन उद्देश्य|जल निमज्जन उद्देश्य]] और [[ठोस विसर्जन लेंस|ठोस निमज्जन लेंस]] देखें। | ||
== फाइबर ऑप्टिक्स | == फाइबर ऑप्टिक्स == | ||
फाइबर ऑप्टिक्स और [[दूरसंचार]] में, | फाइबर ऑप्टिक्स और [[दूरसंचार]] में, इंडेक्स-मैचिंग सामग्री का उपयोग मेटेड कनेक्टर्स के जोड़े के साथ या मैकेनिकल स्प्लिसेस के साथ निर्देशित मोड (रिटर्न लॉस के रूप में जाना जाता है) में परिलक्षित सिग्नल को निम्न अवस्था में लाने के लिए किया जा सकता है ([[ऑप्टिकल फाइबर कनेक्टर]] देखें)। सूचकांक-मिलान सामग्री के उपयोग के बिना, फ्रेस्नेल प्रतिबिंब एक फाइबर के चिकने सिरे पर तब तक घटित होंगे जब तक कि कोई फाइबर-वायु इंटरफ़ेस या अपवर्तक सूचकांक में अन्य महत्वपूर्ण बेमेल न होता हो। ये प्रतिबिंब −14 [[डेसिबल]] (यानी, घटना [[सिग्नलिंग (दूरसंचार)]] की प्रकाशीय शक्ति से 14 डीबी/dB निम्न) तक हो सकते हैं। जब परावर्तित संकेत संचारण सिरे पर लौटता है, तो यह फिर से परिलक्षित हो सकता है और 28 डीबी के स्तर पर प्राप्त करने वाले छोर पर वापस आ सकता है और प्रत्यक्ष संकेत के नीचे फाइबर हानि का दोगुना हो सकता है। परावर्तित संकेत भी फाइबर द्वारा पेश किए गए विलंब समय से दोगुना विलंबित होता है। प्रत्यक्ष सिग्नल पर आरोपित दो बार परावर्तित, विलंबित सिग्नल एक एनालॉग [[बेसबैंड]] एम्प्लिट्यूड-मॉडुलेटेड [[वीडियो]] सिग्नल को स्पष्ट रूप से नीचा दिखा सकता है। इसके विपरीत, डिजिटल ट्रांसमिशन के लिए, परावर्तित सिग्नल का प्रायः डिजिटल [[ऑप्टिकल रिसीवर]] के निर्णय बिंदु पर देखे गए सिग्नल पर कोई व्यावहारिक प्रभाव नहीं होगा, सीमांत मामलों को छोड़कर जहां बिट-त्रुटि अनुपात महत्वपूर्ण है। हालाँकि, कुछ डिजिटल ट्रांसमीटर जैसे कि वितरित फीडबैक लेजर को नियोजित करने वाले बैक रिफ्लेक्शन से प्रभावित हो सकते हैं और फिर बाहरी विनिर्देशों जैसे कि साइड मोड सप्रेशन रेशियो, संभावित रूप से डिग्रेडिंग सिस्टम बिट एरर रेशियो से गिर सकते हैं, इसलिए डीएफबी लेज़रों के लिए नेटवर्किंग मानक एक बैक-निर्दिष्ट कर सकते हैं- परावर्तन सहनशीलता जैसे -10 डीबी ट्रांसमीटरों के लिए ताकि वे अनुक्रमणिका मिलान के बिना भी विनिर्देशों के भीतर रहें। यह बैक-रिफ्लेक्शन टॉलरेंस एक ऑप्टिकल आइसोलेटर (प्रकाशीय पृथक्कारक) या न्यूनीकृत कपलिंग दक्षता के माध्यम से प्राप्त किया जा सकता है। | ||
कुछ अनुप्रयोगों के लिए, मानक पॉलिश कनेक्टर (जैसे एफसी / पीसी) के बजाय, कोण पॉलिश कनेक्टर (जैसे एफसी / एपीसी) का उपयोग किया जा सकता है, जिससे गैर-लंबवत पॉलिश कोण निर्देशित मोड में प्रारम्भ किए गए परावर्तित सिग्नल के अनुपात को बहुत | कुछ अनुप्रयोगों के लिए, मानक पॉलिश कनेक्टर (जैसे एफसी / पीसी) के बजाय, कोण पॉलिश कनेक्टर (जैसे एफसी / एपीसी) का उपयोग किया जा सकता है, जिससे गैर-लंबवत पॉलिश कोण निर्देशित मोड में प्रारम्भ किए गए परावर्तित सिग्नल के अनुपात को बहुत न्यूनीकृत कर देता है और फाइबर-एयर इंटरफेस के परिस्थितियों में भी करता हैl | ||
== प्रायोगिक द्रव गतिकी में == | == प्रायोगिक द्रव गतिकी में == | ||
{{main|द्रव गतिविज्ञान}} | {{main|द्रव गतिविज्ञान}} | ||
इन प्रणालियों में होने वाली विकृतियों को | इन प्रणालियों में होने वाली विकृतियों को निम्न करने के लिए तरल-तरल और तरल-ठोस (बहुचरण प्रवाह) प्रायोगिक प्रणालियों में सूचकांक मिलान का उपयोग किया जाता है,<ref>{{cite journal|title=A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows|authors=Wright, S.F., Zadrazil, I. & Markides, C.N.|journal=Experiments in Fluids |year=2017|volume=58 |issue=9|pages=108|bibcode=2017ExFl...58..108W|doi=10.1007/s00348-017-2386-y|doi-access=free}}</ref> यह कई इंटरफेस वाले सिस्टम के लिए विशेष रूप से महत्वपूर्ण है जो वैकल्पिक रूप से दुर्गम हो जाते हैं। अपवर्तक सूचकांक का मिलान [[प्रतिबिंब (भौतिकी)]], अपवर्तन, [[विवर्तन]] और घुमाव को निम्न करता है जो इंटरफेस पर होता है जो उन क्षेत्रों तक पहुंच की अनुमति देता है जो अन्यथा ऑप्टिकल माप के लिए दुर्गम होता है। यह विशेष रूप से [[लेजर-प्रेरित प्रतिदीप्ति]], [[कण छवि वेलोसिमेट्री]] और [[ कण ट्रैकिंग वेलोसिमेट्री |कण ट्रैकिंग वेलोसिमेट्री]] जैसे उन्नत ऑप्टिकल मापों के लिए महत्वपूर्ण है। | ||
== कला संरक्षण में == | == कला संरक्षण में == | ||
{{see also|कांच की वस्तुओं का संरक्षण एवं पुनरुद्धार}} | {{see also|कांच की वस्तुओं का संरक्षण एवं पुनरुद्धार}} | ||
यदि एक मूर्तिकला कई टुकड़ों में टूट जाती है, तो [[संरक्षण (सांस्कृतिक विरासत)]] [[पैरालॉइड बी -72]] या [[epoxy]] जैसे चिपकने वाले का उपयोग करके टुकड़ों को फिर से जोड़ सकता है। यदि मूर्तिकला एक पारदर्शी या अर्धपारदर्शी सामग्री (जैसे कांच) से बना है, तो सीम जहां टुकड़े जुड़े हुए हैं, सामान्यतः बहुत कम ध्यान देने योग्य होगा यदि चिपकने वाला अपवर्तक सूचकांक आसपास की वस्तु के अपवर्तक सूचकांक से मेल खाता है। इसलिए, कला संरक्षक वस्तुओं के सूचकांक को माप सकते हैं और फिर सूचकांक-मिलान चिपकने वाले का उपयोग कर सकते हैं। इसी तरह, पारदर्शी या अर्धपारदर्शी वस्तुओं में नुकसान (लापता खंड) प्रायः एक इंडेक्स-मिलान सामग्री का उपयोग करके भरे जाते हैं।<ref>{{cite journal|title=एपॉक्सी चिपकने के अपवर्तक सूचकांक को नियंत्रित करना|author1=John M. Messinger |author2=Peter T. Lansbury |url=http://cool.conservation-us.org/jaic/articles/jaic28-02-006.html |journal=Journal of the American Institute for Conservation |year=1989 |volume=28 |number=2 |pages=127–136|doi=10.2307/3179485 |jstor=3179485 }}</ref> | यदि एक मूर्तिकला कई टुकड़ों में टूट जाती है, तो [[संरक्षण (सांस्कृतिक विरासत)]] [[पैरालॉइड बी -72]] या [[epoxy]] जैसे चिपकने वाले का उपयोग करके टुकड़ों को फिर से जोड़ सकता है। यदि मूर्तिकला एक पारदर्शी या अर्धपारदर्शी सामग्री (जैसे कांच) से बना है, तो सीम जहां टुकड़े जुड़े हुए हैं, सामान्यतः बहुत कम ध्यान देने योग्य होगा यदि चिपकने वाला अपवर्तक सूचकांक आसपास की वस्तु के अपवर्तक सूचकांक से मेल खाता है। इसलिए, कला संरक्षक वस्तुओं के सूचकांक को माप सकते हैं और फिर सूचकांक-मिलान चिपकने वाले का उपयोग कर सकते हैं। इसी तरह, पारदर्शी या अर्धपारदर्शी वस्तुओं में नुकसान (लापता खंड) प्रायः एक इंडेक्स-मिलान सामग्री का उपयोग करके भरे जाते हैं।<ref>{{cite journal|title=एपॉक्सी चिपकने के अपवर्तक सूचकांक को नियंत्रित करना|author1=John M. Messinger |author2=Peter T. Lansbury |url=http://cool.conservation-us.org/jaic/articles/jaic28-02-006.html |journal=Journal of the American Institute for Conservation |year=1989 |volume=28 |number=2 |pages=127–136|doi=10.2307/3179485 |jstor=3179485 }}</ref> | ||
== ऑप्टिकल घटक | == ऑप्टिकल घटक चिपकाने में == | ||
कुछ ऑप्टिकल घटक, जैसे [[वोलास्टन प्रिज्म]] या [[निकोल प्रिज्म]], कई पारदर्शी टुकड़ों से बने होते हैं जो सीधे एक दूसरे से जुड़े होते हैं। चिपकने वाला सामान्यतः टुकड़ों से सूचकांक-मिलान होता है। ऐतिहासिक रूप से, इस एप्लिकेशन में [[कनाडा बालसम]] का उपयोग किया गया था, लेकिन अब एपॉक्सी या अन्य सिंथेटिक चिपकने का उपयोग करना | कुछ ऑप्टिकल घटक, जैसे [[वोलास्टन प्रिज्म]] या [[निकोल प्रिज्म]], कई पारदर्शी टुकड़ों से बने होते हैं जो सीधे एक दूसरे से जुड़े होते हैं। चिपकने वाला सामान्यतः टुकड़ों से सूचकांक-मिलान होता है। ऐतिहासिक रूप से, इस एप्लिकेशन में [[कनाडा बालसम]] का उपयोग किया गया था, लेकिन अब एपॉक्सी या अन्य सिंथेटिक चिपकने का उपयोग करना साधारण होता हैl | ||
==संदर्भ== | ==संदर्भ== | ||
*{{FS1037C}} | *{{FS1037C}} | ||
{{reflist}} | {{reflist}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:CS1 maint]] | |||
[[Category: | |||
[[Category:Created On 03/06/2023]] | [[Category:Created On 03/06/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia articles incorporating text from the Federal Standard 1037C|सूचकांक-मिलान सामग्री]] | |||
[[Category:ऑप्टिकल सामग्री]] | |||
[[Category:फाइबर ऑप्टिक्स]] |
Latest revision as of 11:36, 28 June 2023
प्रकाशिकी में, सूचकांक-मिलान सामग्री एक पदार्थ है, सामान्यतः एक तरल, सीमेंट (चिपकने वाला), या जेल, जिसमें अपवर्तन का एक सूचकांक होता है जो किसी अन्य वस्तु (जैसे लेंस, सामग्री, फाइबर-ऑप्टिक, आदि) के नज़दीक होता है।
जब समान सूचकांक वाले दो पदार्थ संपर्क में होते हैं, तो प्रकाश एक से दूसरे में जाता है, न तो फ्रेनेल प्रतिबिंब और न ही अपवर्तन। जैसे, उनका उपयोग विज्ञान, इंजीनियरिंग और कला में विभिन्न उद्देश्यों के लिए किया जाता है।
उदाहरण के लिए, एक लोकप्रिय घरेलू प्रयोग में, एक कांच की छड़ को सूचकांक-मिलान वाले पारदर्शी द्रव जैसे खनिज मिनरल स्पिरिट्स में डुबो कर लगभग अदृश्य बना दिया जाता है।[1]
माइक्रोस्कोपी
ऑप्टिकल माइक्रोस्कोप में, ऑइल इमर्श़न एक ऐसी तकनीक है जिसका उपयोग माइक्रोस्कोप के ऑप्टिकल विभेदन को बढ़ाने के लिए किया जाता है। यह उद्देश्य (प्रकाशिकी) और नमूने दोनों को उच्च अपवर्तक सूचकांक के पारदर्शी तेल में डुबो कर प्राप्त किया जाता है, जिससे वस्तुनिष्ठ लेंस के संख्यात्मक छिद्र में वृद्धि होती है।
ऑइल इमर्श़न पारदर्शी तेल होते हैं जिनमें माइक्रोस्कोपी में उपयोग के लिए आवश्यक विशिष्ट ऑप्टिकल और चिपचिपापन गुण होते हैं। उपयोग किए जाने वाले विशिष्ट तेलों में 1.515 के आसपास अपवर्तन का सूचकांक होता है।[2] ऑइल इमर्श़न उद्देश्य एक वस्तुनिष्ठ लेंस है जिसे विशेष रूप से इस तरह से उपयोग करने के लिए डिज़ाइन किया गया है। तेल के सूचकांक को सामान्यतः माइक्रोस्कोप लेंस ग्लास और कवर स्लिप के सूचकांक से मिलान करने के लिए चुना जाता है।
अधिक जानकारी के लिए, मुख्य लेख, ऑइल इमर्श़न देखें। कुछ सूक्ष्मदर्शी तेल के अलावा अन्य सूचकांक-मिलान सामग्री का भी उपयोग करते हैं; जल निमज्जन उद्देश्य और ठोस निमज्जन लेंस देखें।
फाइबर ऑप्टिक्स
फाइबर ऑप्टिक्स और दूरसंचार में, इंडेक्स-मैचिंग सामग्री का उपयोग मेटेड कनेक्टर्स के जोड़े के साथ या मैकेनिकल स्प्लिसेस के साथ निर्देशित मोड (रिटर्न लॉस के रूप में जाना जाता है) में परिलक्षित सिग्नल को निम्न अवस्था में लाने के लिए किया जा सकता है (ऑप्टिकल फाइबर कनेक्टर देखें)। सूचकांक-मिलान सामग्री के उपयोग के बिना, फ्रेस्नेल प्रतिबिंब एक फाइबर के चिकने सिरे पर तब तक घटित होंगे जब तक कि कोई फाइबर-वायु इंटरफ़ेस या अपवर्तक सूचकांक में अन्य महत्वपूर्ण बेमेल न होता हो। ये प्रतिबिंब −14 डेसिबल (यानी, घटना सिग्नलिंग (दूरसंचार) की प्रकाशीय शक्ति से 14 डीबी/dB निम्न) तक हो सकते हैं। जब परावर्तित संकेत संचारण सिरे पर लौटता है, तो यह फिर से परिलक्षित हो सकता है और 28 डीबी के स्तर पर प्राप्त करने वाले छोर पर वापस आ सकता है और प्रत्यक्ष संकेत के नीचे फाइबर हानि का दोगुना हो सकता है। परावर्तित संकेत भी फाइबर द्वारा पेश किए गए विलंब समय से दोगुना विलंबित होता है। प्रत्यक्ष सिग्नल पर आरोपित दो बार परावर्तित, विलंबित सिग्नल एक एनालॉग बेसबैंड एम्प्लिट्यूड-मॉडुलेटेड वीडियो सिग्नल को स्पष्ट रूप से नीचा दिखा सकता है। इसके विपरीत, डिजिटल ट्रांसमिशन के लिए, परावर्तित सिग्नल का प्रायः डिजिटल ऑप्टिकल रिसीवर के निर्णय बिंदु पर देखे गए सिग्नल पर कोई व्यावहारिक प्रभाव नहीं होगा, सीमांत मामलों को छोड़कर जहां बिट-त्रुटि अनुपात महत्वपूर्ण है। हालाँकि, कुछ डिजिटल ट्रांसमीटर जैसे कि वितरित फीडबैक लेजर को नियोजित करने वाले बैक रिफ्लेक्शन से प्रभावित हो सकते हैं और फिर बाहरी विनिर्देशों जैसे कि साइड मोड सप्रेशन रेशियो, संभावित रूप से डिग्रेडिंग सिस्टम बिट एरर रेशियो से गिर सकते हैं, इसलिए डीएफबी लेज़रों के लिए नेटवर्किंग मानक एक बैक-निर्दिष्ट कर सकते हैं- परावर्तन सहनशीलता जैसे -10 डीबी ट्रांसमीटरों के लिए ताकि वे अनुक्रमणिका मिलान के बिना भी विनिर्देशों के भीतर रहें। यह बैक-रिफ्लेक्शन टॉलरेंस एक ऑप्टिकल आइसोलेटर (प्रकाशीय पृथक्कारक) या न्यूनीकृत कपलिंग दक्षता के माध्यम से प्राप्त किया जा सकता है।
कुछ अनुप्रयोगों के लिए, मानक पॉलिश कनेक्टर (जैसे एफसी / पीसी) के बजाय, कोण पॉलिश कनेक्टर (जैसे एफसी / एपीसी) का उपयोग किया जा सकता है, जिससे गैर-लंबवत पॉलिश कोण निर्देशित मोड में प्रारम्भ किए गए परावर्तित सिग्नल के अनुपात को बहुत न्यूनीकृत कर देता है और फाइबर-एयर इंटरफेस के परिस्थितियों में भी करता हैl
प्रायोगिक द्रव गतिकी में
इन प्रणालियों में होने वाली विकृतियों को निम्न करने के लिए तरल-तरल और तरल-ठोस (बहुचरण प्रवाह) प्रायोगिक प्रणालियों में सूचकांक मिलान का उपयोग किया जाता है,[3] यह कई इंटरफेस वाले सिस्टम के लिए विशेष रूप से महत्वपूर्ण है जो वैकल्पिक रूप से दुर्गम हो जाते हैं। अपवर्तक सूचकांक का मिलान प्रतिबिंब (भौतिकी), अपवर्तन, विवर्तन और घुमाव को निम्न करता है जो इंटरफेस पर होता है जो उन क्षेत्रों तक पहुंच की अनुमति देता है जो अन्यथा ऑप्टिकल माप के लिए दुर्गम होता है। यह विशेष रूप से लेजर-प्रेरित प्रतिदीप्ति, कण छवि वेलोसिमेट्री और कण ट्रैकिंग वेलोसिमेट्री जैसे उन्नत ऑप्टिकल मापों के लिए महत्वपूर्ण है।
कला संरक्षण में
यदि एक मूर्तिकला कई टुकड़ों में टूट जाती है, तो संरक्षण (सांस्कृतिक विरासत) पैरालॉइड बी -72 या epoxy जैसे चिपकने वाले का उपयोग करके टुकड़ों को फिर से जोड़ सकता है। यदि मूर्तिकला एक पारदर्शी या अर्धपारदर्शी सामग्री (जैसे कांच) से बना है, तो सीम जहां टुकड़े जुड़े हुए हैं, सामान्यतः बहुत कम ध्यान देने योग्य होगा यदि चिपकने वाला अपवर्तक सूचकांक आसपास की वस्तु के अपवर्तक सूचकांक से मेल खाता है। इसलिए, कला संरक्षक वस्तुओं के सूचकांक को माप सकते हैं और फिर सूचकांक-मिलान चिपकने वाले का उपयोग कर सकते हैं। इसी तरह, पारदर्शी या अर्धपारदर्शी वस्तुओं में नुकसान (लापता खंड) प्रायः एक इंडेक्स-मिलान सामग्री का उपयोग करके भरे जाते हैं।[4]
ऑप्टिकल घटक चिपकाने में
कुछ ऑप्टिकल घटक, जैसे वोलास्टन प्रिज्म या निकोल प्रिज्म, कई पारदर्शी टुकड़ों से बने होते हैं जो सीधे एक दूसरे से जुड़े होते हैं। चिपकने वाला सामान्यतः टुकड़ों से सूचकांक-मिलान होता है। ऐतिहासिक रूप से, इस एप्लिकेशन में कनाडा बालसम का उपयोग किया गया था, लेकिन अब एपॉक्सी या अन्य सिंथेटिक चिपकने का उपयोग करना साधारण होता हैl
संदर्भ
- This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.
- ↑ Optics For Kids - "Lose a glass in a glass" home experiment
- ↑ "Microscope Objectives: Immersion Media" Archived 2016-03-04 at the Wayback Machine by Mortimer Abramowitz and Michael W. Davidson, Olympus Microscopy Resource Center (website), 2002.
- ↑ Wright, S.F., Zadrazil, I. & Markides, C.N. (2017). "A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows". Experiments in Fluids. 58 (9): 108. Bibcode:2017ExFl...58..108W. doi:10.1007/s00348-017-2386-y.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ John M. Messinger; Peter T. Lansbury (1989). "एपॉक्सी चिपकने के अपवर्तक सूचकांक को नियंत्रित करना". Journal of the American Institute for Conservation. 28 (2): 127–136. doi:10.2307/3179485. JSTOR 3179485.