श्यान प्रतिबल प्रदिश: Difference between revisions
(Created page with "{{Short description|Tensor used in continuum mechanics}} विस्कोस स्ट्रेस टेन्सर एक टेन्सर है जिसका...") |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Tensor used in continuum mechanics}} | {{Short description|Tensor used in continuum mechanics}} | ||
'''श्यान प्रतिबल प्रदिश''' एक प्रदिश है जिसका उपयोग सातत्य यांत्रिकी में प्रतिबल (यांत्रिकी) के हिस्से को कुछ भौतिक के भीतर एक बिंदु पर प्रतिरूप करने के लिए किया जाता है, जिसे विकृति दर, व्युत्पादित (गणित) के लिए उत्तरदायी है, जिस पर यह [[विरूपण (यांत्रिकी)]] के आसपास वह बिंदु होता है। | |||
श्यान प्रतिबल प्रदिश औपचारिक रूप से [[कॉची तनाव टेन्सर|कॉची प्रतिबल प्रदिश]] (कॉची प्रदिश) के समान है, जो किसी [[लोच (भौतिकी)]] भौतिक में उसके विरूपण के कारण आंतरिक बलों का वर्णन करता है। दोनों प्रदिश उस सतह तत्व पर कार्य करने वाले प्रतिबल के घनत्व और दिशा के अभिन्न अंग की सतह के सामान्य को मानचित्रित करते हैं। हालांकि, लोचदार प्रतिबल विरूपण ([[[[तनाव (यांत्रिकी)|प्रतिबल (यांत्रिकी)]]]]) की 'मात्रा' के कारण होता है, जबकि श्यान प्रतिबल समय के साथ विरूपण के परिवर्तन की 'दर' ([[तनाव दर|प्रतिबल दर]]) के कारण होता है। श्यानप्रत्यास्थ पदार्थ में, जिसका व्यवहार तरल और ठोस पदार्थों के बीच मध्यवर्ती होता है, कॉची प्रतिबल प्रदिश में श्यान और लोचदार (स्थैतिक) घटक होते हैं। पूरी तरह से द्रव भौतिक के लिए, लोचदार शब्द [[हीड्रास्टाटिक दबाव|द्रवस्थैतिक दाब]] को कम कर देता है। | |||
स्वेच्छाचारी समन्वय प्रणाली में, श्यान प्रतिबल {{mvar|ε}} और प्रतिबल दर {{mvar|E}} एक विशिष्ट बिंदु और समय पर वास्तविक संख्याओं के 3 × 3 [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] द्वारा दर्शाया जा सकता है। कई स्थितियों में उन आव्यूहों के बीच एक लगभग रैखिक संबंध होता है; यानी चौथे क्रम की श्यानहट {{mvar|μ}} ऐसा है कि {{math|''ε'' {{=}} ''μE''}} है। प्रदिश {{mvar|μ}} इसके चार सूचकांक हैं और इसमें 3 × 3 × 3 × 3 वास्तविक संख्याएँ हैं (जिनमें से केवल 21 स्वतंत्र हैं)। [[न्यूटोनियन द्रव]] में, परिभाषा के अनुसार, ε और E के बीच संबंध पूरी तरह से रैखिक है, और श्यानता प्रदिश μ द्रव में गति या तनाव की स्थिति से स्वतंत्र है। यदि द्रव समदैशिक होने के साथ-साथ न्यूटोनियन भी है, तो श्यानपन प्रदिश {{mvar|μ}} केवल तीन स्वतंत्र वास्तविक मापदण्ड होंगे: एक स्थूल श्यानपन गुणांक, जो मध्यम से धीरे-धीरे समान संपीड़न के प्रतिरोध को परिभाषित करता है; एक गतिशील श्यानपन गुणांक जो धीरे-धीरे कतरन के प्रतिरोध को व्यक्त करता है, और एक घूर्णी श्यानहट गुणांक जो द्रव प्रवाह और व्यक्तिगत कणों के घूर्णन के बीच युग्मन से उत्पन्न होता है।<ref name="dG1984">{{cite book |last1=De Groot |first1=S. R.|last2=Mazur|first2=P.|title=गैर-संतुलन थर्मोडायनामिक्स|year=1984 |publisher=Dover |location=New York |isbn=0-486-64741-2}}</ref>{{rp|304}} इस तरह के युग्मन की अनुपस्थिति में, श्यान प्रतिबल प्रदिश में केवल दो स्वतंत्र मापदण्ड होंगे और सममित होंगे। दूसरी ओर, गैर-न्यूटोनियन तरल पदार्थों में, के बीच संबंध {{mvar|ε}} और {{mvar|E}} अत्यंत गैर रेखीय हो सकता है, और {{mvar|ε}} इसके अतिरिक्त प्रवाह {{mvar|E}} की अन्य विशेषताओं पर भी निर्भर हो सकता है। | |||
== परिभाषा == | == परिभाषा == | ||
=== | === श्यान बनाम लोचदार प्रतिबल === | ||
एक सतत यांत्रिकी में आंतरिक | एक सतत यांत्रिकी में आंतरिक प्रतिबल (यांत्रिकी) सामान्यतः कुछ आराम (अप्रतिबंधित) स्तिथि से भौतिक के विरूपण से संबंधित होते हैं। इन प्रतिबलों में सामान्यतः एक लोचदार (स्थैतिक) प्रतिबल घटक सम्मिलित होता है, जो विरूपण की वर्तमान मात्रा से संबंधित होता है और घटक को उसके आराम की स्थिति में बहाल करने के लिए कार्य करता है; और श्यानपन घटक, जो उस दर पर निर्भर करता है जिस पर विरूपण समय के साथ बदल रहा है और उस परिवर्तन का विरोध करता है। | ||
=== | === श्यान प्रतिबल प्रदिश === | ||
कुल और लोचदार | कुल और लोचदार प्रतिबलों की तरह, भौतिक में एक निश्चित बिंदु के आसपास श्यान प्रतिबल, किसी भी समय एक प्रतिबल प्रदिश द्वारा तैयार किया जा सकता है, बिंदु के माध्यम से एक आदर्श तल के सामान्य दिशा सदिश और उस बिंदु पर उस तल पर स्थानीय तनाव घनत्व के बीच एक रैखिक संबंध है। | ||
1, 2, 3 अक्षों के साथ किसी भी चुने हुए कार्टेशियन निर्देशांक में, इस | 1, 2, 3 अक्षों के साथ किसी भी चुने हुए कार्टेशियन निर्देशांक में, इस श्यान प्रतिबल प्रदिश को वास्तविक संख्याओं के 3 × 3 आव्यूह (गणित) के रूप में दर्शाया जा सकता है: | ||
:<math>\varepsilon(p, t) = \begin{bmatrix} | :<math>\varepsilon(p, t) = \begin{bmatrix} | ||
\varepsilon_{1 1} & \varepsilon_{1 2} & \varepsilon_{1 3} \\ | \varepsilon_{1 1} & \varepsilon_{1 2} & \varepsilon_{1 3} \\ | ||
Line 20: | Line 20: | ||
\varepsilon_{3 1} & \varepsilon_{3 2} & \varepsilon_{3 3} | \varepsilon_{3 1} & \varepsilon_{3 2} & \varepsilon_{3 3} | ||
\end{bmatrix}\,.</math> | \end{bmatrix}\,.</math> | ||
ध्यान दें कि ये संख्याएँ | ध्यान दें कि ये संख्याएँ {{mvar|p}} और समय {{mvar|t}} सामान्यतः बिंदु के साथ बदलती हैं। | ||
बिंदु पर केन्द्रित एक अतिसूक्ष्म | बिंदु {{mvar|p}} पर केन्द्रित एक अतिसूक्ष्म समतल सतह अभिन्न पर विचार करें, एक सदिश {{mvar|dA}} द्वारा दर्शाया गया जिसकी लंबाई तत्व का क्षेत्रफल (ज्यामिति) है और जिसकी दिशा इसके लंबवत है। मान लीजिये {{mvar|dF}} श्यान प्रतिबल के कारण असीम बल {{mvar|dA}} हो जो उस सतह तत्व के विपरीत दिशा में भौतिक पर लागू होता है। प्रत्येक समन्वय अक्ष के साथ dF के घटक तब निम्न रूप से दिए जाते हैं | ||
:<math>dF_i = \sum_j\varepsilon_{ij}\,dA_j\,.</math> | :<math>dF_i = \sum_j\varepsilon_{ij}\,dA_j\,.</math> | ||
किसी भी | किसी भी भौतिक में, कुल प्रतिबल प्रदिश {{mvar|σ}} इस श्यान प्रतिबल प्रदिश का योग {{mvar|ε}}, लोचदार प्रतिबल प्रदिश {{mvar|τ}} और द्रवस्थैतिक दाब {{mvar|p}} है। पूरी तरह से तरल भौतिक में, परिभाषा के अनुसार स्थैतिक कतरनी प्रतिबल नहीं हो सकता और लोचदार प्रतिबल प्रदिश शून्य है: | ||
:<math>\sigma_{ij} = -p\delta_{ij} + \varepsilon_{ij}\,,</math> | :<math>\sigma_{ij} = -p\delta_{ij} + \varepsilon_{ij}\,,</math> | ||
जहां {{mvar|δ<sub>ij</sub>}} इकाई प्रदिश है, जैसे कि यदि {{math|''i'' {{=}} ''j''}} है तो {{mvar|δ<sub>ij</sub>}} 1 है और यदि {{math|''i'' ≠ ''j''}} है तो 0 है। | |||
जबकि | जबकि श्यान प्रतिबल भौतिक घटनाओं से उत्पन्न होते हैं जो माध्यम की प्रकृति पर दृढ़ता से निर्भर करते हैं, श्यान प्रतिबल प्रदिश {{mvar|ε}} केवल भौतिक के आसन्न खण्ड़ के बीच स्थानीय क्षणिक बलों का वर्णन है, और भौतिक की विशेषता नहीं है। | ||
=== समरूपता === | === समरूपता === | ||
प्रवाह (बाह्य | प्रवाह (बाह्य आघूर्ण बल) के कारण एक तत्व पर आघूर्ण बल को अनदेखा करते हुए, द्रव तत्व पर प्रति इकाई मात्रा में श्यान आंतरिक आघूर्ण बल लिखा जाता है (एक प्रतिसममित प्रदिश के रूप में) | ||
:<math>\tau_{ij} = \varepsilon_{ij}-\varepsilon_{ji}</math> | :<math>\tau_{ij} = \varepsilon_{ij}-\varepsilon_{ji}</math> | ||
और समय के साथ आंतरिक कोणीय संवेग घनत्व के परिवर्तन की दर का प्रतिनिधित्व करता है। यदि कणों में स्वतंत्रता की घूर्णी | और समय के साथ आंतरिक कोणीय संवेग घनत्व के परिवर्तन की दर का प्रतिनिधित्व करता है। यदि कणों में स्वतंत्रता की घूर्णी घात है, तो यह एक आंतरिक कोणीय गति का संकेत देगा और यदि इस कोणीय गति को टक्करों द्वारा बदला जा सकता है, तो यह संभव है कि यह आंतरिक कोणीय गति समय में बदल सकती है, जिसके परिणामस्वरूप एक आंतरिक आघूर्ण बल शून्य नहीं है, जिसका अर्थ यह होगा कि श्यान प्रतिबल प्रदिश में संगत घूर्णी श्यानता गुणांक के साथ एक प्रतिसममित घटक होगा।<ref name="dG1984"/> यदि द्रव के कणों का कोणीय संवेग नगण्य है या यदि उनका कोणीय संवेग बाहरी कोणीय संवेग के साथ पर्याप्त रूप से युग्मित नहीं है, या यदि स्वतंत्रता की बाहरी और आंतरिक घात के बीच संतुलन समय व्यावहारिक रूप से शून्य है, तो आघूर्ण बल शून्य होगा और श्यान प्रतिबल प्रदिश सममित होगा। बाहरी ताकतों के परिणामस्वरूप प्रतिबल प्रदिश के लिए एक असममित घटक हो सकता है (उदाहरण के लिए [[फेरोफ्लुइड]] जो बाहरी [[चुंबकीय क्षेत्र]]ों द्वारा आघूर्ण बल को सहन कर सकता है)। | ||
== | == श्यान प्रतिबल के भौतिक कारण == | ||
एक ठोस | एक ठोस भौतिक में, प्रतिबल के लोचदार घटक को भौतिक के [[परमाणु]]ओं और [[अणु]]ओं के बीच [[बंधन (रसायन विज्ञान)]] के विरूपण के लिए जिम्मेदार ठहराया जा सकता है, और इसमें कतरनी प्रतिबल सम्मिलित हो सकते हैं। एक द्रव में, लोचदार प्रतिबल को कणों की औसत दूरी में वृद्धि या कमी के लिए जिम्मेदार ठहराया जा सकता है, जो उनकी टक्कर या अंतःक्रिया दर को प्रभावित करता है और इसलिए तरल पदार्थ में संवेग का स्थानांतरण होता है; इसलिए यह कणों की [[गति]] के सूक्ष्म [[ऊष्मप्रवैगिकी]] यादृच्छिक घटक से संबंधित है, और खुद को एक समदैशिक जलस्थैतिक दबाव प्रतिबल के रूप में प्रकट करता है। | ||
दूसरी ओर | दूसरी ओर प्रतिबल का श्यान घटक, कणों के स्थूलदर्शित माध्य वेग से उत्पन्न होता है। इसे माध्यम के आसन्न खण्ड़ के बीच घर्षण या कण [[प्रसार]] के लिए जिम्मेदार ठहराया जा सकता है, जिसमें अलग-अलग वेग होते हैं। | ||
== | == श्यानपन समीकरण == | ||
=== | === प्रतिबल दर प्रदिश === | ||
{{main| | {{main|प्रतिबल दर प्रदिश}} | ||
तनाव दर टेंसर {{math|''E''(''p'', ''t'')}} | एक सहज प्रवाह में, वह दर जिस पर माध्यम का स्थानीय विरूपण समय के साथ बदल रहा है (प्रतिबल दर) उसको [[तनाव दर टेंसर|प्रतिबल दर प्रदिश]] {{math|''E''(''p'', ''t'')}} द्वारा अनुमानित किया जा सकता है, जो सामान्यतः बिंदु का एक कार्य {{mvar|p}} और समय {{mvar|t}} है। किसी भी समन्वय प्रणाली के संबंध में, इसे 3 × 3 आव्यूह द्वारा व्यक्त किया जा सकता है। | ||
प्रतिबल दर प्रदिश {{math|''E''(''p'', ''t'')}} [[तनाव टेंसर|प्रतिबल प्रदिश]] के व्युत्पन्न (गणित) के रूप में परिभाषित किया जा सकता है , या, समकक्ष, प्रवाह वेग सदिश के [[ढाल|अनुप्रवण]] (अंतरिक्ष के संबंध में व्युत्पन्न) के सममित भाग {{math|''v''(''p'', ''t'')}} के रूप में है: | |||
:<math>E = \frac{\partial e}{\partial t} = \frac{1}{2} \left((\nabla v) + (\nabla v)^\textsf{T}\right)\,,</math> | :<math>E = \frac{\partial e}{\partial t} = \frac{1}{2} \left((\nabla v) + (\nabla v)^\textsf{T}\right)\,,</math> | ||
जहाँ {{math|∇''v''}} वेग प्रवणता को दर्शाता है। कार्तीय निर्देशांक में, {{math|∇''v''}} [[जैकबियन मैट्रिक्स|जैकबियन आव्यूह]] है, | |||
:<math>(\nabla v)_{ij} = \frac{\partial v_i}{\partial x_j}</math> | :<math>(\nabla v)_{ij} = \frac{\partial v_i}{\partial x_j}</math> | ||
और इसीलिए | और इसीलिए | ||
:<math>E_{ij} = \frac{\partial e_{ij}}{\partial t} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j}\right)\,.</math> | :<math>E_{ij} = \frac{\partial e_{ij}}{\partial t} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j}\right)\,.</math> | ||
किसी भी तरह से, तनाव दर | किसी भी तरह से, तनाव दर प्रदिश ई (पी, टी) उस दर को व्यक्त करता है जिस पर माध्यम में औसत वेग बदलता है क्योंकि कोई बिंदु p से दूर जाता है - कठोर शरीर के रूप में p के चारों ओर माध्यम के घूर्णन के कारण होने वाले परिवर्तनों को छोड़कर, जो कणों की सापेक्ष दूरी को नहीं बदलते हैं और केवल व्यक्तिगत कणों के घूर्णन के माध्यम से श्यान प्रतिबल के घूर्णी भाग में योगदान करते हैं। (इन परिवर्तनों में प्रवाह की [[vorticity|आवर्त]] सम्मिलित है, जो {{math|∇ × ''v''}} वेग का [[कर्ल (गणित)]] (घूर्णी) है; जो वेग प्रवणता का विषम भाग {{math|∇''v''}} भी है।) | ||
=== सामान्य प्रवाह === | === सामान्य प्रवाह === | ||
श्यान प्रतिबल प्रदिश एक बिंदु के चारों ओर प्रतिबल का केवल एक रैखिक सन्निकटन {{mvar|p}} है, और इसकी [[टेलर श्रृंखला]] की उच्च-क्रम परिस्थितियों के लिए खाता नहीं है। हालाँकि लगभग सभी व्यावहारिक स्थितियों में इन शब्दों को अनदेखा किया जा सकता है, क्योंकि वे आकार के मापक्रम पर नगण्य हो जाते हैं जहाँ श्यान प्रतिबल उत्पन्न होता है और माध्यम की गति को प्रभावित करता है। p के चारों ओर वेग प्रतिरूप के प्रतिनिधित्व के रूप में तनाव दर प्रदिश E के बारे में भी यही कहा जा सकता है। | |||
इस प्रकार, | इस प्रकार, प्रदिश {{mvar|E}} और {{mvar|ε}} द्वारा प्रस्तुत रैखिक प्रतिरूप लगभग हमेशा एक बिंदु के चारों ओर श्यान प्रतिबल और प्रतिबल दर का वर्णन करने के लिए इसकी गतिशीलता को प्रतिरूप करने के उद्देश्य से पर्याप्त होते हैं। विशेष रूप से, स्थानीय तनाव दर {{math|''E''(''p'', ''t'')}} वेग प्रवाह की एकमात्र विशेषता है जो किसी दिए गए बिंदु पर श्यान प्रतिबल {{math|''ε''(''p'', ''t'')}} को सीधे प्रभावित करती है। | ||
दूसरी ओर, | दूसरी ओर, {{mvar|E}} और {{mvar|ε}} के बीच संबंध काफी जटिल हो सकता है, और विशेषता की संरचना, भौतिक अवस्था और सूक्ष्म संरचना पर बहुत अधिक निर्भर करता है। यह प्रायः अत्यधिक गैर-रेखीय भी होता है, और उस भौतिक द्वारा पहले अनुभव किए गए प्रतिबलों और प्रतिबलों पर निर्भर हो सकता है जो अब प्रश्न के बिंदु के आसपास है। | ||
=== | === सामान्य न्यूटोनियन मीडिया === | ||
एक माध्यम न्यूटोनियन तरल पदार्थ कहा जाता है अगर | एक माध्यम न्यूटोनियन तरल पदार्थ कहा जाता है अगर श्यान प्रतिबल {{math|''ε''(''p'', ''t'')}} प्रतिबल दर का एक रैखिक कार्य {{math|''E''(''p'', ''t'')}} है, और यह कार्य अन्यथा तरल पदार्थ के प्रतिबल और गति {{mvar|p}} पर निर्भर नहीं करता है। कोई भी वास्तविक द्रव पूर्ण न्यूटोनियन नहीं है, लेकिन गैसों और पानी सहित कई महत्वपूर्ण तरल पदार्थों को माना जा सकता है, जब तक कि प्रवाह प्रतिबल और प्रतिबल दर बहुत अधिक न हो। | ||
गैसों और पानी सहित कई महत्वपूर्ण तरल पदार्थों को माना जा सकता है, जब तक कि प्रवाह | |||
सामान्यतः, दो दूसरे क्रम के प्रदिशों के बीच एक रैखिक संबंध एक चौथे क्रम का प्रदिश होता है। न्यूटोनियन माध्यम में, विशेष रूप से श्यानपन प्रतिबल और प्रतिबल दर [[चिपचिपापन टेंसर|श्यानपन प्रदिश]] {{math|'''μ'''}} से संबंधित होते हैं : | |||
:<math>\varepsilon_{ij} = \sum_{kl}\boldsymbol{\mu}_{ijkl}E_{kl}\,.</math> | :<math>\varepsilon_{ij} = \sum_{kl}\boldsymbol{\mu}_{ijkl}E_{kl}\,.</math> | ||
श्यानहट गुणांक {{math|'''μ'''}} न्यूटोनियन भौतिक का एक गुण है, जो परिभाषा के अनुसार, अन्यथा {{mvar|v}} या {{mvar|σ}} निर्भर नहीं करता है। | |||
प्रतिबल दर प्रदिश {{math|''E''(''p'', ''t'')}} परिभाषा के अनुसार सममित है, इसलिए इसमें केवल छह रैखिक रूप से स्वतंत्र तत्व हैं। इसलिए, श्यानपन प्रदिश {{math|'''μ'''}} 81 के स्थान पर केवल 6 × 9 = 54 घात की स्वतंत्रता है। अधिकांश तरल पदार्थों में श्यान प्रतिबल प्रदिश भी सममित होता है, जो श्यानपन मापदंडों की संख्या को 6 × 6 = 36 तक कम कर देता है। | |||
== कतरनी और थोक | == कतरनी और थोक श्यान प्रतिबल == | ||
घूर्णी प्रभावों के अभाव में | घूर्णी प्रभावों के अभाव में, श्यान प्रतिबल प्रदिश सममित होगा। किसी भी सममित प्रदिश की तरह, श्यान प्रतिबल प्रदिश ε को लापता सममित प्रदिश εs और अस्मिता प्रदिश के एक अदिश गुणज εv के योग के रूप में व्यक्त किया जा सकता है। समन्वय रूप में, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\varepsilon_{ij} &= \varepsilon_{ij}^\text{v} + \varepsilon_{ij}^\text{s} \\[3pt] | \varepsilon_{ij} &= \varepsilon_{ij}^\text{v} + \varepsilon_{ij}^\text{s} \\[3pt] | ||
Line 78: | Line 78: | ||
\varepsilon_{ij}^\text{s} &= \varepsilon_{ij} - \frac{1}{3}\delta_{ij} \sum_k\varepsilon_{kk}\,. | \varepsilon_{ij}^\text{s} &= \varepsilon_{ij} - \frac{1}{3}\delta_{ij} \sum_k\varepsilon_{kk}\,. | ||
\end{align}</math> | \end{align}</math> | ||
यह अपघटन समन्वय प्रणाली से स्वतंत्र है और इसलिए भौतिक रूप से महत्वपूर्ण है। नित्य भाग {{math|''ε''<sup>v</sup>}} | यह अपघटन समन्वय प्रणाली से स्वतंत्र है और इसलिए भौतिक रूप से महत्वपूर्ण है। नित्य भाग {{math|''ε''<sup>v</sup>}} श्यान प्रतिबल प्रदिश स्वयं को एक प्रकार के दबाव, या स्थूल प्रतिबल के रूप में प्रकट करता है, जो किसी भी सतह पर समान रूप से और लंबवत रूप से कार्य करता है जो इसके अभिविन्यास से स्वतंत्र होता है। सामान्य जलस्थैतिक दबाव के विपरीत, यह केवल तभी प्रकट हो सकता है जब प्रतिबल बदल रहा हो, परिवर्तन का विरोध करने के लिए कार्य कर रहा हो; और यह नकारात्मक हो सकता है। | ||
=== | ===समदैशिक न्यूटोनियन केस=== | ||
एक न्यूटोनियन माध्यम में जो | एक न्यूटोनियन माध्यम में जो समदैशिक है (अर्थात जिनके गुण सभी दिशाओं में समान हैं), प्रतिबल प्रदिश का प्रत्येक भाग विकृति दर प्रदिश के संबंधित भाग से संबंधित है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\varepsilon^\text{v}(p, t) &= \mu^\text{v} E^\text{v}(p, t)\,, \\ | \varepsilon^\text{v}(p, t) &= \mu^\text{v} E^\text{v}(p, t)\,, \\ | ||
\varepsilon^\text{s}(p, t) &= \mu^\text{s} E^\text{s}(p, t)\,, | \varepsilon^\text{s}(p, t) &= \mu^\text{s} E^\text{s}(p, t)\,, | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ {{math|''E''<sup>v</sup>}} और {{math|''E''<sup>s</sup>}} अदिश समस्थानिक और प्रतिबल दर प्रदिश के शून्य-अनुरेख भाग {{mvar|E}}, और {{math|''μ''<sup>v</sup>}} और {{math|''μ''<sup>s</sup>}} दो वास्तविक संख्याएँ हैं। <ref>{{cite book| first1= L. D. |last1=Landau |first2=E. M. |last2=Lifshitz |translator1-first=J. B. |translator1-last=Sykes |translator2-first=W. H. |translator2-last=Reid|title=तरल यांत्रिकी|edition=2nd| publisher=Butterworth Heinemann|year=1997|isbn=0-7506-2767-0}}</ref> इस प्रकार, इस स्तिथि में श्यानपन प्रदिश {{mvar|μ}} केवल दो स्वतंत्र मापदण्ड हैं। | |||
शून्य- | शून्य-अनुरेख भाग {{math|''E''<sup>s</sup>}} का {{mvar|E}} एक सममित 3 × 3 प्रदिश है जो उस दर का वर्णन करता है जिस पर माध्यम को कतरन द्वारा विकृत किया जा रहा है, इसकी मात्रा में किसी भी परिवर्तन को अनदेखा कर रहा है। इस प्रकार शून्य-अनुरेख भाग {{math|''ε''<sup>s</sup>}} का {{mvar|ε}} परिचित श्यान कतरनी प्रतिबल है जो प्रगतिशील कतरनी (भौतिकी) विरूपण से जुड़ा है। यह श्यान प्रतिबल है जो एक समान अनुप्रस्थ काट (एक प्वाजय प्रवाह) या दो [[समानांतर (ज्यामिति)]] गतिमान पट्टिका (एक कुएट प्रवाह) के बीच एक नलिका के माध्यम से द्रव में होता है और उन गतियों का विरोध करता है। | ||
भाग {{math|''E''<sup>v</sup> | E का भाग {{math|''E''<sup>v</sup>}} एक अदिश गुणक ({{math|''ε''<sup>v</sup>}} की तरह) के रूप में कार्य करता है, जो प्रश्न में बिंदु के चारों ओर माध्यम की औसत विस्तार दर है। (इसे किसी भी समन्वय प्रणाली में 3 × 3 विकर्ण आव्यूह द्वारा विकर्ण के साथ समान मानों के साथ दर्शाया जाता है।) यह संख्यात्मक रूप से वेग के विचलन के {{sfrac|1|3}} के बराबर है | ||
:<math>\nabla \cdot v = \sum_k\frac{\partial v_k}{\partial x_k}\,,</math> | :<math>\nabla \cdot v = \sum_k\frac{\partial v_k}{\partial x_k}\,,</math> | ||
जो बदले में प्रवाह के कारण द्रव के आयतन (ज्यामिति) के परिवर्तन की सापेक्ष दर है। | जो बदले में प्रवाह के कारण द्रव के आयतन (ज्यामिति) के परिवर्तन की सापेक्ष दर है। | ||
इसलिए, अदिश भाग {{math|''ε''<sup>v</sup>}} का {{mvar|ε}} एक | इसलिए, अदिश भाग {{math|''ε''<sup>v</sup>}} का {{mvar|ε}} एक प्रतिबल है जो तब देखा जा सकता है जब भौतिक को सभी दिशाओं में समान दर से संकुचित या विस्तारित किया जा रहा हो। यह एक अतिरिक्त [[दबाव]] के रूप में प्रकट होता है जो भौतिक को संपीड़ित होने पर ही प्रकट होता है, लेकिन (सच्चे जलस्थैतिक दबाव के विपरीत) संपीड़न की मात्रा के स्थान पर संपीड़न के परिवर्तन की दर के आनुपातिक होता है, और जैसे ही आयतन बदलना बंद हो जाता है, गायब हो जाता है। | ||
श्यान प्रतिबल का यह हिस्सा, जिसे सामान्यतः स्थूल श्यानपन या मात्रा श्यानहट कहा जाता है, प्रायः [[viscoelastic|श्यानप्रत्यास्थ]] भौतिक में महत्वपूर्ण होता है, और माध्यम में अनुदैर्ध्य तरंगों के स्टोक्स के नियम (ध्वनि क्षीणन) के लिए जिम्मेदार होता है। स्थूल श्यानहट की उपेक्षा की जा सकती है जब भौतिक को असम्पीडित माना जा सकता है (उदाहरण के लिए, जब एक प्रणाल में पानी के प्रवाह को प्रतिरूपण करते हैं)। | |||
गुणांक {{math|''μ''<sup>v</sup>}}, | गुणांक {{math|''μ''<sup>v</sup>}}, प्रायः द्वारा निरूपित {{mvar|η}}, थोक श्यानहट (या दूसरी श्यानहट) का गुणांक कहा जाता है; जबकि {{math|''μ''<sup>s</sup>}} सामान्य (कतरनी) श्यानहट का गुणांक है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[वर्टिसिटी समीकरण]] | * [[वर्टिसिटी समीकरण|भ्रमिलता समीकरण]] | ||
* नेवियर-स्टोक्स समीकरण | * नेवियर-स्टोक्स समीकरण | ||
Line 114: | Line 114: | ||
*श्यानता | *श्यानता | ||
*डायनेमिक गाढ़ापन | *डायनेमिक गाढ़ापन | ||
*थोक | *थोक श्यानहट | ||
*घूर्णी | *घूर्णी श्यानपन | ||
*गैर-न्यूटोनियन द्रव | *गैर-न्यूटोनियन द्रव | ||
* | *प्रतिबल घनत्व | ||
*कार्तीय निर्देशांक | *कार्तीय निर्देशांक | ||
*बहुत छोता | *बहुत छोता | ||
*क्षेत्र (ज्यामिति) | *क्षेत्र (ज्यामिति) | ||
*अपरूपण | *अपरूपण प्रतिबल | ||
*टकराव | *टकराव | ||
*रोटेशन | *रोटेशन | ||
Line 132: | Line 132: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[श्रेणी: टेन्सर भौतिक मात्रा]] | [[श्रेणी: टेन्सर भौतिक मात्रा|श्रेणी: प्रदिश भौतिक मात्रा]] | ||
[[श्रेणी: श्यानता]] | [[श्रेणी: श्यानता]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 27/12/2022]] | [[Category:Created On 27/12/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 18:59, 3 July 2023
श्यान प्रतिबल प्रदिश एक प्रदिश है जिसका उपयोग सातत्य यांत्रिकी में प्रतिबल (यांत्रिकी) के हिस्से को कुछ भौतिक के भीतर एक बिंदु पर प्रतिरूप करने के लिए किया जाता है, जिसे विकृति दर, व्युत्पादित (गणित) के लिए उत्तरदायी है, जिस पर यह विरूपण (यांत्रिकी) के आसपास वह बिंदु होता है।
श्यान प्रतिबल प्रदिश औपचारिक रूप से कॉची प्रतिबल प्रदिश (कॉची प्रदिश) के समान है, जो किसी लोच (भौतिकी) भौतिक में उसके विरूपण के कारण आंतरिक बलों का वर्णन करता है। दोनों प्रदिश उस सतह तत्व पर कार्य करने वाले प्रतिबल के घनत्व और दिशा के अभिन्न अंग की सतह के सामान्य को मानचित्रित करते हैं। हालांकि, लोचदार प्रतिबल विरूपण ([[प्रतिबल (यांत्रिकी)]]) की 'मात्रा' के कारण होता है, जबकि श्यान प्रतिबल समय के साथ विरूपण के परिवर्तन की 'दर' (प्रतिबल दर) के कारण होता है। श्यानप्रत्यास्थ पदार्थ में, जिसका व्यवहार तरल और ठोस पदार्थों के बीच मध्यवर्ती होता है, कॉची प्रतिबल प्रदिश में श्यान और लोचदार (स्थैतिक) घटक होते हैं। पूरी तरह से द्रव भौतिक के लिए, लोचदार शब्द द्रवस्थैतिक दाब को कम कर देता है।
स्वेच्छाचारी समन्वय प्रणाली में, श्यान प्रतिबल ε और प्रतिबल दर E एक विशिष्ट बिंदु और समय पर वास्तविक संख्याओं के 3 × 3 आव्यूह (गणित) द्वारा दर्शाया जा सकता है। कई स्थितियों में उन आव्यूहों के बीच एक लगभग रैखिक संबंध होता है; यानी चौथे क्रम की श्यानहट μ ऐसा है कि ε = μE है। प्रदिश μ इसके चार सूचकांक हैं और इसमें 3 × 3 × 3 × 3 वास्तविक संख्याएँ हैं (जिनमें से केवल 21 स्वतंत्र हैं)। न्यूटोनियन द्रव में, परिभाषा के अनुसार, ε और E के बीच संबंध पूरी तरह से रैखिक है, और श्यानता प्रदिश μ द्रव में गति या तनाव की स्थिति से स्वतंत्र है। यदि द्रव समदैशिक होने के साथ-साथ न्यूटोनियन भी है, तो श्यानपन प्रदिश μ केवल तीन स्वतंत्र वास्तविक मापदण्ड होंगे: एक स्थूल श्यानपन गुणांक, जो मध्यम से धीरे-धीरे समान संपीड़न के प्रतिरोध को परिभाषित करता है; एक गतिशील श्यानपन गुणांक जो धीरे-धीरे कतरन के प्रतिरोध को व्यक्त करता है, और एक घूर्णी श्यानहट गुणांक जो द्रव प्रवाह और व्यक्तिगत कणों के घूर्णन के बीच युग्मन से उत्पन्न होता है।[1]: 304 इस तरह के युग्मन की अनुपस्थिति में, श्यान प्रतिबल प्रदिश में केवल दो स्वतंत्र मापदण्ड होंगे और सममित होंगे। दूसरी ओर, गैर-न्यूटोनियन तरल पदार्थों में, के बीच संबंध ε और E अत्यंत गैर रेखीय हो सकता है, और ε इसके अतिरिक्त प्रवाह E की अन्य विशेषताओं पर भी निर्भर हो सकता है।
परिभाषा
श्यान बनाम लोचदार प्रतिबल
एक सतत यांत्रिकी में आंतरिक प्रतिबल (यांत्रिकी) सामान्यतः कुछ आराम (अप्रतिबंधित) स्तिथि से भौतिक के विरूपण से संबंधित होते हैं। इन प्रतिबलों में सामान्यतः एक लोचदार (स्थैतिक) प्रतिबल घटक सम्मिलित होता है, जो विरूपण की वर्तमान मात्रा से संबंधित होता है और घटक को उसके आराम की स्थिति में बहाल करने के लिए कार्य करता है; और श्यानपन घटक, जो उस दर पर निर्भर करता है जिस पर विरूपण समय के साथ बदल रहा है और उस परिवर्तन का विरोध करता है।
श्यान प्रतिबल प्रदिश
कुल और लोचदार प्रतिबलों की तरह, भौतिक में एक निश्चित बिंदु के आसपास श्यान प्रतिबल, किसी भी समय एक प्रतिबल प्रदिश द्वारा तैयार किया जा सकता है, बिंदु के माध्यम से एक आदर्श तल के सामान्य दिशा सदिश और उस बिंदु पर उस तल पर स्थानीय तनाव घनत्व के बीच एक रैखिक संबंध है।
1, 2, 3 अक्षों के साथ किसी भी चुने हुए कार्टेशियन निर्देशांक में, इस श्यान प्रतिबल प्रदिश को वास्तविक संख्याओं के 3 × 3 आव्यूह (गणित) के रूप में दर्शाया जा सकता है:
ध्यान दें कि ये संख्याएँ p और समय t सामान्यतः बिंदु के साथ बदलती हैं।
बिंदु p पर केन्द्रित एक अतिसूक्ष्म समतल सतह अभिन्न पर विचार करें, एक सदिश dA द्वारा दर्शाया गया जिसकी लंबाई तत्व का क्षेत्रफल (ज्यामिति) है और जिसकी दिशा इसके लंबवत है। मान लीजिये dF श्यान प्रतिबल के कारण असीम बल dA हो जो उस सतह तत्व के विपरीत दिशा में भौतिक पर लागू होता है। प्रत्येक समन्वय अक्ष के साथ dF के घटक तब निम्न रूप से दिए जाते हैं
किसी भी भौतिक में, कुल प्रतिबल प्रदिश σ इस श्यान प्रतिबल प्रदिश का योग ε, लोचदार प्रतिबल प्रदिश τ और द्रवस्थैतिक दाब p है। पूरी तरह से तरल भौतिक में, परिभाषा के अनुसार स्थैतिक कतरनी प्रतिबल नहीं हो सकता और लोचदार प्रतिबल प्रदिश शून्य है:
जहां δij इकाई प्रदिश है, जैसे कि यदि i = j है तो δij 1 है और यदि i ≠ j है तो 0 है।
जबकि श्यान प्रतिबल भौतिक घटनाओं से उत्पन्न होते हैं जो माध्यम की प्रकृति पर दृढ़ता से निर्भर करते हैं, श्यान प्रतिबल प्रदिश ε केवल भौतिक के आसन्न खण्ड़ के बीच स्थानीय क्षणिक बलों का वर्णन है, और भौतिक की विशेषता नहीं है।
समरूपता
प्रवाह (बाह्य आघूर्ण बल) के कारण एक तत्व पर आघूर्ण बल को अनदेखा करते हुए, द्रव तत्व पर प्रति इकाई मात्रा में श्यान आंतरिक आघूर्ण बल लिखा जाता है (एक प्रतिसममित प्रदिश के रूप में)
और समय के साथ आंतरिक कोणीय संवेग घनत्व के परिवर्तन की दर का प्रतिनिधित्व करता है। यदि कणों में स्वतंत्रता की घूर्णी घात है, तो यह एक आंतरिक कोणीय गति का संकेत देगा और यदि इस कोणीय गति को टक्करों द्वारा बदला जा सकता है, तो यह संभव है कि यह आंतरिक कोणीय गति समय में बदल सकती है, जिसके परिणामस्वरूप एक आंतरिक आघूर्ण बल शून्य नहीं है, जिसका अर्थ यह होगा कि श्यान प्रतिबल प्रदिश में संगत घूर्णी श्यानता गुणांक के साथ एक प्रतिसममित घटक होगा।[1] यदि द्रव के कणों का कोणीय संवेग नगण्य है या यदि उनका कोणीय संवेग बाहरी कोणीय संवेग के साथ पर्याप्त रूप से युग्मित नहीं है, या यदि स्वतंत्रता की बाहरी और आंतरिक घात के बीच संतुलन समय व्यावहारिक रूप से शून्य है, तो आघूर्ण बल शून्य होगा और श्यान प्रतिबल प्रदिश सममित होगा। बाहरी ताकतों के परिणामस्वरूप प्रतिबल प्रदिश के लिए एक असममित घटक हो सकता है (उदाहरण के लिए फेरोफ्लुइड जो बाहरी चुंबकीय क्षेत्रों द्वारा आघूर्ण बल को सहन कर सकता है)।
श्यान प्रतिबल के भौतिक कारण
एक ठोस भौतिक में, प्रतिबल के लोचदार घटक को भौतिक के परमाणुओं और अणुओं के बीच बंधन (रसायन विज्ञान) के विरूपण के लिए जिम्मेदार ठहराया जा सकता है, और इसमें कतरनी प्रतिबल सम्मिलित हो सकते हैं। एक द्रव में, लोचदार प्रतिबल को कणों की औसत दूरी में वृद्धि या कमी के लिए जिम्मेदार ठहराया जा सकता है, जो उनकी टक्कर या अंतःक्रिया दर को प्रभावित करता है और इसलिए तरल पदार्थ में संवेग का स्थानांतरण होता है; इसलिए यह कणों की गति के सूक्ष्म ऊष्मप्रवैगिकी यादृच्छिक घटक से संबंधित है, और खुद को एक समदैशिक जलस्थैतिक दबाव प्रतिबल के रूप में प्रकट करता है।
दूसरी ओर प्रतिबल का श्यान घटक, कणों के स्थूलदर्शित माध्य वेग से उत्पन्न होता है। इसे माध्यम के आसन्न खण्ड़ के बीच घर्षण या कण प्रसार के लिए जिम्मेदार ठहराया जा सकता है, जिसमें अलग-अलग वेग होते हैं।
श्यानपन समीकरण
प्रतिबल दर प्रदिश
एक सहज प्रवाह में, वह दर जिस पर माध्यम का स्थानीय विरूपण समय के साथ बदल रहा है (प्रतिबल दर) उसको प्रतिबल दर प्रदिश E(p, t) द्वारा अनुमानित किया जा सकता है, जो सामान्यतः बिंदु का एक कार्य p और समय t है। किसी भी समन्वय प्रणाली के संबंध में, इसे 3 × 3 आव्यूह द्वारा व्यक्त किया जा सकता है।
प्रतिबल दर प्रदिश E(p, t) प्रतिबल प्रदिश के व्युत्पन्न (गणित) के रूप में परिभाषित किया जा सकता है , या, समकक्ष, प्रवाह वेग सदिश के अनुप्रवण (अंतरिक्ष के संबंध में व्युत्पन्न) के सममित भाग v(p, t) के रूप में है:
जहाँ ∇v वेग प्रवणता को दर्शाता है। कार्तीय निर्देशांक में, ∇v जैकबियन आव्यूह है,
और इसीलिए
किसी भी तरह से, तनाव दर प्रदिश ई (पी, टी) उस दर को व्यक्त करता है जिस पर माध्यम में औसत वेग बदलता है क्योंकि कोई बिंदु p से दूर जाता है - कठोर शरीर के रूप में p के चारों ओर माध्यम के घूर्णन के कारण होने वाले परिवर्तनों को छोड़कर, जो कणों की सापेक्ष दूरी को नहीं बदलते हैं और केवल व्यक्तिगत कणों के घूर्णन के माध्यम से श्यान प्रतिबल के घूर्णी भाग में योगदान करते हैं। (इन परिवर्तनों में प्रवाह की आवर्त सम्मिलित है, जो ∇ × v वेग का कर्ल (गणित) (घूर्णी) है; जो वेग प्रवणता का विषम भाग ∇v भी है।)
सामान्य प्रवाह
श्यान प्रतिबल प्रदिश एक बिंदु के चारों ओर प्रतिबल का केवल एक रैखिक सन्निकटन p है, और इसकी टेलर श्रृंखला की उच्च-क्रम परिस्थितियों के लिए खाता नहीं है। हालाँकि लगभग सभी व्यावहारिक स्थितियों में इन शब्दों को अनदेखा किया जा सकता है, क्योंकि वे आकार के मापक्रम पर नगण्य हो जाते हैं जहाँ श्यान प्रतिबल उत्पन्न होता है और माध्यम की गति को प्रभावित करता है। p के चारों ओर वेग प्रतिरूप के प्रतिनिधित्व के रूप में तनाव दर प्रदिश E के बारे में भी यही कहा जा सकता है।
इस प्रकार, प्रदिश E और ε द्वारा प्रस्तुत रैखिक प्रतिरूप लगभग हमेशा एक बिंदु के चारों ओर श्यान प्रतिबल और प्रतिबल दर का वर्णन करने के लिए इसकी गतिशीलता को प्रतिरूप करने के उद्देश्य से पर्याप्त होते हैं। विशेष रूप से, स्थानीय तनाव दर E(p, t) वेग प्रवाह की एकमात्र विशेषता है जो किसी दिए गए बिंदु पर श्यान प्रतिबल ε(p, t) को सीधे प्रभावित करती है।
दूसरी ओर, E और ε के बीच संबंध काफी जटिल हो सकता है, और विशेषता की संरचना, भौतिक अवस्था और सूक्ष्म संरचना पर बहुत अधिक निर्भर करता है। यह प्रायः अत्यधिक गैर-रेखीय भी होता है, और उस भौतिक द्वारा पहले अनुभव किए गए प्रतिबलों और प्रतिबलों पर निर्भर हो सकता है जो अब प्रश्न के बिंदु के आसपास है।
सामान्य न्यूटोनियन मीडिया
एक माध्यम न्यूटोनियन तरल पदार्थ कहा जाता है अगर श्यान प्रतिबल ε(p, t) प्रतिबल दर का एक रैखिक कार्य E(p, t) है, और यह कार्य अन्यथा तरल पदार्थ के प्रतिबल और गति p पर निर्भर नहीं करता है। कोई भी वास्तविक द्रव पूर्ण न्यूटोनियन नहीं है, लेकिन गैसों और पानी सहित कई महत्वपूर्ण तरल पदार्थों को माना जा सकता है, जब तक कि प्रवाह प्रतिबल और प्रतिबल दर बहुत अधिक न हो।
सामान्यतः, दो दूसरे क्रम के प्रदिशों के बीच एक रैखिक संबंध एक चौथे क्रम का प्रदिश होता है। न्यूटोनियन माध्यम में, विशेष रूप से श्यानपन प्रतिबल और प्रतिबल दर श्यानपन प्रदिश μ से संबंधित होते हैं :
श्यानहट गुणांक μ न्यूटोनियन भौतिक का एक गुण है, जो परिभाषा के अनुसार, अन्यथा v या σ निर्भर नहीं करता है।
प्रतिबल दर प्रदिश E(p, t) परिभाषा के अनुसार सममित है, इसलिए इसमें केवल छह रैखिक रूप से स्वतंत्र तत्व हैं। इसलिए, श्यानपन प्रदिश μ 81 के स्थान पर केवल 6 × 9 = 54 घात की स्वतंत्रता है। अधिकांश तरल पदार्थों में श्यान प्रतिबल प्रदिश भी सममित होता है, जो श्यानपन मापदंडों की संख्या को 6 × 6 = 36 तक कम कर देता है।
कतरनी और थोक श्यान प्रतिबल
घूर्णी प्रभावों के अभाव में, श्यान प्रतिबल प्रदिश सममित होगा। किसी भी सममित प्रदिश की तरह, श्यान प्रतिबल प्रदिश ε को लापता सममित प्रदिश εs और अस्मिता प्रदिश के एक अदिश गुणज εv के योग के रूप में व्यक्त किया जा सकता है। समन्वय रूप में,
यह अपघटन समन्वय प्रणाली से स्वतंत्र है और इसलिए भौतिक रूप से महत्वपूर्ण है। नित्य भाग εv श्यान प्रतिबल प्रदिश स्वयं को एक प्रकार के दबाव, या स्थूल प्रतिबल के रूप में प्रकट करता है, जो किसी भी सतह पर समान रूप से और लंबवत रूप से कार्य करता है जो इसके अभिविन्यास से स्वतंत्र होता है। सामान्य जलस्थैतिक दबाव के विपरीत, यह केवल तभी प्रकट हो सकता है जब प्रतिबल बदल रहा हो, परिवर्तन का विरोध करने के लिए कार्य कर रहा हो; और यह नकारात्मक हो सकता है।
समदैशिक न्यूटोनियन केस
एक न्यूटोनियन माध्यम में जो समदैशिक है (अर्थात जिनके गुण सभी दिशाओं में समान हैं), प्रतिबल प्रदिश का प्रत्येक भाग विकृति दर प्रदिश के संबंधित भाग से संबंधित है।
जहाँ Ev और Es अदिश समस्थानिक और प्रतिबल दर प्रदिश के शून्य-अनुरेख भाग E, और μv और μs दो वास्तविक संख्याएँ हैं। [2] इस प्रकार, इस स्तिथि में श्यानपन प्रदिश μ केवल दो स्वतंत्र मापदण्ड हैं।
शून्य-अनुरेख भाग Es का E एक सममित 3 × 3 प्रदिश है जो उस दर का वर्णन करता है जिस पर माध्यम को कतरन द्वारा विकृत किया जा रहा है, इसकी मात्रा में किसी भी परिवर्तन को अनदेखा कर रहा है। इस प्रकार शून्य-अनुरेख भाग εs का ε परिचित श्यान कतरनी प्रतिबल है जो प्रगतिशील कतरनी (भौतिकी) विरूपण से जुड़ा है। यह श्यान प्रतिबल है जो एक समान अनुप्रस्थ काट (एक प्वाजय प्रवाह) या दो समानांतर (ज्यामिति) गतिमान पट्टिका (एक कुएट प्रवाह) के बीच एक नलिका के माध्यम से द्रव में होता है और उन गतियों का विरोध करता है।
E का भाग Ev एक अदिश गुणक (εv की तरह) के रूप में कार्य करता है, जो प्रश्न में बिंदु के चारों ओर माध्यम की औसत विस्तार दर है। (इसे किसी भी समन्वय प्रणाली में 3 × 3 विकर्ण आव्यूह द्वारा विकर्ण के साथ समान मानों के साथ दर्शाया जाता है।) यह संख्यात्मक रूप से वेग के विचलन के 1/3 के बराबर है
जो बदले में प्रवाह के कारण द्रव के आयतन (ज्यामिति) के परिवर्तन की सापेक्ष दर है।
इसलिए, अदिश भाग εv का ε एक प्रतिबल है जो तब देखा जा सकता है जब भौतिक को सभी दिशाओं में समान दर से संकुचित या विस्तारित किया जा रहा हो। यह एक अतिरिक्त दबाव के रूप में प्रकट होता है जो भौतिक को संपीड़ित होने पर ही प्रकट होता है, लेकिन (सच्चे जलस्थैतिक दबाव के विपरीत) संपीड़न की मात्रा के स्थान पर संपीड़न के परिवर्तन की दर के आनुपातिक होता है, और जैसे ही आयतन बदलना बंद हो जाता है, गायब हो जाता है।
श्यान प्रतिबल का यह हिस्सा, जिसे सामान्यतः स्थूल श्यानपन या मात्रा श्यानहट कहा जाता है, प्रायः श्यानप्रत्यास्थ भौतिक में महत्वपूर्ण होता है, और माध्यम में अनुदैर्ध्य तरंगों के स्टोक्स के नियम (ध्वनि क्षीणन) के लिए जिम्मेदार होता है। स्थूल श्यानहट की उपेक्षा की जा सकती है जब भौतिक को असम्पीडित माना जा सकता है (उदाहरण के लिए, जब एक प्रणाल में पानी के प्रवाह को प्रतिरूपण करते हैं)।
गुणांक μv, प्रायः द्वारा निरूपित η, थोक श्यानहट (या दूसरी श्यानहट) का गुणांक कहा जाता है; जबकि μs सामान्य (कतरनी) श्यानहट का गुणांक है।
यह भी देखें
- भ्रमिलता समीकरण
- नेवियर-स्टोक्स समीकरण
इस पेज में लापता आंतरिक लिंक की सूची
- सतह सामान्य
- सातत्यक यांत्रिकी
- सतह अभिन्न
- viscoelasticity
- व्युत्पन्न (गणित)
- श्यानता
- डायनेमिक गाढ़ापन
- थोक श्यानहट
- घूर्णी श्यानपन
- गैर-न्यूटोनियन द्रव
- प्रतिबल घनत्व
- कार्तीय निर्देशांक
- बहुत छोता
- क्षेत्र (ज्यामिति)
- अपरूपण प्रतिबल
- टकराव
- रोटेशन
- गतिकी (यांत्रिकी)
- बाल काटना (भौतिकी)
- Poiseuille प्रवाह
- कौएट प्रवाह
- मात्रा (ज्यामिति)
- लोंगिट्युडिनल वेव
संदर्भ
- ↑ 1.0 1.1 De Groot, S. R.; Mazur, P. (1984). गैर-संतुलन थर्मोडायनामिक्स. New York: Dover. ISBN 0-486-64741-2.
- ↑ Landau, L. D.; Lifshitz, E. M. (1997). तरल यांत्रिकी. Translated by Sykes, J. B.; Reid, W. H. (2nd ed.). Butterworth Heinemann. ISBN 0-7506-2767-0.