ट्राइक्रिटिकल पॉइंट: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 44: | Line 44: | ||
</ref> | </ref> | ||
त्रिमहत्वपूर्ण बिंदु <math>\kappa=0.76/\sqrt{2}</math> सामान्यतः पर स्थित है , अर्थात <math>\kappa=1/\sqrt{2}</math> मूल्य से थोड़ा नीचे जहां टाइप-I टाइप-II सुपरकंडक्टर में जाता है। 2002 में [[मोंटे कार्लो विधि]] कार्लो पद्धति द्वारा भविष्यवाणी की पुष्टि की गई थी।<ref> | त्रिमहत्वपूर्ण बिंदु <math>\kappa=0.76/\sqrt{2}</math> सामान्यतः पर स्थित होते है , अर्थात <math>\kappa=1/\sqrt{2}</math> मूल्य से थोड़ा नीचे जहां टाइप-I टाइप-II सुपरकंडक्टर में जाता है। इस प०रकर से 2002 में [[मोंटे कार्लो विधि]] कार्लो पद्धति द्वारा भविष्यवाणी की पुष्टि की गई थी।<ref> | ||
{{cite journal | {{cite journal | ||
| title = Vortex interactions and thermally induced crossover from type-I to type-II superconductivity | | title = Vortex interactions and thermally induced crossover from type-I to type-II superconductivity | ||
Line 57: | Line 57: | ||
==संदर्भ== | ==संदर्भ== | ||
<references/> | <references/> | ||
{{CMP-stub}} | {{CMP-stub}} | ||
[[Category:All stub articles]] | |||
[[Category:Condensed matter stubs]] | |||
[[Category: | |||
[[Category:Created On 23/05/2023]] | [[Category:Created On 23/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:चरण संक्रमण]] | |||
[[Category:महत्वपूर्ण घटनाएं]] |
Latest revision as of 10:08, 30 June 2023
त्रिमहत्वपूर्ण बिंदु उस बिंदु को संदर्भित करता है जहां दूसरा आदेश चरण संक्रमण वक्र पहले आदेश चरण संक्रमण वक्र से मिलता है, जिसे पहली बार 1937 में लेव लैंडौ द्वारा प्रस्तुत किया गया था, जिसमें लैंडौ ने त्रिमहत्वपूर्ण बिंदु को निरंतर संक्रमण का महत्वपूर्ण बिंदु कहा था।[1][2] इस प्रकार से त्रिमहत्वपूर्ण बिंदु का पहला उदाहरण रॉबर्ट ग्रिफिथ्स (भौतिक विज्ञानी) | रॉबर्ट बी ग्रिफिथ्स द्वारा हीलियम-3 हीलियम-4 मिश्रण में दिखाया गया था।[3] संघनित पदार्थ भौतिकी और , पदार्थ के मैक्रोस्कोपिक भौतिक गुणों से निपटना, और ट्रिक्रिटिकल बिंदु प्रणाली के चरण आरेख में बिंदु है जिस पर चरण संतुलन | तीन-चरण सह-अस्तित्व समाप्त हो जाता है।[4] यह परिभाषा स्पष्ट रूप से साधारण महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) की परिभाषा के समानांतर होता है, जिस बिंदु पर दो-चरण सह-अस्तित्व पर समाप्त हो जाता है।
इस प्रकार से तीन-चरण सह-अस्तित्व के बिंदु को एक-घटक प्रणाली के लिए तीन बिंदु कहा जाता है, क्योंकि गिब्स के चरण नियम से, यह स्थिति केवल चरण आरेख में बिंदु के लिए प्राप्त की जाती है (F = 2-3+1 =0)।त्रिमहत्वपूर्ण बिंदुओं का अवलोकन करने के लिए, अधिक घटकों के साथ मिश्रण की आवश्यकता होती है। इसे इस प्रकार से दिखाया जा सकता है[5] वह तीन घटकों की न्यूनतम संख्या है जिसके लिए ये बिंदु प्रकट हो सकते हैं। और इस स्तथी में, किसी के पास तीन-चरण सह-अस्तित्व का द्वि-आयामी क्षेत्र हो सकता है (F = 2-3+3 =2) (इस प्रकार, इस क्षेत्र में प्रत्येक बिंदु त्रि-बिंदु से मेल खाता है)। यह क्षेत्र दो-चरण सह-अस्तित्व की दो महत्वपूर्ण रेखाओं में समाप्त होता है; ये दो महत्वपूर्ण रेखाएँ तब ही त्रिमहत्वपूर्ण बिंदु पर समाप्त हो जाती हैं। इसलिए यह बिंदु दो बार महत्वपूर्ण होती है, क्योंकि यह दो महत्वपूर्ण शाखाओं से संबंधित होती है।
वस्तुतः, इसका महत्वपूर्ण व्यवहार पारंपरिक महत्वपूर्ण बिंदु से अलग होता है: इस प्रकार से ऊपरी महत्वपूर्ण आयाम d=4 to d=3 तक कम हो जाता है, इसलिए लैंडौ सिद्धांत वास्तविक प्रणालियों के लिए तीन आयामों में प्रयुक्त किया जाता है (किन्तु उन प्रणालियों के लिए नहीं जिनके स्थानिक आयाम 2 या उससे कम होते है)।
ठोस अवस्था
यह प्रयोगात्मक रूप से अधिक सुविधाजनक होता है[6] इस प्रकार से चार घटकों वाले मिश्रण पर विचार करना जिसके लिए थर्मोडायनामिक चर (सामान्यतः दबाव या आयतन) को स्थिर रखा जाता है। यह स्थिति तब तीन घटकों के मिश्रण के लिए वर्णित तक कम हो जाती है।
ऐतिहासिक रूप से, यह लंबे समय के लिए स्पष्ट नहीं किया गया था कि अतिचालकता पहले या दूसरे क्रम के चरण संक्रमण से होकर निकलता है अथवा नहीं। यह प्रश्न अंततः 1982 में इसका निष्कर्ष यह निकला गया था।[7] यदि गिन्ज़बर्ग-लैंडौ पैरामीटर जो टाइप I सुपरकंडक्टर | टाइप- I और टाइप II सुपरकंडक्टर | टाइप- II सुपरकंडक्टर्स को (गिन्ज़बर्ग-लैंडौ सिद्धांत भी देखें) को अलग करता है, भंवर उतार-चढ़ाव महत्वपूर्ण हो जाते हैं जो संक्रमण को दूसरे क्रम में ले जाते हैं।[8]
त्रिमहत्वपूर्ण बिंदु सामान्यतः पर स्थित होते है , अर्थात मूल्य से थोड़ा नीचे जहां टाइप-I टाइप-II सुपरकंडक्टर में जाता है। इस प०रकर से 2002 में मोंटे कार्लो विधि कार्लो पद्धति द्वारा भविष्यवाणी की पुष्टि की गई थी।[9]
संदर्भ
- ↑ Landau, L. D. (1937). On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz., 11, 19.
- ↑ Landau, L. D., & Lifshitz, E. M. (2013). Statistical Physics: Volume 5 (Vol. 5). Elsevier.
- ↑ Griffiths, R. B. (1970). Thermodynamics near the two-fluid critical mixing point in He 3-He 4. Physical Review Letters, 24(13), 715.
- ↑ B. Widom, Theory of Phase Equilibrium, J. Phys. Chem. 1996, 100, 13190-13199
- ↑ ibid.
- ↑ A. S. Freitas & Douglas F. de Albuquerque (2015). "Existence of a tricritical point in the antiferromagnet KFe3(OH)6(SO4)2 on a kagome lattice". Phys. Rev. E. 91 (1): 012117. Bibcode:2015PhRvE..91a2117F. doi:10.1103/PhysRevE.91.012117. PMID 25679580.
- ↑ H. Kleinert (1982). "Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition" (PDF). Lettere al Nuovo Cimento. 35 (13): 405–412. doi:10.1007/BF02754760. S2CID 121012850.
- ↑ H. Kleinert (2006). "Vortex Origin of Tricritical Point in Ginzburg-Landau Theory" (PDF). Europhys. Lett. 74 (5): 889–895. arXiv:cond-mat/0509430. Bibcode:2006EL.....74..889K. doi:10.1209/epl/i2006-10029-5. S2CID 55633766.
- ↑ J. Hove; S. Mo; A. Sudbo (2002). "Vortex interactions and thermally induced crossover from type-I to type-II superconductivity" (PDF). Phys. Rev. B 66 (6): 064524. arXiv:cond-mat/0202215. Bibcode:2002PhRvB..66f4524H. doi:10.1103/PhysRevB.66.064524. S2CID 13672575.