फ़िल्टर डिज़ाइन: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''''फ़िल्टर डिज़ाइन''''' [[ फ़िल्टर (सिग्नल प्रोसेसिंग) |संकेत प्रक्रमण निस्यंदन]] की एक ऐसी प्रक्रिया है, जो आवश्यकताओं के समूह को पूरा करती है, जिनमें से कुछ परस्पर विरोधी भी हो सकते हैं। इसका उद्देश्य निस्यंदन की प्राप्ति का पता लगाना तथा जो इसे उपयोगी बनाने के लिए पर्याप्त मात्रा में प्रत्येक की आवश्यकता को पूरा करता है। | |||
''''' | |||
फ़िल्टर डिज़ाइन प्रक्रिया को एक अनुकूलन समस्या के रूप में वर्णित किया जा सकता है, जहाँ प्रत्येक आवश्यकता एक त्रुटि कार्य में योगदान करती है जिसे कम से कम किया जाना चाहिए। प्रारूप प्रक्रिया के कुछ हिस्सों को स्वचालित किया जा सकता है, लेकिन आमतौर पर अच्छा परिणाम प्राप्त करने के लिए एक अनुभवी [[ विद्युत इंजीनियर |विद्युत अभियंता]] की आवश्यकता होती है। | |||
अंकीय | अंकीय फ़िल्टर डिज़ाइन एक भ्रामक जटिल विषय है।<ref>{{cite web |last1=Valdez |first1=M.E. |title=Digital Filters |url=http://www.grm.net/~mikevald/Digfilt.html |publisher=GRM Networks |access-date=13 July 2020}}</ref> जो हालांकि निस्यंदन को आसानी से समझे और परिकलित किए जाने पर उनके प्रारूप और कार्यान्वयन की व्यावहारिक चुनौतियां महत्वपूर्ण हैं यह उन्नत शोध का विषय हैं। | ||
== विशिष्ट प्रारूप की आवश्यकताएं == | == विशिष्ट प्रारूप की आवश्यकताएं == | ||
प्रारूप प्रक्रिया में जिन विशिष्ट आवश्यकताओं पर विचार किया जाता है वे निम्नलिखित इस प्रकार हैं। | प्रारूप प्रक्रिया में जिन विशिष्ट आवश्यकताओं पर विचार किया जाता है वे निम्नलिखित इस प्रकार हैं। | ||
* | * निस्यंदन में विशिष्ट [[ आवृत्ति प्रतिक्रिया |आवृत्ति प्रतिक्रिया]] होनी चाहिए | ||
* | * निस्यंदन में विशिष्ट [[ चरण बदलाव |प्रावस्था बदलाव]] एवं समूह विलंब होना चाहिए | ||
* | * निस्यंदन में एक विशिष्ट [[ आवेग प्रतिक्रिया |आवेग प्रतिक्रिया]] होनी चाहिए | ||
* | * निस्यंदन [[ कारण फ़िल्टर |करणीय]] होना चाहिए | ||
* | *निस्यंदन स्थिर होना चाहिए | ||
* | * निस्यंदन को स्थानीयकृत किया जाना चाहिए (स्पंद या पदध्वनि निवेश के परिणामस्वरूप परिमित समय उत्पाद होना चाहिए) | ||
* | * निस्यंदन की संगणकीय जटिलता कम होनी चाहिए | ||
* | * निस्यंदन को विशेष रूप से हार्डवेयर या सॉफ़्टवेयर में लागू किया जाना चाहिए | ||
=== आवृत्ति | === आवृत्ति फलन === | ||
एक महत्वपूर्ण [[ पैरामीटर |पैरामीटर]] आवश्यक आवृत्ति की ऐसी प्रतिक्रिया है। जो विशेष रूप से प्रतिक्रिया | एक महत्वपूर्ण [[ पैरामीटर |पैरामीटर]] आवश्यक आवृत्ति की ऐसी प्रतिक्रिया है। जो विशेष रूप से प्रतिक्रिया वक्र की स्थिर जटिल निस्यंदन क्रम और व्यवहार्यता के लिए निर्णायक कारक है। | ||
पहले क्रम के [[ अनंत आवेग प्रतिक्रिया |अनंत आवेग प्रतिक्रिया]] में केवल एक आवृत्ति-निर्भर घटक होता है, जिसका मतलब आवृत्ति प्रतिक्रिया की [[ ढलान |ढलान]] प्रति सप्तक 6 [[ डेसिबल |डीबी]] तक सीमित है। कई उद्देश्यों के लिए यह पर्याप्त नहीं है। तेज ढलानों को प्राप्त करने के लिए उच्च-क्रम वाले | पहले क्रम के [[ अनंत आवेग प्रतिक्रिया |अनंत आवेग प्रतिक्रिया]] में केवल एक आवृत्ति-निर्भर घटक होता है, जिसका मतलब आवृत्ति प्रतिक्रिया की [[ ढलान |ढलान]] प्रति सप्तक 6 [[ डेसिबल |डीबी]] तक सीमित है। कई उद्देश्यों के लिए यह पर्याप्त नहीं है। तेज ढलानों को प्राप्त करने के लिए उच्च-क्रम वाले निस्यंदन की आवश्यकता होती है। | ||
वांछित आवृत्ति कार्य के संबंध में एक साथ भार कृत्य भी हो सकता है, जो यह वर्णन करता है कि प्रत्येक आवृत्ति के लिए यह कितना महत्वपूर्ण है कि परिणामी आवृत्ति कार्य वांछित का अनुमान लगाता है। जितना बड़ा वजन उतना ही महत्वपूर्ण एक निकट सन्निकटन है। | वांछित आवृत्ति कार्य के संबंध में एक साथ भार कृत्य भी हो सकता है, जो यह वर्णन करता है कि प्रत्येक आवृत्ति के लिए यह कितना महत्वपूर्ण है कि परिणामी आवृत्ति कार्य वांछित का अनुमान लगाता है। जितना बड़ा वजन उतना ही महत्वपूर्ण एक निकट सन्निकटन है। | ||
आवृत्ति कार्य के विशिष्ट उदाहरण हैं। | आवृत्ति कार्य के विशिष्ट उदाहरण हैं। | ||
*अवांछित उच्च-आवृत्ति संकेतों को काटने के लिए एक [[ उच्च पास फिल्टर |उच्च पास | *अवांछित उच्च-आवृत्ति संकेतों को काटने के लिए एक [[ उच्च पास फिल्टर |उच्च पास निस्यंदन]] का उपयोग किया जाता है | ||
* उच्च-पास | * उच्च-पास निस्यंदन उच्च आवृत्तियों को काफी अच्छी तरह से पास करता है। एवं यह किसी भी अवांछित कम-आवृत्ति वाले घटकों को काटने के लिए एक निस्यंदन के रूप में सहायक है। | ||
*[[ बंदपास छननी |बन्धन मार्ग]] | *[[ बंदपास छननी |बन्धन मार्ग]] निस्यंदन सीमित आवृत्तियों की सीमा को पार करता है। | ||
* [[ बंदपास छननी |बन्धन]] विराम निष्यंतक एक निश्चित सीमा के ऊपर और नीचे आवृत्तियों को पास करता है। बहुत ही संकीर्ण बन्धन विराम निष्यंतक को चिह्न | * [[ बंदपास छननी |बन्धन]] विराम निष्यंतक एक निश्चित सीमा के ऊपर और नीचे आवृत्तियों को पास करता है। बहुत ही संकीर्ण बन्धन विराम निष्यंतक को चिह्न निस्यंदन के रूप में जाना जाता है। | ||
* विभेदक की आवृत्ति के एक समानुपाती आयाम प्रतिक्रिया होती है। | * विभेदक की आवृत्ति के एक समानुपाती आयाम प्रतिक्रिया होती है। | ||
* एक कम-ताक़ | * एक कम-ताक़ निस्यंदन सभी आवृत्तियों को पास करता है, लेकिन निर्दिष्ट मात्रा से ताक़ आवृत्ति के नीचे आवृत्तियों को बढ़ाता या घटाता है। | ||
*शिखर ईक्यू | *शिखर ईक्यू निस्यंदन की आवृत्ति प्रतिक्रिया में एक चोटी या डुबकी बनाता है, जो आमतौर पर [[ समानता (ऑडियो) |समानता तुल्यकारक]] में उपयोग किया जाता है। | ||
=== | === प्रावस्था और समूह विलंब === | ||
{{Main|समूह विलंब और | {{Main|समूह विलंब और प्रावस्था विलंब}} | ||
* सभी-पास | |||
* [[ हिल्बर्ट ट्रांसफॉर्म |हिल्बर्ट परिवर्तक]] एक विशिष्ट सभी -पास | * सभी-पास निस्यंदन अपरिवर्तित सभी आवृत्तियों से गुजरता है, लेकिन चिह्न के प्रावस्था को बदल देता है। इस प्रकार के निस्यंदन का उपयोग पुनरावर्ती फिल्टर के समूह विलंब को बराबर करने के लिए किया जा सकता है। इस फिल्टर का उपयोग [[ फेजर (प्रभाव) |प्रभाव]] में भी किया जाता है। | ||
*एक भिन्नात्मक विलंब | * [[ हिल्बर्ट ट्रांसफॉर्म |हिल्बर्ट परिवर्तक]] एक विशिष्ट सभी -पास निस्यंदन है, जो साइनसॉइड को अपरिवर्तित आयाम के साथ पास करता है लेकिन प्रत्येक साइनसॉइड प्रावस्था को ± 90 डिग्री से बदल देता है। | ||
*एक भिन्नात्मक विलंब निस्यंदन एक सभी उत्तीर्ण है जिसमें सभी आवृत्तियों के लिए एक निर्दिष्ट और निरंतर समूह या प्रावस्था विलंब होता है। | |||
=== आवेग प्रतिक्रिया === | === आवेग प्रतिक्रिया === | ||
{{Main|आवेग प्रतिक्रिया}} | {{Main|आवेग प्रतिक्रिया}} | ||
निस्यंदन की आवृत्ति कार्य और इसकी आवेग प्रतिक्रिया के बीच एक सीधा पत्राचार होता है। जो पूर्व उत्तरार्द्ध का संप्रावस्था रूपांतरण है। इसका मतलब आवृत्ति कार्य पर कोई आवश्यक आवेग प्रतिक्रिया की इसके विपरीत आवश्यकता होती है। | |||
हालांकि कुछ अनुप्रयोगों में यह | हालांकि कुछ अनुप्रयोगों में यह निस्यंदन की आवेग प्रतिक्रिया हो सकती है जो स्पष्ट और अंकीय प्रक्रिया का लक्ष्य अन्य सभी आवश्यकताओं को देखते हुए अनुरोधित आवेग प्रतिक्रिया के जितना संभव हो उतना करीब अनुमान लगाना है। | ||
कुछ मामलों में आवृत्ति कार्य और | कुछ मामलों में आवृत्ति कार्य और निस्यंदन की आवेग प्रतिक्रिया पर विचार करना भी प्रासंगिक हो सकता है जो एक दूसरे से स्वतंत्र रूप से चुने जाते हैं। उदाहरण के लिए, हम निस्यंदन के एक विशिष्ट आवृत्ति कार्य दोनों परिणामी निस्यंदन के संकेत कार्यक्षेत्र में यथासंभव छोटी प्रभावी चौड़ाई होते है। निस्यंदन की वांछित आवेग प्रतिक्रिया के रूप में बहुत ही संकीर्ण कार्य पर विचार करके बाद की स्थिति को महसूस किया जा सकता है, कि भले ही इस कार्य कि वांछित आवृत्ति कार्य से कोई संबंध नहीं रखती है। अंकीय प्रक्रिया का लक्ष्य एक निस्यंदन का एहसास करना है, जो इन दोनों विरोधाभासी अंकीय लक्ष्यों को यथासंभव पूरा करने का प्रयास करता है। | ||
=== | === कार्य-कारण सिद्धांत === | ||
कार्यान्वयन योग्य होने के लिए, कोई भी समय-निर्भर | कार्यान्वयन योग्य होने के लिए, कोई भी समय-निर्भर निस्यंदन (वास्तविक समय में काम करना) का कारण होना चाहिए, निस्यंदन प्रतिक्रिया केवल वर्तमान और पिछले आकड़ों पर निर्भर करती है। एक मानक तरीका यह है कि इस आवश्यकता को अंतिम प्रावस्था तक छोड़ दिया जाए। यदि कोई परिणामी निस्यंदनकारणात्मक नहीं है, तो इसे उचित समय परिवर्तन शुरू करके बनाया जा सकता है। यदि निस्यंदन एक बड़े प्रणाली का हिस्सा है, जो सामान्य रूप से इस प्रकार की रुकावट को सावधानी से पेश किया जाना चाहिए क्योंकि वे पूरे प्रणाली के संचालन को प्रभावित करते हैं। | ||
निस्यंदन जो वास्तविक समय में काम नहीं करते हैं (उदाहरण छवि प्रसंस्करण के लिए) गैर-करणीय हो सकते हैं। यह से शून्य विलंब पुनरावर्ती निस्यंदन के प्रारूप की अनुमति देता है, जहां एक कारण से निस्यंदन के समूह विलंब को इसके हर्मिटियन गैर-करणीय निस्यंदन द्वारा रद्द कर दिया जाता है। | |||
=== स्थिरता === | === स्थिरता === | ||
एक स्थिर | एक स्थिर निस्यंदन यह आश्वासन देता है कि प्रत्येक सीमित निवेश संकेत निस्यंदन प्रतिक्रिया उत्पन्न करता है। एक निस्यंदन जो इस आवश्यकता को पूरा नहीं करता है वह कुछ स्थितियों में बेकार या हानिकारक भी साबित हो सकता है। कुछ अंकीय दृष्टिकोण स्थिरता की प्रत्याभूति दे सकते हैं, उदाहरण के लिए केवल प्रतिसंभरण परिपथ जैसे एफआईआर निस्यंदन का उपयोग करके। दूसरी ओर, प्रतिपुष्टि परिपथ पर आधारित निस्यंदन के अन्य फायदे हैं, इसलिए इसे प्राथमिकता दी जा सकती है, कि भले ही निस्यंदन इस वर्ग में अस्थिर निस्यंदन शामिल हों। इस मामले में अस्थिरता से बचने के लिए निस्यंदन को सावधानीपूर्वक प्रतिरूप किया जाना चाहिए। | ||
=== स्थान === | === स्थान === | ||
कुछ अनुप्रयोगों में हमें उन संकेतों से निपटना होता है जिनमें कुछ ऐसे घटक होते हैं जिन्हें स्थानीय घटना के रूप में वर्णित किया जा सकता है, उदाहरण के लिए दालें या कदम जिनकी एक निश्चित समय कि अवधि होती है। जो किसी संकेत पर | कुछ अनुप्रयोगों में हमें उन संकेतों से निपटना होता है जिनमें कुछ ऐसे घटक होते हैं जिन्हें स्थानीय घटना के रूप में वर्णित किया जा सकता है, उदाहरण के लिए दालें या कदम जिनकी एक निश्चित समय कि अवधि होती है। जो किसी संकेत पर निस्यंदन लगाने का एक परिणाम सहज ज्ञान युक्त शब्दों में है, स्थानीय घटना की अवधि निस्यंदन की चौड़ाई से बढ़ा दी जाती है। इसका तात्पर्य यह है कि कभी-कभी निस्यंदन के आवेग प्रतिक्रिया कार्य की चौड़ाई को यथासंभव छोटा रखना भी महत्वपूर्ण होता है। | ||
संप्रावस्था रूपांतरण के अनिश्चितता संबंध के अनुसार, निस्यंदन के आवेग प्रतिक्रिया कार्य की चौड़ाई का उत्पाद और इसकी आवृत्ति कार्य की चौड़ाई एक निश्चित स्थिरांक से अधिक होनी चाहिए। इसका मतलब यह है कि निस्यंदन के इलाके पर किसी भी आवश्यकता का अर्थ इसकी आवृत्ति कार्य की चौड़ाई पर बाध्यता भी है। इसके फलस्वरूप, निस्यंदन के आवेग प्रतिक्रिया समारोह के साथ-साथ इसकी आवृत्ति कार्य के इलाके पर आवश्यकताओं को एक साथ पूरा करना संभव नहीं हो सकता है। इसीलिए यह एक विरोधाभासी आवश्यकताओं का एक विशिष्ट उदाहरण है। | |||
=== अभिकलनात्मक जटिलता === | === अभिकलनात्मक जटिलता === | ||
किसी भी प्रारूप में एक सामान्य इच्छा यह होती है कि | किसी भी प्रारूप में एक सामान्य इच्छा यह होती है कि निस्यंदन प्रतिक्रिया की गणना करने के लिए आवश्यक संचालन की संख्या यथासंभव कम हो। तथा कुछ अनुप्रयोगों में इस इच्छा कि सख्त आवश्यकता होती है, उदाहरण के लिए सीमित अभिकलनात्मक संसाधनों मे सीमित शक्ति संसाधनों या सीमित समय के कारण अंतिम सीमा के वास्तविक समय के अनुप्रयोगों में विशिष्ट होते है। | ||
ऐसे कई तरीके होते हैं जिनसे एक | ऐसे कई तरीके होते हैं जिनसे एक निस्यंदन में अलग-अलग अभिकलनात्मक जटिलता हो सकती है। उदाहरण के लिए निस्यंदन का क्रम लगभग संचालन की संख्या के समानुपाती होता है। इसका मतलब यह है कि कम क्रम वाले निस्यंदन को चुनकर गणना के समय को कम किया जा सकता है। | ||
असतत | असतत निस्यंदन के लिए अभिकलनात्मक जटिलता लगभग निस्यंदन गुणांक की संख्या के समानुपाती होती है। यदि निस्यंदन में कई गुणांक हैं, तो उदाहरण के लिए टोमोग्राफी डेटा जैसे बहुआयामी संकेतों के मामले में उन गुणांकों की संख्या को कम करना प्रासंगिक हो सकता है जो पर्याप्त रूप से शून्य के करीब हैं। बहु अनुपात निस्यंदन में इसकी बैंडविड्थ सीमा का लाभ उठाकर गुणांकों की संख्या के निवेश संकेत मे डाउनसैंपल किया जाता है (उदाहरण के लिए इसकी महत्वपूर्ण आवृत्ति) और निस्यंदनिंग के बाद अपसैंपल किया जाता है। | ||
अभिकलनात्मक जटिलता से संबंधित एक अन्य मुद्दा पृथक्करणीयता है, अर्थात, यदि औरकिसी एक | अभिकलनात्मक जटिलता से संबंधित एक अन्य मुद्दा पृथक्करणीयता है, अर्थात, यदि औरकिसी एक निस्यंदन को दो या दो से अधिक सरल निस्यंदन को सवलन के रूप में लिखा जा सकता है। विशेष रूप से यह मुद्दा बहुआयामी निस्यंदन के लिए महत्वपूर्ण होता है, उदाहरण के लिए, 2 डी निस्यंदन जो छवि प्रसंस्करण में उपयोग किया जाता है। इस मामले में अभिकलनात्मक जटिलता में महत्वपूर्ण कमी प्राप्त की जा सकती है यदि निस्यंदन को क्षैतिज दिशा में एक 1डी निस्यंदन और ऊर्ध्वाधर दिशा में 1डी निस्यंदन के सवलन के रूप में अलग किया जा सकता है। फ़िल्टर डिज़ाइन प्रक्रिया का परिणाम कुछ वांछित निस्यंदन को एक वियोज्य निस्यंदन के रूप में अलग-अलग निस्यंदन के योग के रूप में अनुमानित करना हो सकता है। | ||
=== अन्य विचार === | === अन्य विचार === | ||
यह भी विशेष रूप से तय किया जाना चाहिए कि | यह भी विशेष रूप से तय किया जाना चाहिए कि निस्यंदन कैसे लागू किया जा रहा है। | ||
* [[ एनालॉग फिल्टर | सादृश्य | * [[ एनालॉग फिल्टर | सादृश्य निस्यंदन]] | ||
* [[ एनालॉग नमूना फ़िल्टर | सादृश्य अनुभाव | * [[ एनालॉग नमूना फ़िल्टर | सादृश्य अनुभाव निस्यंदन]] | ||
*[[ डिजिटल फिल्टर | अंकीय | *[[ डिजिटल फिल्टर | अंकीय निस्यंदन]] | ||
*[[ यांत्रिक फिल्टर | यांत्रिक | *[[ यांत्रिक फिल्टर | यांत्रिक निस्यंदन]] | ||
==== सादृश्य | ==== सादृश्य निस्यंदन ==== | ||
रैखिक सादृश्य | रैखिक सादृश्य निस्यंदन का प्रारूप [[ रैखिक फिल्टर |रैखिक निस्यंदन]] के अनुभाग में शामिल अधिकांश भाग के लिए होता है। | ||
==== अंकीय | ==== अंकीय निस्यंदन ==== | ||
अंकीय | अंकीय निस्यंदन को दो बुनियादी रूपों में से एक में वर्गीकृत किया जाता है, जिसके अनुसार वे [[ क्रोनकर डेल्टा |इकाई आवेग]] की [[ प्रतिक्रिया |प्रतिक्रिया]] देते हैं। | ||
*[[ परिमित आवेग प्रतिक्रिया ]], या एफआईआर, | *[[ परिमित आवेग प्रतिक्रिया ]], या एफआईआर, निस्यंदन के प्रत्येक उत्पात नमूने को अंतिम एन निवेश नमूनों के भारित योग के रूप में व्यक्त करते हैं, जहां ''एन'' निस्यंदन का क्रम है। और एफआईआर निस्यंदन आम तौर पर गैर-पुनरावर्ती होते हैं, जिसका अर्थ है कि वे प्रतिक्रिया का उपयोग नहीं करते हैं और इस तरह स्वाभाविक रूप से स्थिर होते हैं। एक [[ सामान्य गति |सामान्य गति]] निस्यंदन या [[ सीआईसी फिल्टर |सीआईसी निस्यंदन]] एफआईआर निस्यंदन के उदाहरण हैं जो सामान्य रूप से पुनरावर्ती होते हैं। यदि एफआईआर गुणांक सममित होते हैं, तो ऐसा निस्यंदन [[ रैखिक चरण |रैखिक प्रावस्था]] होता है, इसलिए यह सभी आवृत्तियों के समूह के विलंब संकेतों को समान रूप से कई अनुप्रयोगों में महत्वपूर्ण होते है। जो एफआईआर निस्यंदन में ऊपर से बचना भी आसान होता है। मुख्य नुकसान यह है कि उन्हें चतुराई से प्रारूप किए गए आईआईआर रूपांतर की तुलना में प्रति सेकंड काफी अधिक निर्देश और [[ स्मृति |स्मृति]] संसाधनों की आवश्यकता हो सकती है। एफआईआर निस्यंदन आमतौर पर आईआईआर निस्यंदन की तुलना में प्रतिरूप करना आसान होता है - [[ पार्क्स-मैकलेलन फ़िल्टर डिज़ाइन एल्गोरिथम | पार्क्स-मैकलेलन फ़िल्टर डिज़ाइन कलन विधि]] ([[ रेमेज़ एल्गोरिथम | रेमेज़ कलन विधि]] पर आधारित) अर्ध-स्वचालित रूप से काफी अच्छे फ़िल्टर डिज़ाइन करने के लिए एक उपयुक्त तरीका है। | ||
*अनंत आवेग प्रतिक्रिया एवं आईआईआर | *अनंत आवेग प्रतिक्रिया एवं आईआईआर निस्यंदन सादृश्य निस्यंदन के अंकीय समकक्ष हैं। जो इस तरह के निस्यंदन में आंतरिक स्थिति होती है, उत्पाद और अगली आंतरिक स्थिति से पिछले निवेश और उत्पाद के [[ रैखिक संयोजन |रैखिक संयोजन]] द्वारा निर्धारित की जाती है (दूसरे शब्दों में वे प्रतिक्रिया का उपयोग करते हैं, जो सामान्य रूप से एफआईआर निस्यंदन नहीं करते हैं)। सिद्धांत रूप में इस तरह के निस्यंदन की आवेग प्रतिक्रिया पूरी तरह से समाप्त नहीं होती है इसलिए आईआईआर नाम हालांकि व्यवहार में यह कंप्यूटर के अंकगणित के परिमित संकल्प को देखते हुए सच नहीं है। आईआईआर निस्यंदन को समान प्रदर्शन वाले एफआईआर निस्यंदन की तुलना में सामान्य रूप से कम [[ कम्प्यूटिंग |कम्प्यूटिंग]] संसाधनों की आवश्यकता होती है। इसी प्रतिक्रिया के कारण उच्च क्रम के आईआईआर निस्यंदन में [[ अस्थिरता |अस्थिरता]] अंकगणितीय अतिप्रवाह और [[ सीमा चक्र ]] के साथ समस्याएं हो सकती हैं, और ऐसे नुकसान से बचने के लिए सावधानीपूर्वक प्रतिरूप की आवश्यकता होती है। इसके अतिरिक्त प्रावस्था स्वाभाविक रूप से आवृत्ति का एक गैर-रेखीय कार्य है,जो ऐसे निस्यंदन के माध्यम से समय की देरी आवृत्ति पर निर्भर है, जो कई स्थितियों में एक समस्या हो सकती है। दूसरे क्रम के आईआईआर निस्यंदन को अक्सर '[[ डिजिटल बाइकैड फ़िल्टर |अंकीय बाइकैड निस्यंदन]] कहा जाता है, और उच्च क्रम के निस्यंदन को सामान्य कार्यान्वयन जलप्रपात बाईक्वाड्स है। [https://www.w3.org/TR/audio-eq-cookbook/ आरबीजे श्रव्य ईक्यू कुकबुक] बाईक्वाड गुणांकों की गणना के लिए एक उपयोगी संदर्भ है। | ||
==== [[ नमूना दर ]] ==== | ==== [[ नमूना दर ]] ==== | ||
जब तक किसी नमूना की दर बाहरी बाध्यता द्वारा तय नहीं की जाती है, तब तक उपयुक्त नमूना दर का चयन करना एक महत्वपूर्ण प्रारूप निर्णय है। अभिकलनात्मक संसाधनों के मामले में एक उच्च दर की आवश्यकता होती है, लेकिन [[ एंटी - एलियासिंग फ़िल्टर |विरोधी उपघटन | जब तक किसी नमूना की दर बाहरी बाध्यता द्वारा तय नहीं की जाती है, तब तक उपयुक्त नमूना दर का चयन करना एक महत्वपूर्ण प्रारूप निर्णय है। अभिकलनात्मक संसाधनों के मामले में एक उच्च दर की आवश्यकता होती है, लेकिन [[ एंटी - एलियासिंग फ़िल्टर |विरोधी उपघटन निस्यंदन]] के मामले की कम प्रणाली में अन्य संकेतों के साथ हस्तक्षेप भी एक मुद्दा हो सकता है। | ||
==== विरोधी-[[ अलियासिंग | उपघटन]] ==== | ==== विरोधी-[[ अलियासिंग | उपघटन]] ==== | ||
किसी भी अंकीय | किसी भी अंकीय फ़िल्टर डिज़ाइन के लिए, उपघटन प्रभावों का विश्लेषण करना और उनसे बचना महत्वपूर्ण होता है। अक्सर यह निवेश और उत्पाद पर सादृश्य विरोधी उपघटन निस्यंदन को जोड़कर किया जाता है, इस प्रकार [[ Nyquist आवृत्ति |आवृत्ति]] के ऊपर से किसी भी आवृत्ति घटक से बचा जाता है। इस तरह के निस्यंदन की जटिलता आवश्यक ध्वनि के लिए संकेत एवं अनुपात और नमूना दर की उच्चतम आवृत्ति के बीच के अनुपात पर निर्भर करती है। | ||
== सैद्धांतिक आधार == | == सैद्धांतिक आधार == | ||
प्रतिरूप की समस्या के हिस्से मे इस तथ्य से संबंधित यह हैं कि कुछ आवश्यकताओं की आवृत्ति कार्यक्षेत्र में वर्णित किया गया है, जबकि अन्य समय कार्यक्षेत्र में व्यक्त किए गए हैं और ये संघर्ष कर भी सकते हैं। उदाहरण के लिए ऐसा | प्रतिरूप की समस्या के हिस्से मे इस तथ्य से संबंधित यह हैं कि कुछ आवश्यकताओं की आवृत्ति कार्यक्षेत्र में वर्णित किया गया है, जबकि अन्य समय कार्यक्षेत्र में व्यक्त किए गए हैं और ये संघर्ष कर भी सकते हैं। उदाहरण के लिए ऐसा निस्यंदन प्राप्त करना संभव नहीं है जिसमें मनमाना आवेग प्रतिक्रिया और मनमाना आवृत्ति कार्य दोनों हों। और वे अन्य प्रभाव जो समय और आवृत्ति कार्यक्षेत्र के बीच संबंधों को संदर्भित करते हैं। | ||
* समय और आवृत्ति कार्यक्षेत्र के बीच अनिश्चितता का सिद्धांत | * समय और आवृत्ति कार्यक्षेत्र के बीच अनिश्चितता का सिद्धांत | ||
* | * विप्रावस्था विस्तार प्रमेय | ||
* कार्यक्षेत्र के विरुद्ध दूसरे में असंतुलन का स्पर्शोन्मुख व्यवहार | * कार्यक्षेत्र के विरुद्ध दूसरे में असंतुलन का स्पर्शोन्मुख व्यवहार | ||
=== अनिश्चितता सिद्धांत === | === अनिश्चितता सिद्धांत === | ||
जैसा कि [[ गैबर सीमा ]] द्वारा कहा गया है, कि एक अनिश्चितता के सिद्धांत, आवृत्ति कार्य की चौड़ाई का उत्पाद और आवेग प्रतिक्रिया की चौड़ाई एक विशिष्ट स्थिरांक से छोटा नहीं हो सकती है। इसका तात्पर्य यह है कि यदि एक विशिष्ट आवृत्ति वाले चौड़ाई के अनुरूप एक विशिष्ट आवृत्ति कार्य का अनुरोध किया जाता है, तो सांकेतिक कार्यक्षेत्र में | जैसा कि [[ गैबर सीमा ]] द्वारा कहा गया है, कि एक अनिश्चितता के सिद्धांत, आवृत्ति कार्य की चौड़ाई का उत्पाद और आवेग प्रतिक्रिया की चौड़ाई एक विशिष्ट स्थिरांक से छोटा नहीं हो सकती है। इसका तात्पर्य यह है कि यदि एक विशिष्ट आवृत्ति वाले चौड़ाई के अनुरूप एक विशिष्ट आवृत्ति कार्य का अनुरोध किया जाता है, तो सांकेतिक कार्यक्षेत्र में निस्यंदन की न्यूनतम चौड़ाई निर्धारित की जाती है। तथा इसके विपरीत, यदि एक प्रतिक्रिया की अधिकतम चौड़ाई दी जाती है, तो यह आवृत्ति में सबसे छोटी संभव चौड़ाई निर्धारित करती है। और यह विरोधाभासी आवश्यकताओं का एक विशिष्ट उदाहरण है जहां फ़िल्टर डिज़ाइन कि प्रक्रिया एक उपयोगी समझौता खोजने का प्रयास कर सकती है। | ||
=== प्रसरण विस्तार प्रमेय === | === प्रसरण विस्तार प्रमेय === | ||
माना कि <math>\sigma^{2}_{s}</math> निवेश संकेत का प्रसरण हो और <math>\sigma^{2}_{f}</math> | माना कि <math>\sigma^{2}_{s}</math> निवेश संकेत का प्रसरण हो और <math>\sigma^{2}_{f}</math> निस्यंदन का विप्रावस्था हो। निस्यंदन प्रतिक्रिया का प्रसरण, <math>\sigma^{2}_{r}</math>, द्वारा दिया जाता है | ||
: <math>\sigma^{2}_{r}</math> = <math>\sigma^{2}_{s}</math> + <math>\sigma^{2}_{f}</math> | : <math>\sigma^{2}_{r}</math> = <math>\sigma^{2}_{s}</math> + <math>\sigma^{2}_{f}</math> | ||
<math>\sigma_{r} > \sigma_{f}</math> और इसका तात्पर्य है कि विभिन्न विशेषताओं जैसे कि दालों या | <math>\sigma_{r} > \sigma_{f}</math> और इसका तात्पर्य है कि विभिन्न विशेषताओं जैसे कि दालों या निस्यंदन प्रतिक्रिया में प्रावस्थाों का स्थानीयकरण सांकेतिक कार्यक्षेत्र निस्यंदन मे चौड़ाई द्वारा सीमित है। यदि एक सटीक स्थानीयकरण का अनुरोध किया जाता है, तो हमें सांकेतिक कार्यक्षेत्र में छोटी चौड़ाई के निस्यंदन की आवश्यकता होती है और अनिश्चितता सिद्धांत के माध्यम से, आवृत्ति कार्यक्षेत्र में इसकी चौड़ाई इच्छानुसार छोटी नहीं हो सकती है। | ||
=== असंबद्धता विरूद्ध स्पर्शोन्मुख व्यवहार === | === असंबद्धता विरूद्ध स्पर्शोन्मुख व्यवहार === | ||
Line 128: | Line 125: | ||
मान कि f(t) एक फलन है और मान कि <math>F(\omega)</math> इसका फूरियर रूपांतरण हो। एक प्रमेय जो बताता है कि यदि F का पहला व्युत्पन्न जो असंतत है, उसका क्रम <math>n \geq 0</math>, है तो f में एक स्पर्शोन्मुख क्षय होता है जैसे <math>t^{-n-1}</math>. | मान कि f(t) एक फलन है और मान कि <math>F(\omega)</math> इसका फूरियर रूपांतरण हो। एक प्रमेय जो बताता है कि यदि F का पहला व्युत्पन्न जो असंतत है, उसका क्रम <math>n \geq 0</math>, है तो f में एक स्पर्शोन्मुख क्षय होता है जैसे <math>t^{-n-1}</math>. | ||
इस प्रमेय का एक परिणाम यह है कि एक | इस प्रमेय का एक परिणाम यह है कि एक निस्यंदन कि आवृत्ति का कार्य जितना संभव हो उतना सुचारू रूप से होना चाहिए ताकि इसकी आवेग प्रतिक्रिया में तेजी से क्षय हो, और इस तरह एक छोटी चौड़ाई प्राप्त हो सके। | ||
== कार्यप्रणाली == | == कार्यप्रणाली == | ||
[[ रेमेज़ एक्सचेंज एल्गोरिथम |रेमेज़ एक्सचेंज कलन विधि]] पर आधारित, प्राथमिकी | [[ रेमेज़ एक्सचेंज एल्गोरिथम |रेमेज़ एक्सचेंज कलन विधि]] पर आधारित, प्राथमिकी फ़िल्टर डिज़ाइन करने का एक सामान्य तरीका पार्क-मैक्लेलन फ़िल्टर डिज़ाइन कलन विधि है। यहां उपयोगकर्ता वांछित आवृत्ति प्रतिक्रिया निर्दिष्ट करता है, इस प्रतिक्रिया से त्रुटियों के लिए एक भार समारोह और एक निस्यंदन क्रम एन। कलन विधि तब एन गुणांक का संग्रह ढूंढता है जो आदर्श से अधिकतम विचलन को कम करता है। सहज रूप से यह उस निस्यंदन को ढूंढता है जो उतना ही करीब है जितना कि आप वांछित प्रतिक्रिया प्राप्त कर सकते हैं, क्योंकि आप केवल एन गुणांक का उपयोग कर सकते हैं यह विधि अभ्यास में विशेष रूप से आसान है और कम से कम एक पाठ<ref>Rabiner, Lawrence R., and Gold, Bernard, 1975: Theory and Application of Digital Signal Processing (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.) {{ISBN|0-13-914101-4}}</ref> प्रोग्राम शामिल है जो वांछित निस्यंदन एन लेता है। तथा इष्टतम गुणांक देता है। इस तरह से प्रारूप किए गए निस्यंदन में एक संभावित कमी यह है कि उनमें पासबैंड (ओं) में कई छोटे तरंग होते हैं, क्योंकि ऐसा निस्यंदन चरम मे त्रुटि को कम करता है। | ||
असतत एफआईआर | असतत एफआईआर निस्यंदन खोजने का एक अन्य तरीका जो नॉटसन में वर्णित निस्यंदन अनुकूलन है, इसके अधिकतम मूल्य के बजाय त्रुटि के वर्ग के अभिन्न अंग को कम करता है। एवं अपने मूल रूप में इस दृष्टिकोण के लिए निस्यंदन की एक आदर्श आवृत्ति कार्य की आवश्यकता होती है <math>F_{I}(\omega)</math> एक आवृत्ति भार कार्य के साथ निर्दिष्ट किया गया है <math>W(\omega)</math> और निर्देशांक का समुच्चय <math>x_{k}</math> सांकेतिक कार्यक्षेत्र में जहां निस्यंदन गुणांक स्थित हैं। | ||
एक त्रुटि समुच्चय <math>\varepsilon</math> की तरह परिभाषित किया गया है | एक त्रुटि समुच्चय <math>\varepsilon</math> की तरह परिभाषित किया गया है | ||
:<math>\varepsilon = \| W \cdot (F_{I} - \mathcal{F} \{ f \}) \|^{2}</math> | :<math>\varepsilon = \| W \cdot (F_{I} - \mathcal{F} \{ f \}) \|^{2}</math> | ||
जहाँ पर <math>f(x)</math> असतत | जहाँ पर <math>f(x)</math> असतत निस्यंदन है और <math>\mathcal{F}</math> निर्देशांक के निर्दिष्ट समुच्चय पर परिभाषित [[ असतत-समय फूरियर रूपांतरण |असतत-समय फूरियर रूपांतरण]] है। यहाँ प्रयुक्त मानदंड औपचारिक रूप से सामान्य मानदंड है <math>L^{2}</math> रिक्त स्थान। इसका मतलब यह है कि <math>\varepsilon</math> निस्यंदन के अनुरोधित आवृत्ति कार्य के बीच विचलन को मापता है, <math>F_{I}</math>, और वास्तविक निस्यंदन का वास्तविक आवृत्ति कार्य, <math>\mathcal{F} \{ f \}</math>. हालांकि, विचलन भी भार समुच्चय के अधीन है <math>W</math> त्रुटि कार्य की गणना करने से पहले। | ||
एक बार त्रुटि कार्य स्थापित हो जाने के बाद गुणांकों द्वारा इष्टतम | एक बार त्रुटि कार्य स्थापित हो जाने के बाद गुणांकों द्वारा इष्टतम निस्यंदन दिया जाता है। जो <math>f(x)</math> कों कम से कम <math>\varepsilon</math>. के संगत कम से कम वर्ग समस्या को हल करके किया जा सकता है। व्यवहार में, <math>L^{2}</math> आवृत्ति कार्यक्षेत्र में असतत बिंदुओं पर उपयुक्त योग के माध्यम से मानदंड का अनुमान लगाया जाना चाहिए। सामान्य तौर पर हालांकि, ये बिंदु उपयोगी सन्निकटन प्राप्त करने के लिए सांकेतिक कार्यक्षेत्र में गुणांक की संख्या से काफी अधिक होना चाहिए। | ||
=== दोनों कार्यक्षेत्र में एक साथ अनुकूलन === | === दोनों कार्यक्षेत्र में एक साथ अनुकूलन === | ||
सांकेतिक कार्यक्षेत्र में वांछित | सांकेतिक कार्यक्षेत्र में वांछित निस्यंदन आवेग प्रतिक्रिया से संबंधित अतिरिक्त त्रुटि शब्द को शामिल करने के लिए पिछली विधि को बढ़ाया जा सकता है, जिसमें संबंधित भार कृत्य होता है। आदर्श आवेग प्रतिक्रिया को आदर्श आवृत्ति कार्य से स्वतंत्र मे रूप से चुना जा सकता है और व्यवहार में प्रभावी चौड़ाई को सीमित करने और सांकेतिक कार्यक्षेत्र में परिणामी निस्यंदन के झनझन प्रभाव को हटाने के लिए उपयोग किया जाता है। यह एक संकीर्ण आदर्श आवेग प्रतिक्रिया निस्यंदन कार्य आवेग और भार कृत्य का चयन करके किया जा सकता है, जो मूल दूरी के साथ तेजी से बढ़ता है, उदाहरण के लिए दूरी इष्टतम निस्यंदन अभी भी एक साधारण न्यूनतम वर्ग समस्या को हल करके गणना की जा सकती है और परिणामी निस्यंदन एक "समझौता" होता है जिसमें दोनों कार्यक्षेत्र में आदर्श कार्यों के लिए कुल इष्टतम सटीक होता है। एक महत्वपूर्ण पैरामीटर दो भारोत्तोलन कार्यों की सापेक्ष ताकत होती है जो यह निर्धारित करता है कि काल्पनिक कृत्य के सापेक्ष अच्छा सटीक कार्यक्षेत्र अधिक महत्वपूर्ण होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*अंकीय | *अंकीय निस्यंदन | ||
*[[ प्रोटोटाइप फ़िल्टर |मूलरूप | *[[ प्रोटोटाइप फ़िल्टर |मूलरूप निस्यंदन]] | ||
*परिमित आवेग प्रतिक्रिया | *परिमित आवेग प्रतिक्रिया फ़िल्टर डिज़ाइन | ||
== संदर्भ == | == संदर्भ == | ||
Line 228: | Line 225: | ||
doi=10.1109/PROC.1975.9794 | doi=10.1109/PROC.1975.9794 | ||
|s2cid=12579115 }} | |s2cid=12579115 }} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
*[http://www.circuitsage.com/filter.html An extensive list of filter design articles and software at Circuit Sage] | *[http://www.circuitsage.com/filter.html An extensive list of filter design articles and software at Circuit Sage] | ||
Line 635: | Line 231: | ||
*[http://yehar.com/blog/?p=121 Yehar's digital sound processing tutorial for the braindead!] This paper explains simply (between others topics) filters design theory and give some examples | *[http://yehar.com/blog/?p=121 Yehar's digital sound processing tutorial for the braindead!] This paper explains simply (between others topics) filters design theory and give some examples | ||
[[Category:All articles lacking in-text citations]] | |||
[[Category:Articles lacking in-text citations from December 2012]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:CS1]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 05/09/2022]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Missing redirects]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:डिजिटल सिग्नल प्रोसेसिंग]] | [[Category:डिजिटल सिग्नल प्रोसेसिंग]] | ||
[[Category: फ़िल्टर सिद्धांत]] | [[Category:फ़िल्टर सिद्धांत]] | ||
[[Category:सिग्नल प्रोसेसिंग फिल्टर]] | [[Category:सिग्नल प्रोसेसिंग फिल्टर]] | ||
Latest revision as of 16:14, 24 August 2023
फ़िल्टर डिज़ाइन संकेत प्रक्रमण निस्यंदन की एक ऐसी प्रक्रिया है, जो आवश्यकताओं के समूह को पूरा करती है, जिनमें से कुछ परस्पर विरोधी भी हो सकते हैं। इसका उद्देश्य निस्यंदन की प्राप्ति का पता लगाना तथा जो इसे उपयोगी बनाने के लिए पर्याप्त मात्रा में प्रत्येक की आवश्यकता को पूरा करता है।
फ़िल्टर डिज़ाइन प्रक्रिया को एक अनुकूलन समस्या के रूप में वर्णित किया जा सकता है, जहाँ प्रत्येक आवश्यकता एक त्रुटि कार्य में योगदान करती है जिसे कम से कम किया जाना चाहिए। प्रारूप प्रक्रिया के कुछ हिस्सों को स्वचालित किया जा सकता है, लेकिन आमतौर पर अच्छा परिणाम प्राप्त करने के लिए एक अनुभवी विद्युत अभियंता की आवश्यकता होती है।
अंकीय फ़िल्टर डिज़ाइन एक भ्रामक जटिल विषय है।[1] जो हालांकि निस्यंदन को आसानी से समझे और परिकलित किए जाने पर उनके प्रारूप और कार्यान्वयन की व्यावहारिक चुनौतियां महत्वपूर्ण हैं यह उन्नत शोध का विषय हैं।
विशिष्ट प्रारूप की आवश्यकताएं
प्रारूप प्रक्रिया में जिन विशिष्ट आवश्यकताओं पर विचार किया जाता है वे निम्नलिखित इस प्रकार हैं।
- निस्यंदन में विशिष्ट आवृत्ति प्रतिक्रिया होनी चाहिए
- निस्यंदन में विशिष्ट प्रावस्था बदलाव एवं समूह विलंब होना चाहिए
- निस्यंदन में एक विशिष्ट आवेग प्रतिक्रिया होनी चाहिए
- निस्यंदन करणीय होना चाहिए
- निस्यंदन स्थिर होना चाहिए
- निस्यंदन को स्थानीयकृत किया जाना चाहिए (स्पंद या पदध्वनि निवेश के परिणामस्वरूप परिमित समय उत्पाद होना चाहिए)
- निस्यंदन की संगणकीय जटिलता कम होनी चाहिए
- निस्यंदन को विशेष रूप से हार्डवेयर या सॉफ़्टवेयर में लागू किया जाना चाहिए
आवृत्ति फलन
एक महत्वपूर्ण पैरामीटर आवश्यक आवृत्ति की ऐसी प्रतिक्रिया है। जो विशेष रूप से प्रतिक्रिया वक्र की स्थिर जटिल निस्यंदन क्रम और व्यवहार्यता के लिए निर्णायक कारक है।
पहले क्रम के अनंत आवेग प्रतिक्रिया में केवल एक आवृत्ति-निर्भर घटक होता है, जिसका मतलब आवृत्ति प्रतिक्रिया की ढलान प्रति सप्तक 6 डीबी तक सीमित है। कई उद्देश्यों के लिए यह पर्याप्त नहीं है। तेज ढलानों को प्राप्त करने के लिए उच्च-क्रम वाले निस्यंदन की आवश्यकता होती है।
वांछित आवृत्ति कार्य के संबंध में एक साथ भार कृत्य भी हो सकता है, जो यह वर्णन करता है कि प्रत्येक आवृत्ति के लिए यह कितना महत्वपूर्ण है कि परिणामी आवृत्ति कार्य वांछित का अनुमान लगाता है। जितना बड़ा वजन उतना ही महत्वपूर्ण एक निकट सन्निकटन है।
आवृत्ति कार्य के विशिष्ट उदाहरण हैं।
- अवांछित उच्च-आवृत्ति संकेतों को काटने के लिए एक उच्च पास निस्यंदन का उपयोग किया जाता है
- उच्च-पास निस्यंदन उच्च आवृत्तियों को काफी अच्छी तरह से पास करता है। एवं यह किसी भी अवांछित कम-आवृत्ति वाले घटकों को काटने के लिए एक निस्यंदन के रूप में सहायक है।
- बन्धन मार्ग निस्यंदन सीमित आवृत्तियों की सीमा को पार करता है।
- बन्धन विराम निष्यंतक एक निश्चित सीमा के ऊपर और नीचे आवृत्तियों को पास करता है। बहुत ही संकीर्ण बन्धन विराम निष्यंतक को चिह्न निस्यंदन के रूप में जाना जाता है।
- विभेदक की आवृत्ति के एक समानुपाती आयाम प्रतिक्रिया होती है।
- एक कम-ताक़ निस्यंदन सभी आवृत्तियों को पास करता है, लेकिन निर्दिष्ट मात्रा से ताक़ आवृत्ति के नीचे आवृत्तियों को बढ़ाता या घटाता है।
- शिखर ईक्यू निस्यंदन की आवृत्ति प्रतिक्रिया में एक चोटी या डुबकी बनाता है, जो आमतौर पर समानता तुल्यकारक में उपयोग किया जाता है।
प्रावस्था और समूह विलंब
- सभी-पास निस्यंदन अपरिवर्तित सभी आवृत्तियों से गुजरता है, लेकिन चिह्न के प्रावस्था को बदल देता है। इस प्रकार के निस्यंदन का उपयोग पुनरावर्ती फिल्टर के समूह विलंब को बराबर करने के लिए किया जा सकता है। इस फिल्टर का उपयोग प्रभाव में भी किया जाता है।
- हिल्बर्ट परिवर्तक एक विशिष्ट सभी -पास निस्यंदन है, जो साइनसॉइड को अपरिवर्तित आयाम के साथ पास करता है लेकिन प्रत्येक साइनसॉइड प्रावस्था को ± 90 डिग्री से बदल देता है।
- एक भिन्नात्मक विलंब निस्यंदन एक सभी उत्तीर्ण है जिसमें सभी आवृत्तियों के लिए एक निर्दिष्ट और निरंतर समूह या प्रावस्था विलंब होता है।
आवेग प्रतिक्रिया
निस्यंदन की आवृत्ति कार्य और इसकी आवेग प्रतिक्रिया के बीच एक सीधा पत्राचार होता है। जो पूर्व उत्तरार्द्ध का संप्रावस्था रूपांतरण है। इसका मतलब आवृत्ति कार्य पर कोई आवश्यक आवेग प्रतिक्रिया की इसके विपरीत आवश्यकता होती है।
हालांकि कुछ अनुप्रयोगों में यह निस्यंदन की आवेग प्रतिक्रिया हो सकती है जो स्पष्ट और अंकीय प्रक्रिया का लक्ष्य अन्य सभी आवश्यकताओं को देखते हुए अनुरोधित आवेग प्रतिक्रिया के जितना संभव हो उतना करीब अनुमान लगाना है।
कुछ मामलों में आवृत्ति कार्य और निस्यंदन की आवेग प्रतिक्रिया पर विचार करना भी प्रासंगिक हो सकता है जो एक दूसरे से स्वतंत्र रूप से चुने जाते हैं। उदाहरण के लिए, हम निस्यंदन के एक विशिष्ट आवृत्ति कार्य दोनों परिणामी निस्यंदन के संकेत कार्यक्षेत्र में यथासंभव छोटी प्रभावी चौड़ाई होते है। निस्यंदन की वांछित आवेग प्रतिक्रिया के रूप में बहुत ही संकीर्ण कार्य पर विचार करके बाद की स्थिति को महसूस किया जा सकता है, कि भले ही इस कार्य कि वांछित आवृत्ति कार्य से कोई संबंध नहीं रखती है। अंकीय प्रक्रिया का लक्ष्य एक निस्यंदन का एहसास करना है, जो इन दोनों विरोधाभासी अंकीय लक्ष्यों को यथासंभव पूरा करने का प्रयास करता है।
कार्य-कारण सिद्धांत
कार्यान्वयन योग्य होने के लिए, कोई भी समय-निर्भर निस्यंदन (वास्तविक समय में काम करना) का कारण होना चाहिए, निस्यंदन प्रतिक्रिया केवल वर्तमान और पिछले आकड़ों पर निर्भर करती है। एक मानक तरीका यह है कि इस आवश्यकता को अंतिम प्रावस्था तक छोड़ दिया जाए। यदि कोई परिणामी निस्यंदनकारणात्मक नहीं है, तो इसे उचित समय परिवर्तन शुरू करके बनाया जा सकता है। यदि निस्यंदन एक बड़े प्रणाली का हिस्सा है, जो सामान्य रूप से इस प्रकार की रुकावट को सावधानी से पेश किया जाना चाहिए क्योंकि वे पूरे प्रणाली के संचालन को प्रभावित करते हैं।
निस्यंदन जो वास्तविक समय में काम नहीं करते हैं (उदाहरण छवि प्रसंस्करण के लिए) गैर-करणीय हो सकते हैं। यह से शून्य विलंब पुनरावर्ती निस्यंदन के प्रारूप की अनुमति देता है, जहां एक कारण से निस्यंदन के समूह विलंब को इसके हर्मिटियन गैर-करणीय निस्यंदन द्वारा रद्द कर दिया जाता है।
स्थिरता
एक स्थिर निस्यंदन यह आश्वासन देता है कि प्रत्येक सीमित निवेश संकेत निस्यंदन प्रतिक्रिया उत्पन्न करता है। एक निस्यंदन जो इस आवश्यकता को पूरा नहीं करता है वह कुछ स्थितियों में बेकार या हानिकारक भी साबित हो सकता है। कुछ अंकीय दृष्टिकोण स्थिरता की प्रत्याभूति दे सकते हैं, उदाहरण के लिए केवल प्रतिसंभरण परिपथ जैसे एफआईआर निस्यंदन का उपयोग करके। दूसरी ओर, प्रतिपुष्टि परिपथ पर आधारित निस्यंदन के अन्य फायदे हैं, इसलिए इसे प्राथमिकता दी जा सकती है, कि भले ही निस्यंदन इस वर्ग में अस्थिर निस्यंदन शामिल हों। इस मामले में अस्थिरता से बचने के लिए निस्यंदन को सावधानीपूर्वक प्रतिरूप किया जाना चाहिए।
स्थान
कुछ अनुप्रयोगों में हमें उन संकेतों से निपटना होता है जिनमें कुछ ऐसे घटक होते हैं जिन्हें स्थानीय घटना के रूप में वर्णित किया जा सकता है, उदाहरण के लिए दालें या कदम जिनकी एक निश्चित समय कि अवधि होती है। जो किसी संकेत पर निस्यंदन लगाने का एक परिणाम सहज ज्ञान युक्त शब्दों में है, स्थानीय घटना की अवधि निस्यंदन की चौड़ाई से बढ़ा दी जाती है। इसका तात्पर्य यह है कि कभी-कभी निस्यंदन के आवेग प्रतिक्रिया कार्य की चौड़ाई को यथासंभव छोटा रखना भी महत्वपूर्ण होता है।
संप्रावस्था रूपांतरण के अनिश्चितता संबंध के अनुसार, निस्यंदन के आवेग प्रतिक्रिया कार्य की चौड़ाई का उत्पाद और इसकी आवृत्ति कार्य की चौड़ाई एक निश्चित स्थिरांक से अधिक होनी चाहिए। इसका मतलब यह है कि निस्यंदन के इलाके पर किसी भी आवश्यकता का अर्थ इसकी आवृत्ति कार्य की चौड़ाई पर बाध्यता भी है। इसके फलस्वरूप, निस्यंदन के आवेग प्रतिक्रिया समारोह के साथ-साथ इसकी आवृत्ति कार्य के इलाके पर आवश्यकताओं को एक साथ पूरा करना संभव नहीं हो सकता है। इसीलिए यह एक विरोधाभासी आवश्यकताओं का एक विशिष्ट उदाहरण है।
अभिकलनात्मक जटिलता
किसी भी प्रारूप में एक सामान्य इच्छा यह होती है कि निस्यंदन प्रतिक्रिया की गणना करने के लिए आवश्यक संचालन की संख्या यथासंभव कम हो। तथा कुछ अनुप्रयोगों में इस इच्छा कि सख्त आवश्यकता होती है, उदाहरण के लिए सीमित अभिकलनात्मक संसाधनों मे सीमित शक्ति संसाधनों या सीमित समय के कारण अंतिम सीमा के वास्तविक समय के अनुप्रयोगों में विशिष्ट होते है।
ऐसे कई तरीके होते हैं जिनसे एक निस्यंदन में अलग-अलग अभिकलनात्मक जटिलता हो सकती है। उदाहरण के लिए निस्यंदन का क्रम लगभग संचालन की संख्या के समानुपाती होता है। इसका मतलब यह है कि कम क्रम वाले निस्यंदन को चुनकर गणना के समय को कम किया जा सकता है।
असतत निस्यंदन के लिए अभिकलनात्मक जटिलता लगभग निस्यंदन गुणांक की संख्या के समानुपाती होती है। यदि निस्यंदन में कई गुणांक हैं, तो उदाहरण के लिए टोमोग्राफी डेटा जैसे बहुआयामी संकेतों के मामले में उन गुणांकों की संख्या को कम करना प्रासंगिक हो सकता है जो पर्याप्त रूप से शून्य के करीब हैं। बहु अनुपात निस्यंदन में इसकी बैंडविड्थ सीमा का लाभ उठाकर गुणांकों की संख्या के निवेश संकेत मे डाउनसैंपल किया जाता है (उदाहरण के लिए इसकी महत्वपूर्ण आवृत्ति) और निस्यंदनिंग के बाद अपसैंपल किया जाता है।
अभिकलनात्मक जटिलता से संबंधित एक अन्य मुद्दा पृथक्करणीयता है, अर्थात, यदि औरकिसी एक निस्यंदन को दो या दो से अधिक सरल निस्यंदन को सवलन के रूप में लिखा जा सकता है। विशेष रूप से यह मुद्दा बहुआयामी निस्यंदन के लिए महत्वपूर्ण होता है, उदाहरण के लिए, 2 डी निस्यंदन जो छवि प्रसंस्करण में उपयोग किया जाता है। इस मामले में अभिकलनात्मक जटिलता में महत्वपूर्ण कमी प्राप्त की जा सकती है यदि निस्यंदन को क्षैतिज दिशा में एक 1डी निस्यंदन और ऊर्ध्वाधर दिशा में 1डी निस्यंदन के सवलन के रूप में अलग किया जा सकता है। फ़िल्टर डिज़ाइन प्रक्रिया का परिणाम कुछ वांछित निस्यंदन को एक वियोज्य निस्यंदन के रूप में अलग-अलग निस्यंदन के योग के रूप में अनुमानित करना हो सकता है।
अन्य विचार
यह भी विशेष रूप से तय किया जाना चाहिए कि निस्यंदन कैसे लागू किया जा रहा है।
सादृश्य निस्यंदन
रैखिक सादृश्य निस्यंदन का प्रारूप रैखिक निस्यंदन के अनुभाग में शामिल अधिकांश भाग के लिए होता है।
अंकीय निस्यंदन
अंकीय निस्यंदन को दो बुनियादी रूपों में से एक में वर्गीकृत किया जाता है, जिसके अनुसार वे इकाई आवेग की प्रतिक्रिया देते हैं।
- परिमित आवेग प्रतिक्रिया , या एफआईआर, निस्यंदन के प्रत्येक उत्पात नमूने को अंतिम एन निवेश नमूनों के भारित योग के रूप में व्यक्त करते हैं, जहां एन निस्यंदन का क्रम है। और एफआईआर निस्यंदन आम तौर पर गैर-पुनरावर्ती होते हैं, जिसका अर्थ है कि वे प्रतिक्रिया का उपयोग नहीं करते हैं और इस तरह स्वाभाविक रूप से स्थिर होते हैं। एक सामान्य गति निस्यंदन या सीआईसी निस्यंदन एफआईआर निस्यंदन के उदाहरण हैं जो सामान्य रूप से पुनरावर्ती होते हैं। यदि एफआईआर गुणांक सममित होते हैं, तो ऐसा निस्यंदन रैखिक प्रावस्था होता है, इसलिए यह सभी आवृत्तियों के समूह के विलंब संकेतों को समान रूप से कई अनुप्रयोगों में महत्वपूर्ण होते है। जो एफआईआर निस्यंदन में ऊपर से बचना भी आसान होता है। मुख्य नुकसान यह है कि उन्हें चतुराई से प्रारूप किए गए आईआईआर रूपांतर की तुलना में प्रति सेकंड काफी अधिक निर्देश और स्मृति संसाधनों की आवश्यकता हो सकती है। एफआईआर निस्यंदन आमतौर पर आईआईआर निस्यंदन की तुलना में प्रतिरूप करना आसान होता है - पार्क्स-मैकलेलन फ़िल्टर डिज़ाइन कलन विधि ( रेमेज़ कलन विधि पर आधारित) अर्ध-स्वचालित रूप से काफी अच्छे फ़िल्टर डिज़ाइन करने के लिए एक उपयुक्त तरीका है।
- अनंत आवेग प्रतिक्रिया एवं आईआईआर निस्यंदन सादृश्य निस्यंदन के अंकीय समकक्ष हैं। जो इस तरह के निस्यंदन में आंतरिक स्थिति होती है, उत्पाद और अगली आंतरिक स्थिति से पिछले निवेश और उत्पाद के रैखिक संयोजन द्वारा निर्धारित की जाती है (दूसरे शब्दों में वे प्रतिक्रिया का उपयोग करते हैं, जो सामान्य रूप से एफआईआर निस्यंदन नहीं करते हैं)। सिद्धांत रूप में इस तरह के निस्यंदन की आवेग प्रतिक्रिया पूरी तरह से समाप्त नहीं होती है इसलिए आईआईआर नाम हालांकि व्यवहार में यह कंप्यूटर के अंकगणित के परिमित संकल्प को देखते हुए सच नहीं है। आईआईआर निस्यंदन को समान प्रदर्शन वाले एफआईआर निस्यंदन की तुलना में सामान्य रूप से कम कम्प्यूटिंग संसाधनों की आवश्यकता होती है। इसी प्रतिक्रिया के कारण उच्च क्रम के आईआईआर निस्यंदन में अस्थिरता अंकगणितीय अतिप्रवाह और सीमा चक्र के साथ समस्याएं हो सकती हैं, और ऐसे नुकसान से बचने के लिए सावधानीपूर्वक प्रतिरूप की आवश्यकता होती है। इसके अतिरिक्त प्रावस्था स्वाभाविक रूप से आवृत्ति का एक गैर-रेखीय कार्य है,जो ऐसे निस्यंदन के माध्यम से समय की देरी आवृत्ति पर निर्भर है, जो कई स्थितियों में एक समस्या हो सकती है। दूसरे क्रम के आईआईआर निस्यंदन को अक्सर 'अंकीय बाइकैड निस्यंदन कहा जाता है, और उच्च क्रम के निस्यंदन को सामान्य कार्यान्वयन जलप्रपात बाईक्वाड्स है। आरबीजे श्रव्य ईक्यू कुकबुक बाईक्वाड गुणांकों की गणना के लिए एक उपयोगी संदर्भ है।
नमूना दर
जब तक किसी नमूना की दर बाहरी बाध्यता द्वारा तय नहीं की जाती है, तब तक उपयुक्त नमूना दर का चयन करना एक महत्वपूर्ण प्रारूप निर्णय है। अभिकलनात्मक संसाधनों के मामले में एक उच्च दर की आवश्यकता होती है, लेकिन विरोधी उपघटन निस्यंदन के मामले की कम प्रणाली में अन्य संकेतों के साथ हस्तक्षेप भी एक मुद्दा हो सकता है।
विरोधी- उपघटन
किसी भी अंकीय फ़िल्टर डिज़ाइन के लिए, उपघटन प्रभावों का विश्लेषण करना और उनसे बचना महत्वपूर्ण होता है। अक्सर यह निवेश और उत्पाद पर सादृश्य विरोधी उपघटन निस्यंदन को जोड़कर किया जाता है, इस प्रकार आवृत्ति के ऊपर से किसी भी आवृत्ति घटक से बचा जाता है। इस तरह के निस्यंदन की जटिलता आवश्यक ध्वनि के लिए संकेत एवं अनुपात और नमूना दर की उच्चतम आवृत्ति के बीच के अनुपात पर निर्भर करती है।
सैद्धांतिक आधार
प्रतिरूप की समस्या के हिस्से मे इस तथ्य से संबंधित यह हैं कि कुछ आवश्यकताओं की आवृत्ति कार्यक्षेत्र में वर्णित किया गया है, जबकि अन्य समय कार्यक्षेत्र में व्यक्त किए गए हैं और ये संघर्ष कर भी सकते हैं। उदाहरण के लिए ऐसा निस्यंदन प्राप्त करना संभव नहीं है जिसमें मनमाना आवेग प्रतिक्रिया और मनमाना आवृत्ति कार्य दोनों हों। और वे अन्य प्रभाव जो समय और आवृत्ति कार्यक्षेत्र के बीच संबंधों को संदर्भित करते हैं।
- समय और आवृत्ति कार्यक्षेत्र के बीच अनिश्चितता का सिद्धांत
- विप्रावस्था विस्तार प्रमेय
- कार्यक्षेत्र के विरुद्ध दूसरे में असंतुलन का स्पर्शोन्मुख व्यवहार
अनिश्चितता सिद्धांत
जैसा कि गैबर सीमा द्वारा कहा गया है, कि एक अनिश्चितता के सिद्धांत, आवृत्ति कार्य की चौड़ाई का उत्पाद और आवेग प्रतिक्रिया की चौड़ाई एक विशिष्ट स्थिरांक से छोटा नहीं हो सकती है। इसका तात्पर्य यह है कि यदि एक विशिष्ट आवृत्ति वाले चौड़ाई के अनुरूप एक विशिष्ट आवृत्ति कार्य का अनुरोध किया जाता है, तो सांकेतिक कार्यक्षेत्र में निस्यंदन की न्यूनतम चौड़ाई निर्धारित की जाती है। तथा इसके विपरीत, यदि एक प्रतिक्रिया की अधिकतम चौड़ाई दी जाती है, तो यह आवृत्ति में सबसे छोटी संभव चौड़ाई निर्धारित करती है। और यह विरोधाभासी आवश्यकताओं का एक विशिष्ट उदाहरण है जहां फ़िल्टर डिज़ाइन कि प्रक्रिया एक उपयोगी समझौता खोजने का प्रयास कर सकती है।
प्रसरण विस्तार प्रमेय
माना कि निवेश संकेत का प्रसरण हो और निस्यंदन का विप्रावस्था हो। निस्यंदन प्रतिक्रिया का प्रसरण, , द्वारा दिया जाता है
- = +
और इसका तात्पर्य है कि विभिन्न विशेषताओं जैसे कि दालों या निस्यंदन प्रतिक्रिया में प्रावस्थाों का स्थानीयकरण सांकेतिक कार्यक्षेत्र निस्यंदन मे चौड़ाई द्वारा सीमित है। यदि एक सटीक स्थानीयकरण का अनुरोध किया जाता है, तो हमें सांकेतिक कार्यक्षेत्र में छोटी चौड़ाई के निस्यंदन की आवश्यकता होती है और अनिश्चितता सिद्धांत के माध्यम से, आवृत्ति कार्यक्षेत्र में इसकी चौड़ाई इच्छानुसार छोटी नहीं हो सकती है।
असंबद्धता विरूद्ध स्पर्शोन्मुख व्यवहार
मान कि f(t) एक फलन है और मान कि इसका फूरियर रूपांतरण हो। एक प्रमेय जो बताता है कि यदि F का पहला व्युत्पन्न जो असंतत है, उसका क्रम , है तो f में एक स्पर्शोन्मुख क्षय होता है जैसे .
इस प्रमेय का एक परिणाम यह है कि एक निस्यंदन कि आवृत्ति का कार्य जितना संभव हो उतना सुचारू रूप से होना चाहिए ताकि इसकी आवेग प्रतिक्रिया में तेजी से क्षय हो, और इस तरह एक छोटी चौड़ाई प्राप्त हो सके।
कार्यप्रणाली
रेमेज़ एक्सचेंज कलन विधि पर आधारित, प्राथमिकी फ़िल्टर डिज़ाइन करने का एक सामान्य तरीका पार्क-मैक्लेलन फ़िल्टर डिज़ाइन कलन विधि है। यहां उपयोगकर्ता वांछित आवृत्ति प्रतिक्रिया निर्दिष्ट करता है, इस प्रतिक्रिया से त्रुटियों के लिए एक भार समारोह और एक निस्यंदन क्रम एन। कलन विधि तब एन गुणांक का संग्रह ढूंढता है जो आदर्श से अधिकतम विचलन को कम करता है। सहज रूप से यह उस निस्यंदन को ढूंढता है जो उतना ही करीब है जितना कि आप वांछित प्रतिक्रिया प्राप्त कर सकते हैं, क्योंकि आप केवल एन गुणांक का उपयोग कर सकते हैं यह विधि अभ्यास में विशेष रूप से आसान है और कम से कम एक पाठ[2] प्रोग्राम शामिल है जो वांछित निस्यंदन एन लेता है। तथा इष्टतम गुणांक देता है। इस तरह से प्रारूप किए गए निस्यंदन में एक संभावित कमी यह है कि उनमें पासबैंड (ओं) में कई छोटे तरंग होते हैं, क्योंकि ऐसा निस्यंदन चरम मे त्रुटि को कम करता है।
असतत एफआईआर निस्यंदन खोजने का एक अन्य तरीका जो नॉटसन में वर्णित निस्यंदन अनुकूलन है, इसके अधिकतम मूल्य के बजाय त्रुटि के वर्ग के अभिन्न अंग को कम करता है। एवं अपने मूल रूप में इस दृष्टिकोण के लिए निस्यंदन की एक आदर्श आवृत्ति कार्य की आवश्यकता होती है एक आवृत्ति भार कार्य के साथ निर्दिष्ट किया गया है और निर्देशांक का समुच्चय सांकेतिक कार्यक्षेत्र में जहां निस्यंदन गुणांक स्थित हैं।
एक त्रुटि समुच्चय की तरह परिभाषित किया गया है
जहाँ पर असतत निस्यंदन है और निर्देशांक के निर्दिष्ट समुच्चय पर परिभाषित असतत-समय फूरियर रूपांतरण है। यहाँ प्रयुक्त मानदंड औपचारिक रूप से सामान्य मानदंड है रिक्त स्थान। इसका मतलब यह है कि निस्यंदन के अनुरोधित आवृत्ति कार्य के बीच विचलन को मापता है, , और वास्तविक निस्यंदन का वास्तविक आवृत्ति कार्य, . हालांकि, विचलन भी भार समुच्चय के अधीन है त्रुटि कार्य की गणना करने से पहले।
एक बार त्रुटि कार्य स्थापित हो जाने के बाद गुणांकों द्वारा इष्टतम निस्यंदन दिया जाता है। जो कों कम से कम . के संगत कम से कम वर्ग समस्या को हल करके किया जा सकता है। व्यवहार में, आवृत्ति कार्यक्षेत्र में असतत बिंदुओं पर उपयुक्त योग के माध्यम से मानदंड का अनुमान लगाया जाना चाहिए। सामान्य तौर पर हालांकि, ये बिंदु उपयोगी सन्निकटन प्राप्त करने के लिए सांकेतिक कार्यक्षेत्र में गुणांक की संख्या से काफी अधिक होना चाहिए।
दोनों कार्यक्षेत्र में एक साथ अनुकूलन
सांकेतिक कार्यक्षेत्र में वांछित निस्यंदन आवेग प्रतिक्रिया से संबंधित अतिरिक्त त्रुटि शब्द को शामिल करने के लिए पिछली विधि को बढ़ाया जा सकता है, जिसमें संबंधित भार कृत्य होता है। आदर्श आवेग प्रतिक्रिया को आदर्श आवृत्ति कार्य से स्वतंत्र मे रूप से चुना जा सकता है और व्यवहार में प्रभावी चौड़ाई को सीमित करने और सांकेतिक कार्यक्षेत्र में परिणामी निस्यंदन के झनझन प्रभाव को हटाने के लिए उपयोग किया जाता है। यह एक संकीर्ण आदर्श आवेग प्रतिक्रिया निस्यंदन कार्य आवेग और भार कृत्य का चयन करके किया जा सकता है, जो मूल दूरी के साथ तेजी से बढ़ता है, उदाहरण के लिए दूरी इष्टतम निस्यंदन अभी भी एक साधारण न्यूनतम वर्ग समस्या को हल करके गणना की जा सकती है और परिणामी निस्यंदन एक "समझौता" होता है जिसमें दोनों कार्यक्षेत्र में आदर्श कार्यों के लिए कुल इष्टतम सटीक होता है। एक महत्वपूर्ण पैरामीटर दो भारोत्तोलन कार्यों की सापेक्ष ताकत होती है जो यह निर्धारित करता है कि काल्पनिक कृत्य के सापेक्ष अच्छा सटीक कार्यक्षेत्र अधिक महत्वपूर्ण होता है।
यह भी देखें
- अंकीय निस्यंदन
- मूलरूप निस्यंदन
- परिमित आवेग प्रतिक्रिया फ़िल्टर डिज़ाइन
संदर्भ
- ↑ Valdez, M.E. "Digital Filters". GRM Networks. Retrieved 13 July 2020.
- ↑ Rabiner, Lawrence R., and Gold, Bernard, 1975: Theory and Application of Digital Signal Processing (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.) ISBN 0-13-914101-4
- A. Antoniou (1993). Digital Filters: Analysis, Design, and Applications (2 ed.). McGraw-Hill, New York, NY. ISBN 978-0-07-002117-4.
- A. Antoniou (2006). Digital Signal Processing: Signals, Systems, and Filters. McGraw-Hill, New York, NY. ISBN 978-0-07-145424-7.
- S.W.A. Bergen; A. Antoniou (2005). "Design of Nonrecursive Digital Filters Using the Ultraspherical Window Function". EURASIP Journal on Applied Signal Processing. 2005 (12): 1910. doi:10.1155/ASP.2005.1910.
- A.G. Deczky (October 1972). "Synthesis of Recursive Digital Filters Using the Minimum p-Error Criterion". IEEE Trans. Audio Electroacoustics. AU-20 (4): 257–263. doi:10.1109/TAU.1972.1162392.
- J.K. Kaiser (1974). "Nonrecursive Digital Filter Design Using the I0-sinh Window Function". Proc. 1974 IEEE Int. Symp. Circuit Theory (ISCAS74). San Francisco, CA. pp. 20–23.
- H. Knutsson; M. Andersson; J. Wiklund (June 1999). "Advanced Filter Design". Proc. Scandinavian Symposium on Image Analysis, Kangerlussuaq, Greenland.
- S.K. Mitra (1998). Digital Signal Processing: A Computer-Based Approach. McGraw-Hill, New York, NY. ISBN 978-0-07-286546-2.
- A.V. Oppenheim; R.W. Schafer; J.R. Buck (1999). Discrete-Time Signal Processing. Prentice-Hall, Upper Saddle River, NJ. ISBN 978-0-13-754920-7.
- T.W. Parks; J.H. McClellan (March 1972). "Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase". IEEE Trans. Circuit Theory. CT-19 (2): 189–194. doi:10.1109/TCT.1972.1083419.
- L.R. Rabiner; J.H. McClellan; T.W. Parks (April 1975). "FIR Digital Filter Design Techniques Using Weighted Chebyshev Approximation". Proc. IEEE. 63 (4): 595–610. doi:10.1109/PROC.1975.9794. S2CID 12579115.
बाहरी संबंध
- An extensive list of filter design articles and software at Circuit Sage
- A list of digital filter design software at dspGuru
- Analog Filter Design Demystified
- Yehar's digital sound processing tutorial for the braindead! This paper explains simply (between others topics) filters design theory and give some examples