अनुकूली हिस्टोग्राम समीकरण: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Computer image processing technique}} {{Use American English|date=March 2021}} {{Use mdy dates|date=March 2021}} एडेप्टिव हिस्...")
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 3: Line 3:
{{Use mdy dates|date=March 2021}}
{{Use mdy dates|date=March 2021}}


एडेप्टिव [[हिस्टोग्राम]] इक्वलाइज़ेशन (एएचई) एक कंप्यूटर [[ मूर्ति प्रोद्योगिकी ]] तकनीक है जिसका उपयोग छवियों में [[कंट्रास्ट (दृष्टि)]] को बेहतर बनाने के लिए किया जाता है। यह सामान्य [[हिस्टोग्राम समीकरण]] से इस संबंध में भिन्न है कि अनुकूली विधि कई हिस्टोग्राम की गणना करती है, प्रत्येक छवि के एक अलग खंड के अनुरूप होती है, और छवि के लपट मूल्यों को पुनर्वितरित करने के लिए उनका उपयोग करती है। इसलिए यह स्थानीय कंट्रास्ट को बेहतर बनाने और छवि के प्रत्येक क्षेत्र में किनारों की परिभाषा को बढ़ाने के लिए उपयुक्त है।
'''एडाप्टिव [[हिस्टोग्राम]] इक्वलाइजेशन''' (एएचई) एक कंप्यूटर [[ मूर्ति प्रोद्योगिकी |इमेज प्रोसेसिंग]] तकनीक है जिसका उपयोग किसी इमेज में [[कंट्रास्ट (दृष्टि)]] को बेहतर बनाने के लिए किया जाता है। यह सामान्य [[हिस्टोग्राम समीकरण|हिस्टोग्राम समानीकरण]] द्वारा इस संबंध में भिन्न है कि अनुकूलीय विधि कई हिस्टोग्राम की गणना करती है, जो कि प्रत्येक इमेज के एक अलग खंड के अनुरूप होती है, और इमेज के निम्नतम मूल्यों को पुनर्वितरित करने के लिए उनका उपयोग करती है। इसलिए यह स्थानीय कंट्रास्ट को बेहतर बनाने और इमेज के प्रत्येक क्षेत्र में किनारों की स्पष्टता को संवर्धित करने के लिए उपयुक्त सहयोगी है।


हालांकि, एएचई में एक छवि के अपेक्षाकृत सजातीय क्षेत्रों में [[संकेत शोर]] को अधिक बढ़ाने की प्रवृत्ति होती है। #Contrast_Limited_AHE|कंट्रास्ट लिमिटेड एडेप्टिव हिस्टोग्राम इक्वलाइजेशन (CLAHE) नामक अनुकूली हिस्टोग्राम इक्वलाइजेशन का एक प्रकार प्रवर्धन को सीमित करके इसे रोकता है।
हालांकि, एएचई में एक इमेज के अपेक्षाकृत सजातीय क्षेत्रों में [[संकेत शोर|सिग्नल नॉइज़]] को अधिक संवर्धित करने की प्रवृत्ति होती है। कंट्रास्ट लिमिटेड एडाप्टिव हिस्टोग्राम इक्वलाइजेशन (सीएलएएचई) नामक एएचई का एक प्रकार प्रवर्धन को सीमित करके इसे आरक्षित करता है।


== प्रेरणा और विधि की व्याख्या ==
== प्रेरणा और विधि की व्याख्या ==


साधारण हिस्टोग्राम समीकरण सभी पिक्सल को बदलने के लिए छवि हिस्टोग्राम से प्राप्त समान परिवर्तन का उपयोग करता है। यह अच्छी तरह से काम करता है जब पिक्सेल मानों का वितरण पूरी छवि में समान होता है। हालाँकि, जब छवि में ऐसे क्षेत्र होते हैं जो अधिकांश छवि की तुलना में काफी हल्के या गहरे होते हैं, तो उन क्षेत्रों में कंट्रास्ट पर्याप्त रूप से नहीं बढ़ाया जाएगा।
साधारण हिस्टोग्राम समानीकरण सभी पिक्सल को परिवर्तित करने के लिए इमेज हिस्टोग्राम से प्राप्त समान परिवर्तन का उपयोग करता है। यह अच्छी तरह से तब काम करता है जब पिक्सेल मानों का वितरण पूरी इमेज में समान होता है। हालाँकि, जब इमेज में ऐसे क्षेत्र होते हैं जो अधिकांश इमेज की तुलना में काफी हल्के या गहरे होते हैं, तो उन क्षेत्रों में कंट्रास्ट पर्याप्त रूप से नहीं बढ़ाया जा सकता है।


अनुकूली हिस्टोग्राम इक्वलाइजेशन (एएचई) प्रत्येक पिक्सेल को एक पड़ोस क्षेत्र से प्राप्त परिवर्तन फ़ंक्शन के साथ बदलकर इसमें सुधार करता है। यह पहली बार विमान कॉकपिट डिस्प्ले में उपयोग के लिए विकसित किया गया था।<ref name="klw74">D. J. Ketcham, R. W. Lowe & J. W. Weber: ''Image enhancement techniques for cockpit displays''. Tech. rep., Hughes Aircraft. 1974.</ref><sup></sup> में उद्धृत<ref name="hummel77">R. A. Hummel: ''Image Enhancement by Histogram Transformation''. Computer Graphics and Image Processing 6 (1977) 184195.</ref> अपने सरलतम रूप में, प्रत्येक पिक्सेल को पिक्सेल के आसपास के वर्ग के हिस्टोग्राम के आधार पर रूपांतरित किया जाता है, जैसा कि नीचे दी गई आकृति में है। हिस्टोग्राम से परिवर्तन कार्यों की व्युत्पत्ति सामान्य हिस्टोग्राम समीकरण के समान ही होती है: परिवर्तन फ़ंक्शन पड़ोस में पिक्सेल मानों के संचयी वितरण फ़ंक्शन (सीडीएफ) के समानुपाती होता है।
एडाप्टिव हिस्टोग्राम इक्वलाइजेशन (एएचई) प्रत्येक पिक्सेल को एक निकटतम क्षेत्र से प्राप्त परिवर्तन फलन के साथ परिवर्तित कर इसमें सुधार करता है। यह पहली बार वायुयान [[कॉकपिट]] डिस्प्ले में उपयोग के लिए विकसित किया गया था।<ref name="klw74">D. J. Ketcham, R. W. Lowe & J. W. Weber: ''Image enhancement techniques for cockpit displays''. Tech. rep., Hughes Aircraft. 1974.</ref> इमेज में उद्धृत<ref name="hummel77">R. A. Hummel: ''Image Enhancement by Histogram Transformation''. Computer Graphics and Image Processing 6 (1977) 184195.</ref> अपने सरलतम रूप में प्रत्येक पिक्सेल को आसपास के वर्ग के हिस्टोग्राम के आधार पर रूपांतरित किया जाता है, जैसा कि नीचे दी गई आकृति में है। हिस्टोग्राम से परिवर्तित कार्यों की व्युत्पत्ति सामान्य हिस्टोग्राम समानीकरण के समान ही होती है, परिणामतः परिवर्तन फलन निकटतम पिक्सेल मानों के संचयी वितरण फलन (सीडीएफ) के समानुपाती होता है। यह एएचई को इमेज के बड़े पैमाने पर सजातीय क्षेत्रों में नॉइज़ की कुछ मात्रा को अधिक बढ़ा देता है।


[[Image:AHE-neighbourhoods.svg|center|300 पीएक्स]]छवि सीमा के पास के पिक्सेल को विशेष रूप से व्यवहार करना पड़ता है, क्योंकि उनका पड़ोस पूरी तरह से छवि के भीतर नहीं होगा। यह उदाहरण के लिए चित्र में बाईं ओर या नीले पिक्सेल के ऊपर पिक्सेल पर लागू होता है। छवि सीमा के संबंध में पिक्सेल लाइनों और स्तंभों को मिरर करके छवि को विस्तारित करके इसे हल किया जा सकता है। बस सीमा पर पिक्सेल लाइनों की नकल करना उचित नहीं है, क्योंकि इससे अत्यधिक शिखर वाले पड़ोस का हिस्टोग्राम बन जाएगा।
[[Image:AHE-neighbourhoods.svg|center|300 पीएक्स]]इमेज क्षेत्र के पास के पिक्सेल को विशेष रूप से व्यवहार करना पड़ता है, क्योंकि उनका निकटतम फंक्शन पूरी तरह से इमेज के अंतर्गत नहीं होगा। यह उदाहरण के लिए चित्र में बाईं ओर या नीले पिक्सेल के ऊपर लागू होता है। इमेज सीमा के संबंध में [[पिक्सेल]] लाइनों और स्तंभों को प्रतिरूप करके इमेज को विस्तारित करके इसे हल किया जा सकता है। बस सीमा पर पिक्सेल लाइनों की नकल करना उचित नहीं है, क्योंकि इससे अत्यधिक शिखर वाले निकटतम फंक्शन का हिस्टोग्राम बन जाएगा।


== AHE के गुण ==
== एएचई के गुण ==


* पड़ोस क्षेत्र का आकार विधि का एक पैरामीटर है। यह एक विशेषता लंबाई पैमाने का गठन करता है: छोटे पैमाने पर कंट्रास्ट बढ़ाया जाता है, जबकि बड़े पैमाने पर कंट्रास्ट कम हो जाता है।
* निकटतम क्षेत्र का आकार विधि का एक [[पैरामीटर]] है। यह एक विशेषता लंबाई पैमाने का गठन करता है: छोटे पैमाने पर कंट्रास्ट बढ़ाया जाता है, जबकि बड़े पैमाने पर कंट्रास्ट कम हो जाता है।
* हिस्टोग्राम समीकरण की प्रकृति के कारण, AHE के तहत एक पिक्सेल का परिणाम मान उसके पड़ोस में पिक्सेल के बीच उसकी रैंक के समानुपाती होता है। यह विशेषज्ञ हार्डवेयर पर एक कुशल कार्यान्वयन की अनुमति देता है जो पड़ोस में अन्य सभी पिक्सेल के साथ केंद्र पिक्सेल की तुलना कर सकता है।<ref name="clahe87" /> केंद्र पिक्सेल की तुलना में छोटे मान वाले प्रत्येक पिक्सेल के लिए 2 जोड़कर और समान मान वाले प्रत्येक पिक्सेल के लिए 1 जोड़कर एक असामान्य परिणाम मान की गणना की जा सकती है।
* हिस्टोग्राम समानीकरण की प्रकृति के कारण, एएचई के तहत एक पिक्सेल का परिणाम मान उसके निकटतम में पिक्सेल के बीच उसकी रैंक के समानुपाती होता है। यह विशेषज्ञ [[हार्डवेयर-असिस्टेड वर्चुअलाइजेशन|हार्डवेयर]] पर एक निर्धारित कार्यान्वयन की अनुमति देता है जो निकटतम में अन्य सभी पिक्सेल के साथ केंद्र पिक्सेल की तुलना कर सकता है।<ref name="clahe87" /> केंद्र पिक्सेल की तुलना में छोटे मान वाले प्रत्येक पिक्सेल के लिए 2 जोड़कर और समान मान वाले प्रत्येक पिक्सेल के लिए 1 जोड़कर एक असामान्य परिणाम मान की गणना की जा सकती है।
* जब पिक्सेल के पड़ोस वाला छवि क्षेत्र तीव्रता के संबंध में काफी सजातीय होता है, तो इसका हिस्टोग्राम दृढ़ता से चरम पर होगा, और परिवर्तन फ़ंक्शन परिणाम छवि की पूरी श्रृंखला में पिक्सेल मानों की एक संकीर्ण श्रेणी को मैप करेगा। यह एएचई को छवि के बड़े पैमाने पर सजातीय क्षेत्रों में शोर की थोड़ी मात्रा को अधिक बढ़ा देता है।<ref name="zuigem">K. Zuiderveld: ''Contrast Limited Adaptive Histogram Equalization''. In: P. Heckbert: ''Graphics Gems IV'', Academic Press 1994, {{ISBN|0-12-336155-9}}</ref>
* जब पिक्सेल के निकटतम फलन वाला इमेज क्षेत्र तीव्रता के संबंध में काफी सजातीय होता है, तो इसका हिस्टोग्राम दृढ़ता से चरम पर होगा, और परिवर्तन फलन परिणाम इमेज की पूरी श्रृंखला में पिक्सेल मानों की एक संकीर्ण श्रेणी को प्रारूपित करेगा। यह एएचई को इमेज के बड़े पैमाने पर सजातीय क्षेत्रों में नॉइज़ की कुछ मात्रा को अधिक बढ़ा देता है।<ref name="zuigem">K. Zuiderveld: ''Contrast Limited Adaptive Histogram Equalization''. In: P. Heckbert: ''Graphics Gems IV'', Academic Press 1994, {{ISBN|0-12-336155-9}}</ref>




== कंट्रास्ट लिमिटेड एएचई ==
== कंट्रास्ट लिमिटेड एएचई ==


साधारण एएचई छवि के निकट-स्थिर क्षेत्रों में कंट्रास्ट को अधिक बढ़ा देता है, क्योंकि ऐसे क्षेत्रों में हिस्टोग्राम अत्यधिक केंद्रित होता है। परिणामस्वरूप, एएचई निकट-निरंतर क्षेत्रों में शोर को बढ़ा सकता है। कंट्रास्ट लिमिटेड AHE (CLAHE) एडेप्टिव हिस्टोग्राम इक्वलाइजेशन का एक प्रकार है जिसमें कंट्रास्ट प्रवर्धन सीमित होता है, ताकि शोर प्रवर्धन की इस समस्या को कम किया जा सके।<ref name="clahe87">S. M. Pizer, E. P. Amburn, J. D. Austin, et al.: ''Adaptive Histogram Equalization and Its Variations''. Computer Vision, Graphics, and Image Processing 39 (1987) 355-368.</ref>
साधारण एएचई इमेज के निकट-स्थिर क्षेत्रों में कंट्रास्ट को अधिक बढ़ा देता है, क्योंकि ऐसे क्षेत्रों में हिस्टोग्राम अत्यधिक केंद्रित होता है। परिणामस्वरूप, एएचई निकट-निरंतर क्षेत्रों में नॉइज़ को बढ़ा सकता है। कंट्रास्ट लिमिटेड एएचई (सीएलएएचई) एडाप्टिव हिस्टोग्राम इक्वलाइजेशन का एक प्रकार है जिसमें कंट्रास्ट प्रवर्धन सीमित होता है, ताकि नॉइज़ प्रवर्धन की इस समस्या को कम किया जा सके।<ref name="clahe87">S. M. Pizer, E. P. Amburn, J. D. Austin, et al.: ''Adaptive Histogram Equalization and Its Variations''. Computer Vision, Graphics, and Image Processing 39 (1987) 355-368.</ref>
CLAHE में, किसी दिए गए पिक्सेल मान के आसपास के विपरीत प्रवर्धन परिवर्तन फ़ंक्शन के ढलान द्वारा दिया जाता है। यह पड़ोस संचयी वितरण फ़ंक्शन (CDF) के ढलान के समानुपाती होता है और इसलिए उस पिक्सेल मान पर हिस्टोग्राम के मान के समानुपाती होता है। CLAHE, CDF की गणना करने से पहले हिस्टोग्राम को पूर्वनिर्धारित मान पर क्लिप करके प्रवर्धन को सीमित करता है। यह सीडीएफ और इसलिए परिवर्तन समारोह के ढलान को सीमित करता है। वह मान जिस पर हिस्टोग्राम को क्लिप किया जाता है, तथाकथित क्लिप सीमा, हिस्टोग्राम के सामान्यीकरण पर निर्भर करता है और इस तरह पड़ोस के क्षेत्र के आकार पर निर्भर करता है। सामान्य मान परिणामी प्रवर्धन को 3 और 4 के बीच सीमित करते हैं।


हिस्टोग्राम के उस हिस्से को छोड़ना फायदेमंद नहीं है जो क्लिप सीमा से अधिक है, लेकिन इसे सभी हिस्टोग्राम डिब्बे के बीच समान रूप से पुनर्वितरित करना है।<ref name="clahe87"/>
सीएलएएचई में, किसी दिए गए पिक्सेल मान के आसपास के विपरीत प्रवर्धन परिवर्तन फलन के प्रवणता द्वारा दिया जाता है। यह निकटतम संचयी वितरण फलन (सीडीएफ) के प्रवणता के समानुपाती होता है और इसलिए यह उस पिक्सेल मान पर हिस्टोग्राम के मान के समानुपाती होता है। सीएलएएचई, सीडीएफ की गणना करने से पहले हिस्टोग्राम को पूर्वनिर्धारित मान पर क्लिप करके प्रवर्धन को सीमित करता है। यह सीडीएफ और इसलिए परिवर्तन फंक्शन के प्रवणता को सीमित करता है। वह मान जिस पर हिस्टोग्राम को क्लिप किया जाता है, तथाकथित क्लिप सीमा हिस्टोग्राम के सामान्यीकरण पर निर्भर करता है और इस तरह निकटतम फंक्शन के क्षेत्र के आकार पर निर्भर करता है। सामान्य मान परिणामी प्रवर्धन को 3 और 4 के बीच सीमित करते हैं।


[[Image:Clahe-redist.svg|center|300 पीएक्स]]पुनर्वितरण कुछ डिब्बे को फिर से क्लिप सीमा (चित्र में क्षेत्र छायांकित हरा) से ऊपर धकेल देगा, जिसके परिणामस्वरूप एक प्रभावी क्लिप सीमा होगी जो निर्धारित सीमा से बड़ी है और जिसका सटीक मूल्य छवि पर निर्भर करता है। यदि यह अवांछनीय है, तो पुनर्वितरण प्रक्रिया को पुनरावर्ती रूप से दोहराया जा सकता है जब तक कि अतिरिक्त नगण्य न हो।
हिस्टोग्राम के उस हिस्से को छोड़ना लाभप्रद नहीं है जो क्लिप सीमा से अधिक है, लेकिन इसे सभी हिस्टोग्राम बॉक्स के बीच समान रूप से पुनर्वितरित करना लाभकारी हो सकता है।<ref name="clahe87" />


== इंटरपोलेशन द्वारा कुशल गणना ==
[[Image:Clahe-redist.svg|center|300 पीएक्स]]पुनर्वितरण कुछ बॉक्स को फिर से क्लिप सीमा (चित्र में क्षेत्र छायांकित हरा) से ऊपर धकेल देगा, जिसके परिणामस्वरूप एक प्रभावी क्लिप सीमा होगी जो निर्धारित सीमा से बड़ी है और जिसका निर्धारित मूल्य इमेज पर निर्भर करता है। यदि यह अवांछनीय है, तो पुनर्वितरण प्रक्रिया को पुनरावर्ती रूप से दोहराया जा सकता है जब तक कि अतिरिक्त मान नगण्य न हो।


अनुकूली हिस्टोग्राम समीकरण ऊपर प्रस्तुत अपने सीधे रूप में, विपरीत सीमा के साथ और बिना दोनों के, छवि में प्रत्येक पिक्सेल के लिए एक अलग पड़ोस हिस्टोग्राम और परिवर्तन फ़ंक्शन की गणना की आवश्यकता होती है। यह विधि को कम्प्यूटेशनल रूप से बहुत महंगा बनाता है।
== अंतर्वेशन द्वारा निर्धारित गणना ==


प्रक्षेप परिणाम की गुणवत्ता से समझौता किए बिना दक्षता में महत्वपूर्ण सुधार की अनुमति देता है।<ref name="clahe87"/>  छवि को समान आकार की आयताकार टाइलों में विभाजित किया गया है जैसा कि नीचे दी गई आकृति के दाहिने भाग में दिखाया गया है। (8 कॉलम और 8 पंक्तियों में 64 टाइलें एक आम पसंद हैं।<ref name="zuigem"/>). फिर प्रत्येक टाइल के लिए एक हिस्टोग्राम, सीडीएफ और रूपांतरण फ़ंक्शन की गणना की जाती है। परिवर्तन कार्य टाइल केंद्र पिक्सेल (चित्र के बाएं भाग में काले वर्ग) के लिए उपयुक्त हैं। अन्य सभी पिक्सेल उनके निकटतम केंद्र पिक्सेल वाले टाइलों के चार परिवर्तन कार्यों के साथ रूपांतरित होते हैं, और [[द्विरेखीय प्रक्षेप]] मान निर्दिष्ट किए जाते हैं। छवि के थोक में पिक्सेल (नीला छायांकित) [[रेखिक आंतरिक]] हैं, सीमा के करीब पिक्सेल (छायांकित हरा) रैखिक इंटरपोलेशन हैं, और कोनों के पास पिक्सेल (छायांकित लाल) कोने टाइल के परिवर्तन फ़ंक्शन के साथ रूपांतरित होते हैं। प्रक्षेप गुणांक निकटतम टाइल केंद्र पिक्सेल के बीच पिक्सेल के स्थान को दर्शाता है, ताकि परिणाम निरंतर हो क्योंकि पिक्सेल एक टाइल केंद्र तक पहुंचता है।
अनुकूलीय हिस्टोग्राम समानीकरण ऊपर प्रस्तुत अपने सीधे रूप में, विपरीत सीमा के साथ और बिना दोनों के इमेज में प्रत्येक पिक्सेल के लिए एक अलग निकटतम हिस्टोग्राम और परिवर्तन फलन की गणना की आवश्यकता होती है। यह विधि को कम्प्यूटेशनल रूप से बहुत जटिल बनाता है।


[[Image:Clahe-tileinterpol.svg|center|450 पीएक्स]]यह प्रक्रिया रूपांतरण कार्यों की संख्या को नाटकीय रूप से कम कर देती है और केवल रैखिक प्रक्षेप की छोटी अतिरिक्त लागत लगाती है।
प्रक्षेप परिणाम की गुणवत्ता से समझौता किए बिना दक्षता में महत्वपूर्ण सुधार की अनुमति देता है।<ref name="clahe87"/> इमेज को समान आकार की आयताकार टाइलों में विभाजित किया गया है जैसा कि नीचे दी गई आकृति के दाहिने भाग में दिखाया गया है। (8 कॉलम और 8 पंक्तियों में 64 टाइलें एक साधारण हिस्टोग्राम हैं<ref name="zuigem"/>) फिर प्रत्येक टाइल के लिए एक हिस्टोग्राम, सीडीएफ और रूपांतरण फलन की गणना की जाती है। परिवर्तन कार्य टाइल केंद्र पिक्सेल (चित्र के बाएं भाग में काले वर्ग) के लिए उपयुक्त हैं। अन्य सभी पिक्सेल उनके निकटतम केंद्र पिक्सेल वाले टाइलों के चार परिवर्तन कार्यों के साथ रूपांतरित होते हैं, और [[द्विरेखीय प्रक्षेप]] मान निर्दिष्ट किए जाते हैं। इमेज के संग्रह में पिक्सेल (नीला छायांकित) [[रेखिक आंतरिक]] रूपांतरण फलन हैं, सीमा के निकटतम पिक्सेल (छायांकित हरा) रैखिक अंतर्वेशन हैं, और कोनों के पास पिक्सेल (छायांकित लाल) टाइल के परिवर्तन फलन के साथ रूपांतरित होते हैं। प्रक्षेप गुणांक निकटतम टाइल केंद्र पिक्सेल के बीच पिक्सेल के स्थान को दर्शाता है, ताकि परिणाम निरंतर हो क्योंकि पिक्सेल एक टाइल केंद्र तक पहुंचता है।


== हिस्टोग्राम == के वृद्धिशील अद्यतन द्वारा कुशल गणना
[[Image:Clahe-tileinterpol.svg|center|450 पीएक्स]]यह प्रक्रिया रूपांतरण कार्यों की संख्या को नाटकीय रूप से कम कर देती है और केवल रैखिक प्रक्षेप की छोटी अतिरिक्त लागत निर्धारित करती है।


छवि को टाइल करने का एक विकल्प एक समय में आयत को एक पिक्सेल स्लाइड करना है, और प्रत्येक पिक्सेल के लिए केवल वृद्धिशील रूप से हिस्टोग्राम को अपडेट करना है,<ref>T. Sund & A. Møystad: ''Sliding window adaptive histogram equalization of intra-oral radiographs: effect on diagnostic quality''. Dentomaxillofac Radiol. 2006 May;35(3):133-8.</ref> नई पिक्सेल पंक्ति जोड़कर और पीछे छोड़ी गई पंक्ति घटाकर। एल्गोरिथ्म को मूल लेखकों द्वारा SWAHE (स्लाइडिंग विंडो एडेप्टिव हिस्टोग्राम इक्वलाइज़ेशन) के रूप में दर्शाया गया है। हिस्टोग्राम गणना की कम्प्यूटेशनल जटिलता तब ओ (एन²) से (एन) तक कम हो जाती है (एन = आसपास के आयत की पिक्सेल चौड़ाई के साथ); और चूंकि कोई टाइलिंग नहीं है इसलिए अंतिम इंटरपोलेशन चरण की आवश्यकता नहीं है।
== हिस्टोग्राम के वृद्धिशील अद्यतन द्वारा निर्धारित गणना ==
इमेज को टाइल करने का एक विकल्प एक समय में आयत को एक पिक्सेल स्लाइड करना है, नई पिक्सेल पंक्ति जोड़कर और पीछे छोड़ी गई पंक्ति घटाकर और प्रत्येक पिक्सेल के लिए केवल वृद्धिशील रूप से हिस्टोग्राम को अपडेट करना है<ref>T. Sund & A. Møystad: ''Sliding window adaptive histogram equalization of intra-oral radiographs: effect on diagnostic quality''. Dentomaxillofac Radiol. 2006 May;35(3):133-8.</ref>एल्गोरिथ्म को मूल लेखकों द्वारा एसडब्ल्यूएएचई (स्लाइडिंग विंडो अनुकूलीय हिस्टोग्राम समानीकरण) के रूप में दर्शाया गया है। हिस्टोग्राम गणना की कम्प्यूटेशनल जटिलता तब ओ ''O''(''N²'') से ''O''(''N'') तक कम हो जाती है (एन = आसपास के आयत की पिक्सेल चौड़ाई) और चूंकि कोई टाइलिंग नहीं है इसलिए यहाँ पर अंतिम अंतर्वेशन चरण की आवश्यकता नहीं है।


== यह भी देखें ==
== यह भी देखें ==


* हिस्टोग्राम समीकरण
* [[हिस्टोग्राम समीकरण|हिस्टोग्राम समानीकरण]]
* [[छाया और हाइलाइट वृद्धि]]
* [[छाया और हाइलाइट वृद्धि]]


== संदर्भ ==
== संदर्भ ==
Line 55: Line 66:


== बाहरी संबंध ==
== बाहरी संबंध ==
*[http://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html A tutorial how to use CLAHE with OpenCV]
*[http://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html A tutorial how to use सीएलएएचई with OpenCV]
*[https://web.archive.org/web/20100630033334/http://pacific.mpi-cbg.de/wiki/index.php/Enhance_Local_Contrast_(CLAHE) Example images demonstrating the effect of CLAHE] at the Max Planck Institute of Molecular Cell Biology and Genetics
*[https://web.archive.org/web/20100630033334/http://pacific.mpi-cbg.de/wiki/index.php/Enhance_Local_Contrast_(CLAHE) Example images demonstrating the effect of सीएलएएचई] at the Max Planck Institute of Molecular Cell Biology and Genetics
*[https://web.archive.org/web/20120113220509/http://radonc.ucsf.edu/research_group/jpouliot/tutorial/HU/Lesson7.htm A tutorial on CLAHE]
*[https://web.archive.org/web/20120113220509/http://radonc.ucsf.edu/research_group/jpouliot/tutorial/HU/Lesson7.htm A tutorial on सीएलएएचई]
*[http://www.realtimerendering.com/resources/GraphicsGems/gemsiv/clahe.c An example implementation of CLAHE] in ANSI C by Karel Zuiderveld, one of the authors of the original CLAHE paper
*[http://www.realtimerendering.com/resources/GraphicsGems/gemsiv/clahe.c An example implementation of सीएलएएचई] in ANSI C by Karel Zuiderveld, one of the authors of the original सीएलएएचई paper
[[Category: मूर्ति प्रोद्योगिकी]]
 
 


[[Category: Machine Translated Page]]
[[Category:All Wikipedia articles written in American English]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 08/06/2023]]
[[Category:Created On 08/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Use American English from March 2021]]
[[Category:Use mdy dates from March 2021]]
[[Category:मूर्ति प्रोद्योगिकी]]

Latest revision as of 13:53, 30 June 2023

एडाप्टिव हिस्टोग्राम इक्वलाइजेशन (एएचई) एक कंप्यूटर इमेज प्रोसेसिंग तकनीक है जिसका उपयोग किसी इमेज में कंट्रास्ट (दृष्टि) को बेहतर बनाने के लिए किया जाता है। यह सामान्य हिस्टोग्राम समानीकरण द्वारा इस संबंध में भिन्न है कि अनुकूलीय विधि कई हिस्टोग्राम की गणना करती है, जो कि प्रत्येक इमेज के एक अलग खंड के अनुरूप होती है, और इमेज के निम्नतम मूल्यों को पुनर्वितरित करने के लिए उनका उपयोग करती है। इसलिए यह स्थानीय कंट्रास्ट को बेहतर बनाने और इमेज के प्रत्येक क्षेत्र में किनारों की स्पष्टता को संवर्धित करने के लिए उपयुक्त सहयोगी है।

हालांकि, एएचई में एक इमेज के अपेक्षाकृत सजातीय क्षेत्रों में सिग्नल नॉइज़ को अधिक संवर्धित करने की प्रवृत्ति होती है। कंट्रास्ट लिमिटेड एडाप्टिव हिस्टोग्राम इक्वलाइजेशन (सीएलएएचई) नामक एएचई का एक प्रकार प्रवर्धन को सीमित करके इसे आरक्षित करता है।

प्रेरणा और विधि की व्याख्या

साधारण हिस्टोग्राम समानीकरण सभी पिक्सल को परिवर्तित करने के लिए इमेज हिस्टोग्राम से प्राप्त समान परिवर्तन का उपयोग करता है। यह अच्छी तरह से तब काम करता है जब पिक्सेल मानों का वितरण पूरी इमेज में समान होता है। हालाँकि, जब इमेज में ऐसे क्षेत्र होते हैं जो अधिकांश इमेज की तुलना में काफी हल्के या गहरे होते हैं, तो उन क्षेत्रों में कंट्रास्ट पर्याप्त रूप से नहीं बढ़ाया जा सकता है।

एडाप्टिव हिस्टोग्राम इक्वलाइजेशन (एएचई) प्रत्येक पिक्सेल को एक निकटतम क्षेत्र से प्राप्त परिवर्तन फलन के साथ परिवर्तित कर इसमें सुधार करता है। यह पहली बार वायुयान कॉकपिट डिस्प्ले में उपयोग के लिए विकसित किया गया था।[1] इमेज में उद्धृत[2] अपने सरलतम रूप में प्रत्येक पिक्सेल को आसपास के वर्ग के हिस्टोग्राम के आधार पर रूपांतरित किया जाता है, जैसा कि नीचे दी गई आकृति में है। हिस्टोग्राम से परिवर्तित कार्यों की व्युत्पत्ति सामान्य हिस्टोग्राम समानीकरण के समान ही होती है, परिणामतः परिवर्तन फलन निकटतम पिक्सेल मानों के संचयी वितरण फलन (सीडीएफ) के समानुपाती होता है। यह एएचई को इमेज के बड़े पैमाने पर सजातीय क्षेत्रों में नॉइज़ की कुछ मात्रा को अधिक बढ़ा देता है।

300 पीएक्स

इमेज क्षेत्र के पास के पिक्सेल को विशेष रूप से व्यवहार करना पड़ता है, क्योंकि उनका निकटतम फंक्शन पूरी तरह से इमेज के अंतर्गत नहीं होगा। यह उदाहरण के लिए चित्र में बाईं ओर या नीले पिक्सेल के ऊपर लागू होता है। इमेज सीमा के संबंध में पिक्सेल लाइनों और स्तंभों को प्रतिरूप करके इमेज को विस्तारित करके इसे हल किया जा सकता है। बस सीमा पर पिक्सेल लाइनों की नकल करना उचित नहीं है, क्योंकि इससे अत्यधिक शिखर वाले निकटतम फंक्शन का हिस्टोग्राम बन जाएगा।

एएचई के गुण

  • निकटतम क्षेत्र का आकार विधि का एक पैरामीटर है। यह एक विशेषता लंबाई पैमाने का गठन करता है: छोटे पैमाने पर कंट्रास्ट बढ़ाया जाता है, जबकि बड़े पैमाने पर कंट्रास्ट कम हो जाता है।
  • हिस्टोग्राम समानीकरण की प्रकृति के कारण, एएचई के तहत एक पिक्सेल का परिणाम मान उसके निकटतम में पिक्सेल के बीच उसकी रैंक के समानुपाती होता है। यह विशेषज्ञ हार्डवेयर पर एक निर्धारित कार्यान्वयन की अनुमति देता है जो निकटतम में अन्य सभी पिक्सेल के साथ केंद्र पिक्सेल की तुलना कर सकता है।[3] केंद्र पिक्सेल की तुलना में छोटे मान वाले प्रत्येक पिक्सेल के लिए 2 जोड़कर और समान मान वाले प्रत्येक पिक्सेल के लिए 1 जोड़कर एक असामान्य परिणाम मान की गणना की जा सकती है।
  • जब पिक्सेल के निकटतम फलन वाला इमेज क्षेत्र तीव्रता के संबंध में काफी सजातीय होता है, तो इसका हिस्टोग्राम दृढ़ता से चरम पर होगा, और परिवर्तन फलन परिणाम इमेज की पूरी श्रृंखला में पिक्सेल मानों की एक संकीर्ण श्रेणी को प्रारूपित करेगा। यह एएचई को इमेज के बड़े पैमाने पर सजातीय क्षेत्रों में नॉइज़ की कुछ मात्रा को अधिक बढ़ा देता है।[4]


कंट्रास्ट लिमिटेड एएचई

साधारण एएचई इमेज के निकट-स्थिर क्षेत्रों में कंट्रास्ट को अधिक बढ़ा देता है, क्योंकि ऐसे क्षेत्रों में हिस्टोग्राम अत्यधिक केंद्रित होता है। परिणामस्वरूप, एएचई निकट-निरंतर क्षेत्रों में नॉइज़ को बढ़ा सकता है। कंट्रास्ट लिमिटेड एएचई (सीएलएएचई) एडाप्टिव हिस्टोग्राम इक्वलाइजेशन का एक प्रकार है जिसमें कंट्रास्ट प्रवर्धन सीमित होता है, ताकि नॉइज़ प्रवर्धन की इस समस्या को कम किया जा सके।[3]

सीएलएएचई में, किसी दिए गए पिक्सेल मान के आसपास के विपरीत प्रवर्धन परिवर्तन फलन के प्रवणता द्वारा दिया जाता है। यह निकटतम संचयी वितरण फलन (सीडीएफ) के प्रवणता के समानुपाती होता है और इसलिए यह उस पिक्सेल मान पर हिस्टोग्राम के मान के समानुपाती होता है। सीएलएएचई, सीडीएफ की गणना करने से पहले हिस्टोग्राम को पूर्वनिर्धारित मान पर क्लिप करके प्रवर्धन को सीमित करता है। यह सीडीएफ और इसलिए परिवर्तन फंक्शन के प्रवणता को सीमित करता है। वह मान जिस पर हिस्टोग्राम को क्लिप किया जाता है, तथाकथित क्लिप सीमा हिस्टोग्राम के सामान्यीकरण पर निर्भर करता है और इस तरह निकटतम फंक्शन के क्षेत्र के आकार पर निर्भर करता है। सामान्य मान परिणामी प्रवर्धन को 3 और 4 के बीच सीमित करते हैं।

हिस्टोग्राम के उस हिस्से को छोड़ना लाभप्रद नहीं है जो क्लिप सीमा से अधिक है, लेकिन इसे सभी हिस्टोग्राम बॉक्स के बीच समान रूप से पुनर्वितरित करना लाभकारी हो सकता है।[3]

300 पीएक्स

पुनर्वितरण कुछ बॉक्स को फिर से क्लिप सीमा (चित्र में क्षेत्र छायांकित हरा) से ऊपर धकेल देगा, जिसके परिणामस्वरूप एक प्रभावी क्लिप सीमा होगी जो निर्धारित सीमा से बड़ी है और जिसका निर्धारित मूल्य इमेज पर निर्भर करता है। यदि यह अवांछनीय है, तो पुनर्वितरण प्रक्रिया को पुनरावर्ती रूप से दोहराया जा सकता है जब तक कि अतिरिक्त मान नगण्य न हो।

अंतर्वेशन द्वारा निर्धारित गणना

अनुकूलीय हिस्टोग्राम समानीकरण ऊपर प्रस्तुत अपने सीधे रूप में, विपरीत सीमा के साथ और बिना दोनों के इमेज में प्रत्येक पिक्सेल के लिए एक अलग निकटतम हिस्टोग्राम और परिवर्तन फलन की गणना की आवश्यकता होती है। यह विधि को कम्प्यूटेशनल रूप से बहुत जटिल बनाता है।

प्रक्षेप परिणाम की गुणवत्ता से समझौता किए बिना दक्षता में महत्वपूर्ण सुधार की अनुमति देता है।[3] इमेज को समान आकार की आयताकार टाइलों में विभाजित किया गया है जैसा कि नीचे दी गई आकृति के दाहिने भाग में दिखाया गया है। (8 कॉलम और 8 पंक्तियों में 64 टाइलें एक साधारण हिस्टोग्राम हैं[4]) फिर प्रत्येक टाइल के लिए एक हिस्टोग्राम, सीडीएफ और रूपांतरण फलन की गणना की जाती है। परिवर्तन कार्य टाइल केंद्र पिक्सेल (चित्र के बाएं भाग में काले वर्ग) के लिए उपयुक्त हैं। अन्य सभी पिक्सेल उनके निकटतम केंद्र पिक्सेल वाले टाइलों के चार परिवर्तन कार्यों के साथ रूपांतरित होते हैं, और द्विरेखीय प्रक्षेप मान निर्दिष्ट किए जाते हैं। इमेज के संग्रह में पिक्सेल (नीला छायांकित) रेखिक आंतरिक रूपांतरण फलन हैं, सीमा के निकटतम पिक्सेल (छायांकित हरा) रैखिक अंतर्वेशन हैं, और कोनों के पास पिक्सेल (छायांकित लाल) टाइल के परिवर्तन फलन के साथ रूपांतरित होते हैं। प्रक्षेप गुणांक निकटतम टाइल केंद्र पिक्सेल के बीच पिक्सेल के स्थान को दर्शाता है, ताकि परिणाम निरंतर हो क्योंकि पिक्सेल एक टाइल केंद्र तक पहुंचता है।

450 पीएक्स

यह प्रक्रिया रूपांतरण कार्यों की संख्या को नाटकीय रूप से कम कर देती है और केवल रैखिक प्रक्षेप की छोटी अतिरिक्त लागत निर्धारित करती है।

हिस्टोग्राम के वृद्धिशील अद्यतन द्वारा निर्धारित गणना

इमेज को टाइल करने का एक विकल्प एक समय में आयत को एक पिक्सेल स्लाइड करना है, नई पिक्सेल पंक्ति जोड़कर और पीछे छोड़ी गई पंक्ति घटाकर और प्रत्येक पिक्सेल के लिए केवल वृद्धिशील रूप से हिस्टोग्राम को अपडेट करना है[5]। एल्गोरिथ्म को मूल लेखकों द्वारा एसडब्ल्यूएएचई (स्लाइडिंग विंडो अनुकूलीय हिस्टोग्राम समानीकरण) के रूप में दर्शाया गया है। हिस्टोग्राम गणना की कम्प्यूटेशनल जटिलता तब ओ O() से O(N) तक कम हो जाती है (एन = आसपास के आयत की पिक्सेल चौड़ाई) और चूंकि कोई टाइलिंग नहीं है इसलिए यहाँ पर अंतिम अंतर्वेशन चरण की आवश्यकता नहीं है।

यह भी देखें







संदर्भ

  1. D. J. Ketcham, R. W. Lowe & J. W. Weber: Image enhancement techniques for cockpit displays. Tech. rep., Hughes Aircraft. 1974.
  2. R. A. Hummel: Image Enhancement by Histogram Transformation. Computer Graphics and Image Processing 6 (1977) 184195.
  3. 3.0 3.1 3.2 3.3 S. M. Pizer, E. P. Amburn, J. D. Austin, et al.: Adaptive Histogram Equalization and Its Variations. Computer Vision, Graphics, and Image Processing 39 (1987) 355-368.
  4. 4.0 4.1 K. Zuiderveld: Contrast Limited Adaptive Histogram Equalization. In: P. Heckbert: Graphics Gems IV, Academic Press 1994, ISBN 0-12-336155-9
  5. T. Sund & A. Møystad: Sliding window adaptive histogram equalization of intra-oral radiographs: effect on diagnostic quality. Dentomaxillofac Radiol. 2006 May;35(3):133-8.

6. G. R. Vidhya and H. Ramesh, "Effectiveness of contrast limited adaptive histogram equalization technique on multispectral satellite imagery", Proc. Int. Conf. Video Image Process., pp. 234-239, Dec. 2017.


बाहरी संबंध