पावर नेटवर्क डिजाइन (आईसी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
[[File:Bitfury-top-HD.jpg|thumb|right|इस प्रोसेसर परिपथ के लिए धातु चालक की शीर्ष परत लगभग पूरी तरह से चिप पर विद्युत वितरण के लिए उपयोग की जाती है।|229x229px]]
{{More citations needed|date=December 2021}}[[File:Bitfury-top-HD.jpg|thumb|right|इस प्रोसेसर सर्किट के लिए धातु कंडक्टर की शीर्ष परत लगभग पूरी तरह से चिप पर बिजली वितरण के लिए उपयोग की जाती है।]]
'''पावर नेटवर्क डिजाइन (आईसी),''' [[ एकीकृत सर्किट डिजाइन |एकीकृत परिपथ संरचना]] में एक चिप पर स्थित [[ कंडक्टर |चालकों]] के जालतंत्र का विश्लेषण और संरचना है, जो उस चिप पर [[ विद्युत शक्ति |विद्युत शक्ति]] का वितरण करती है। सभी अभियांत्रिकियों के समान इसमें भी एक दुविधा सम्मिलित होती है, जैसे जालतंत्र में पर्याप्त प्रदर्शन और पर्याप्त विश्वसनीयता होनी चाहिए, लेकिन आवश्यकता से अधिक संसाधनों का उपयोग नहीं होना चाहिए।
'''शक्ति जालतंत्र संरचना,''' [[ एकीकृत सर्किट डिजाइन |एकीकृत परिपथ संरचना]] में एक चिप पर स्थित [[ कंडक्टर |चालकों]] के जालतंत्र का विश्लेषण और संरचना है, जो उस चिप पर [[ विद्युत शक्ति |विद्युत शक्ति]] का वितरण करती है। सभी अभियांत्रिकियों के समान इसमें भी एक दुविधा सम्मिलित होती है, जैसे जालतंत्र में पर्याप्त प्रदर्शन और पर्याप्त विश्वसनीयता होनी चाहिए, लेकिन आवश्यकता से अधिक संसाधनों का उपयोग नहीं होना चाहिए।


== कार्य ==
== कार्य ==
Line 7: Line 6:


== रचना विवेचन ==
== रचना विवेचन ==
नेटवर्क बनाने वाले इंटरकनेक्ट्स के प्रतिरोध के कारण, पूरे नेटवर्क में वोल्टेज ड्रॉप होता है, जिसे आमतौर पर आईआर-ड्रॉप के रूप में जाना जाता है। पैकेज पावर ग्रिड के पैड को या तो वायर-बॉन्ड चिप्स में पैकेज लीड के माध्यम से या [[ पलटें काटना |फ्लिप चिप]] तकनीक में C4 बम्प एरेज़ के माध्यम से धाराओं की आपूर्ति करता है। हालांकि पैकेज का प्रतिरोध काफी छोटा है, पैकेज लीड का इंडक्शन महत्वपूर्ण है जो पैड के स्थानों पर वोल्टेज ड्रॉप का कारण बनता है, जो कि उपकरणों द्वारा डाई पर खींचे जाने वाले समय में भिन्नता के कारण होता है। इस वोल्टेज ड्रॉप को di/dt-drop के रूप में जाना जाता है। इसलिए, उपकरणों पर देखा जाने वाला वोल्टेज आपूर्ति वोल्टेज घटा IR-ड्रॉप और di/dt-ड्रॉप है।
जालतंत्र का निर्माण करने वाले अंतर्संयोजनों के प्रतिरोध के कारण, पूरे जालतंत्र में एक विभव-पात होता है, जिसे सामान्यतः आईआर-पात (ड्रॉप) के रूप में जाना जाता है। यह संकुल (पैकेज), पावर ग्रिड के तार-बंधन को या तो तार-बंधन चिपों में संकुल लीड के माध्यम से या [[ पलटें काटना |फ्लिप चिप]] तकनीक में सी4 बम्प ऐरे के माध्यम से धाराओं की आपूर्ति करता है। संकुल के प्रतिरोध के काफी छोटा होने के कारण संकुल लीड का प्रेरण महत्वपूर्ण होता है जो डाई पर उपकरणों द्वारा खींची जाने वाली समय-परिवर्तनीय धारा के कारण तार-बंधन वाले स्थानों पर होने वाले विभव-पात का कारण बनता है। इस विभव-पात को ''di/dt-पात'' के रूप में जाना जाता है। इसलिए उपकरणों पर प्रदर्शित होने वाला विभवान्तर, आपूर्ति विभवान्तर और आईआर-पात एवं di/dt-पात का अंतर होता है।


पावर ग्रिड में अत्यधिक वोल्टेज ड्रॉप सर्किट की स्विचिंग गति और शोर मार्जिन को कम करता है, और शोर को इंजेक्ट करता है जिससे कार्यात्मक विफलता हो सकती है। उच्च औसत वर्तमान घनत्व [[ इलेक्ट्रोमाइग्रेशन |इलेक्ट्रोमाइग्रेशन]] (ईएम) के कारण धातु के तारों के अवांछनीय पहनने का कारण बनते हैं। इसलिए, बिजली वितरण नेटवर्क के डिजाइन में चुनौती खपत बिंदुओं पर उत्कृष्ट वोल्टेज विनियमन प्राप्त करने में है, भले ही चिप में बिजली की मांग में व्यापक उतार-चढ़ाव हो, और धातु परतों के न्यूनतम क्षेत्र का उपयोग करके ऐसे नेटवर्क का निर्माण करना। [[ माइक्रोप्रोसेसर |माइक्रोप्रोसेसरों]] जैसे उच्च प्रदर्शन चिप्स में ये मुद्दे प्रमुख हैं, क्योंकि बड़ी मात्रा में बिजली को कई धातु परतों के पदानुक्रम के माध्यम से वितरित किया जाना है। प्रदर्शन गारंटी को पूरा करने और विश्वसनीय संचालन सुनिश्चित करने के लिए एक मजबूत बिजली वितरण नेटवर्क महत्वपूर्ण है।
पावर ग्रिड में अत्यधिक विभव पात, परिपथ की पारस्परिक परिवर्तन की गति और ध्वनि के अंतर को कम करता है, और ध्वनि को अंतःक्षेपित करता है जिससे कार्यात्मक विफलता हो सकती है। उच्च औसत धारा घनत्व, [[ इलेक्ट्रोमाइग्रेशन |विद्युत-प्रवास]] के कारण धात्विक तारों के अवांछनीय घिसाव का कारण बनते हैं। इसलिए, विद्युत वितरण जालतंत्र की संरचना में चिप में विद्युत की माँग में व्यापक उतार-चढ़ाव होते हुए भी उपभोग बिंदुओं पर उत्कृष्ट विभवान्तर की निरंतरता प्राप्त करना और धातु परतों के न्यूनतम क्षेत्र का उपयोग करके ऐसे जालतंत्रों का निर्माण करना एक चुनौती है। [[ माइक्रोप्रोसेसर |माइक्रोप्रोसेसरों]] जैसी उच्च प्रदर्शन चिपों में ये मुद्दे प्रमुख होते हैं, क्योंकि इसमें विद्युत की बड़ी मात्रा को धातु की कई परतों के पदानुक्रम के माध्यम से वितरित करना होता है। प्रदर्शन प्रत्याभूति को पूर्ण करने और विश्वसनीय संचालन को सुनिश्चित करने के लिए एक मजबूत विद्युत वितरण जालतंत्र का होना महत्वपूर्ण है।


पावर और ग्राउंड डिस्ट्रीब्यूशन नेटवर्क के बीच कैपेसिटेंस, जिसे [[ डिकूपिंग कैपेसिटर |डिकूपिंग कैपेसिटर]] या डिकैप्स कहा जाता है, स्थानीय चार्ज स्टोरेज के रूप में कार्य करता है और आपूर्ति बिंदुओं पर वोल्टेज ड्रॉप को कम करने में सहायक होता है। आपूर्ति लाइनों के धातु के तारों के बीच परजीवी [[ समाई |समाई]], गैर-स्विचिंग उपकरणों के उपकरण समाई, और एन-वेल और सब्सट्रेट के बीच समाई, एक बिजली वितरण नेटवर्क में निहित decoupling समाई के रूप में होते हैं। दुर्भाग्य से, यह निहित decoupling समाई कभी-कभी सुरक्षित सीमा के भीतर वोल्टेज ड्रॉप को बाधित करने के लिए पर्याप्त नहीं होती है और डिजाइनरों को अक्सर रणनीतिक स्थानों पर मरने पर जानबूझकर स्पष्ट decoupling समाई संरचनाओं को जोड़ना पड़ता है। ये स्पष्ट रूप से जोड़े गए डिकूपिंग कैपेसिटेंस मुक्त नहीं हैं और चिप के क्षेत्र और रिसाव बिजली की खपत को बढ़ाते हैं। परजीवी इंटरकनेक्ट प्रतिरोध, डिकूपिंग कैपेसिटेंस और पैकेज/इंटरकनेक्ट इंडक्शन एक जटिल [[ आरएलसी सर्किट |आरएलसी सर्किट]] बनाते हैं जिसकी अपनी अनुनाद आवृत्ति होती है। यदि अनुनाद आवृत्ति डिजाइन की ऑपरेटिंग आवृत्ति के करीब होती है, तो ग्रिड में बड़ी वोल्टेज की बूंदें विकसित हो सकती हैं।
पावर और ग्राउंड वितरण जालतंत्रों के बीच धारिता ([[ डिकूपिंग कैपेसिटर |प्रति-युग्मन संधारित्र]] या डिकैप्स) स्थानीय आवेश संग्राहक के रूप में कार्य करती है और आपूर्ति बिंदुओं पर विभव-पात को कम करने में सहायक होती है। आपूर्ति लाइनों के धातु के तारों के बीच पराश्रयी [[ समाई |धारिता]], गैर पारस्परिक परिवर्तन वाले उपकरणों की उपकरण धारिता और एन-वेल एवं अधःस्तर के बीच धारिता, एक विद्युत वितरण जालतंत्र में निहित प्रति-युग्मन धारिता के रूप में होती हैं। दुर्भाग्य से, यह निहित प्रति-युग्मन धारिता कभी-कभी सुरक्षित सीमा के भीतर विभव-पात को बाधित करने के लिए पर्याप्त नहीं होती है और संरचनाकर्ताओं को प्रायः डाई के रणनीतिक स्थानों पर जानबूझकर स्पष्ट प्रति-युग्मन धारिता संरचनाओं को जोड़ना पड़ता है। स्पष्ट रूप से जोड़ी गईं ये प्रति-युग्मन धारिताएँ मुक्त नहीं होती हैं, ये चिप के क्षेत्र और विद्युत रिसाव की खपत को बढ़ाती हैं। पराश्रयी अंतर्संयोजित प्रतिरोध, प्रति-युग्मन धारिता और संकुल/अंतर्संयोजित प्रेरण, स्वयं की अनुनाद आवृत्ति वाले एक जटिल [[ आरएलसी सर्किट |आरएलसी परिपथ]] का निर्माण करते हैं। यदि अनुनाद आवृत्ति संरचना की संचालन आवृत्ति के करीब होती है, तो ग्रिड में उच्च विभव-पात विकसित हो सकता है।


पावर ग्रिड को डिजाइन करने में समस्या की जड़ यह है कि डिजाइन चक्र के अंत तक कई अज्ञात हैं। फिर भी, पावर ग्रिड की संरचना, आकार और लेआउट के बारे में निर्णय बहुत शुरुआती चरणों में किया जाना है, जब चिप डिजाइन का एक बड़ा हिस्सा भी शुरू नहीं हुआ है। दुर्भाग्य से, अधिकांश व्यावसायिक उपकरण पावर ग्रिड के पोस्ट-लेआउट सत्यापन पर ध्यान केंद्रित करते हैं जब संपूर्ण चिप डिज़ाइन पूर्ण होता है और पावर और ग्राउंड लाइनों के परजीवी और ट्रांजिस्टर द्वारा खींची गई धाराओं के बारे में विस्तृत जानकारी ज्ञात होती है। इस स्तर पर सामने आई पावर ग्रिड की समस्याएं आमतौर पर बहुत मुश्किल या महंगी होती हैं, इसलिए पसंदीदा तरीके प्रारंभिक पावर ग्रिड को डिजाइन करने और इसे विभिन्न डिजाइन चरणों में उत्तरोत्तर परिष्कृत करने में मदद करते हैं।
पावर ग्रिड की संरचना में समस्या की जड़ यह है कि संरचना चक्र के लगभग अंत तक कई अज्ञात राशियाँ होती हैं। फिर भी पावर ग्रिड की संरचना, आकार और अभि-विन्यास के बारे में बहुत प्रारम्भिक चरणों में ही निर्णय किये जाने की आवश्यकता होती है, जब कि चिप संरचना के एक बड़े हिस्से का निर्माण शुरू भी नहीं हुआ हो। दुर्भाग्य से, अधिकांश व्यावसायिक उपकरण चिप संरचना के पूर्ण होने तथा पावर और ग्राउंड लाइनों के पराश्रयी और ट्रांजिस्टर द्वारा खींची गई धाराओं के बारे में विस्तृत जानकारी प्राप्त हो जाने पर पावर ग्रिड के उत्तर अभि-विन्यास सत्यापन पर ध्यान केंद्रित करते हैं। इस स्तर पर सामने आने वाली पावर ग्रिड की समस्याएँ सामान्यतः बहुत मुश्किल या महंगी होती हैं, इसलिए संरचना की प्रचलित कार्यविधियाँ प्रारंभिक पावर ग्रिड की संरचना करने और इसे विभिन्न संरचना चरणों में उत्तरोत्तर परिष्कृत करने में सहायता प्रदान करती हैं।


बिजली की खपत में वृद्धि और आधुनिक उच्च प्रदर्शन माइक्रोप्रोसेसरों की स्विचिंग गति के कारण, उच्च गति वाले डिजाइनों में di/dt प्रभाव एक बढ़ती हुई चिंता बन रहे हैं। [[ क्लॉक गेटिंग |क्लॉक गेटिंग]], जो उच्च प्रदर्शन डिजाइनों के पावर प्रबंधन के लिए एक पसंदीदा योजना है, मैक्रो-ब्लॉक की वर्तमान मांगों में तेजी से वृद्धि कर सकती है और di/dt प्रभाव बढ़ा सकती है। डिज़ाइनर ऑन-चिप परजीवी धारिता पर भरोसा करते हैं और वोल्टेज में di/dt भिन्नताओं का प्रतिकार करने के लिए जानबूझकर जोड़े गए decoupling कैपेसिटर पर भरोसा करते हैं। लेकिन पैकेज और चिप के इंडक्शन और कैपेसिटेंस को सटीक रूप से मॉडल करना और ऐसे मॉडल के साथ ग्रिड का विश्लेषण करना आवश्यक है, अन्यथा जोड़े जाने वाले डिकूपिंग की मात्रा को कम करके आंका जा सकता है या कम करके आंका जा सकता है। साथ ही इन विस्तृत मॉडलों को शामिल करते हुए भी विश्लेषण की दक्षता बनाए रखना आवश्यक है।
विद्युत की खपत में वृद्धि और आधुनिक उच्च प्रदर्शन वाले माइक्रोप्रोसेसरों के पारस्परिक परिवर्तन की गति के कारण उच्च गति वाली संरचनाओं में ''di/dt'' प्रभाव एक बढ़ती हुई समस्या के रूप में उभर रहे हैं। उच्च प्रदर्शन संरचनाओं के शक्ति प्रबंधन के लिए एक पसंदीदा योजना, [[ क्लॉक गेटिंग |क्लॉक गेटिंग]], सूक्ष्म-खण्डों की वर्तमान माँगों में तेजी से वृद्धि कर सकती हैं और ''di/dt'' प्रभाव को बढ़ा सकती हैं। संरचनाकर्ता ऑन-चिप पराश्रयी धारिता और विभवान्तर में ''di/dt'' भिन्नताओं का प्रतिकार करने के लिए जानबूझकर जोड़े गए प्रति-युग्मन संधारित्रों पर विश्वास करते हैं। लेकिन संकुल और चिप के प्रेरण और धारिता को सटीक रूप से मॉडल करना और ऐसे मॉडल के साथ ग्रिड का विश्लेषण करना आवश्यक होता है, अन्यथा जोड़ी जाने वाली प्रति-युग्मन की मात्रा को अवप्राक्कलित या अधिप्राक्कलित किया जा सकता है। साथ ही इन विस्तृत मॉडलों को सम्मिलित करते हुए भी विश्लेषण की दक्षता को व्यवस्थित रखना आवश्यक होता है।


== विश्लेषण ==
== विश्लेषण ==
Line 22: Line 21:
खण्डों के बीच संकेत सहसंबंधों के कारण परिपथ धाराएँ स्वतंत्र नहीं होती हैं। इसे चिप-वाइड इनपुट प्रतिरूप के एक सामान्य समूह का उपयोग करके तर्क अनुरूपण के परिणामों से चिप के अलग-अलग खण्डों के लिए इनपुट प्राप्त करके संबोधित किया जाता है। पावर ग्रिड विश्लेषण में इनपुट प्रतिरूपों का निर्धारण एक महत्वपूर्ण मुद्दा है। आईआर-ड्रॉप विश्लेषण के लिए अधिकतम तात्कालिक धाराओं का उत्पादन करने वाले प्रतिरूपों की आवश्यकता होती है, जबकि विद्युत्-प्रवास के उद्देश्यों के लिए बड़ी निरंतर (औसत) धाराओं का उत्पादन करने वाले प्रतिरूपों का चयन रुचिपूर्ण है।
खण्डों के बीच संकेत सहसंबंधों के कारण परिपथ धाराएँ स्वतंत्र नहीं होती हैं। इसे चिप-वाइड इनपुट प्रतिरूप के एक सामान्य समूह का उपयोग करके तर्क अनुरूपण के परिणामों से चिप के अलग-अलग खण्डों के लिए इनपुट प्राप्त करके संबोधित किया जाता है। पावर ग्रिड विश्लेषण में इनपुट प्रतिरूपों का निर्धारण एक महत्वपूर्ण मुद्दा है। आईआर-ड्रॉप विश्लेषण के लिए अधिकतम तात्कालिक धाराओं का उत्पादन करने वाले प्रतिरूपों की आवश्यकता होती है, जबकि विद्युत्-प्रवास के उद्देश्यों के लिए बड़ी निरंतर (औसत) धाराओं का उत्पादन करने वाले प्रतिरूपों का चयन रुचिपूर्ण है।


पावर ग्रिड विश्लेषण को इनपुट सदिश आश्रित<ref>[http://www.allabouteda.com/voltage-drop-analysis-and-verification-piecewise-constant-current-sources AllAboutEDA: Voltage Drop analysis with piecewise constant current sources]</ref><ref>[http://www.allabouteda.com/voltage-drop-analysis-and-verification-the-two-step-or-decoupled-approach/ AllAboutEDA: Voltage Drop analysis employing the two-step approach]</ref> विधियों और सदिशहीन<ref>[http://www.allabouteda.com/voltage-drop-analysis-and-verification-static-constant-current-sources/ AllAboutEDA: Static voltage drop analysis and constant currents]</ref> विधियों में वर्गीकृत किया जा सकता है। इनपुट सदिश प्रतिरूपों पर निर्भर विधियाँ, इनपुट प्रतिरूप के एक समूह को प्राप्त करने के लिए खोज तकनीकों को नियोजित करते हैं, जो ग्रिड में सबसे निकृष्ट गिरावट का कारण बनती हैं। साहित्य में कई विधियों को प्रस्तावित किया गया है, जो सदिश या सदिश के एक प्रतिरूप को प्राप्त करने के लिए आनुवंशिक एल्गोरिथम या अन्य खोज तकनीकों का उपयोग करते हैं, जो आपूर्ति जालतंत्र से खींची गई कुल धारा को अधिकतम करते हैं। इनपुट सदिश-प्रतिरूपों पर निर्भर दृष्टिकोण गणकीय रूप से गहन होते हैं जो पूर्ण-चिप विश्लेषण के स्थान पर परिपथ खंड तक ही सीमित होते हैं। इसके अतिरिक्त ये दृष्टिकोण स्वाभाविक रूप से आशावादी होते हैं, और विभव पात का अवप्राक्कलन (कम आँकना) करते हुए आपूर्ति ध्वनि की कुछ समस्याओं पर ध्यान नहीं देते हैं। दूसरी ओर, सदिश-हीन दृष्टिकोण का उद्देश्य एक कुशल तरीके से सबसे खराब स्थिति में ऊपरी सीमा की गणना करना है। इन दृष्टिकोणों में तीव्र और रूढ़िवादी होने का लाभ होता है, लेकिन कभी-कभी इसके अधिक रूढ़िवादी होने के कारण अधिसंरचना की समस्या होती है।<ref>[http://www.allabouteda.com/vectorless-methods-for-deriving-instantaneous-current/ AllAboutEDA: Vectorless methods for deriving instantaneous current values]</ref> [4]
पावर ग्रिड विश्लेषण को इनपुट सदिश आश्रित<ref>[http://www.allabouteda.com/voltage-drop-analysis-and-verification-piecewise-constant-current-sources AllAboutEDA: Voltage Drop analysis with piecewise constant current sources]</ref><ref>[http://www.allabouteda.com/voltage-drop-analysis-and-verification-the-two-step-or-decoupled-approach/ AllAboutEDA: Voltage Drop analysis employing the two-step approach]</ref> विधियों और सदिशहीन<ref>[http://www.allabouteda.com/voltage-drop-analysis-and-verification-static-constant-current-sources/ AllAboutEDA: Static voltage drop analysis and constant currents]</ref> विधियों में वर्गीकृत किया जा सकता है। इनपुट सदिश प्रतिरूपों पर निर्भर विधियाँ, इनपुट प्रतिरूप के एक समूह को प्राप्त करने के लिए खोज तकनीकों को नियोजित करते हैं, जो ग्रिड में सबसे निकृष्ट गिरावट का कारण बनती हैं। साहित्य में कई विधियों को प्रस्तावित किया गया है, जो सदिश या सदिश के एक प्रतिरूप को प्राप्त करने के लिए आनुवंशिक एल्गोरिथम या अन्य खोज तकनीकों का उपयोग करते हैं, जो आपूर्ति जालतंत्र से खींची गई कुल धारा को अधिकतम करते हैं। इनपुट सदिश-प्रतिरूपों पर निर्भर दृष्टिकोण गणकीय रूप से गहन होते हैं जो पूर्ण-चिप विश्लेषण के स्थान पर परिपथ खंड तक ही सीमित होते हैं। इसके अतिरिक्त ये दृष्टिकोण स्वाभाविक रूप से आशावादी होते हैं, और विभव पात का अवप्राक्कलन (कम आँकना) करते हुए आपूर्ति ध्वनि की कुछ समस्याओं पर ध्यान नहीं देते हैं। दूसरी ओर, सदिश-हीन दृष्टिकोण का उद्देश्य एक कुशल तरीके से सबसे खराब स्थिति में ऊपरी सीमा की गणना करना है। इन दृष्टिकोणों में तीव्र और रूढ़िवादी होने का लाभ होता है, लेकिन कभी-कभी इसके अधिक रूढ़िवादी होने के कारण अधिसंरचना की समस्या होती है।<ref>[http://www.allabouteda.com/vectorless-methods-for-deriving-instantaneous-current/ AllAboutEDA: Vectorless methods for deriving instantaneous current values]</ref>


शक्ति जालतंत्र विश्लेषण पर आधारित अधिकांश साहित्य, शक्ति जालतंत्र में सबसे खराब विभव-पात की गणना के मुद्दे से संबंधित है। विद्युत-प्रवास की समस्या एक समान रूप से गंभीर है, लेकिन इस पर लगभग समान विधियों से ही आक्षेप किया जाता है। प्रत्येक आसंधि पर विभवान्तर के स्थान पर ईएम विश्लेषण, प्रत्येक शाखा में धारा की व्याख्या करता है, और इसकी परत और चौड़ाई के आधार पर विभवान्तर सीमा के स्थान पर प्रति तार एक धारा सीमा होती है।
शक्ति जालतंत्र विश्लेषण पर आधारित अधिकांश साहित्य, शक्ति जालतंत्र में सबसे खराब विभव-पात की गणना के मुद्दे से संबंधित है। विद्युत-प्रवास की समस्या एक समान रूप से गंभीर है, लेकिन इस पर लगभग समान विधियों से ही आक्षेप किया जाता है। प्रत्येक आसंधि पर विभवान्तर के स्थान पर ईएम विश्लेषण, प्रत्येक शाखा में धारा की व्याख्या करता है, और इसकी परत और चौड़ाई के आधार पर विभवान्तर सीमा के स्थान पर प्रति तार एक धारा सीमा होती है।


अन्य आईसी अनुप्रयोग यहाँ उल्लिखित प्रवाह के केवल एक भाग का उपयोग कर सकते हैं। उदाहरण के लिए, एक गेट ऐरे या [[ क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला |फील्ड प्रोग्रामेबल गेट ऐरे (एफपीजीए)]] संरचनाकर्ता, केवल संरचना चरण को ही पूर्ण करता है, क्योंकि विद्युत आपूर्ति की संरचना आवश्यक रूप से करते समय इन भागों की विस्तृत उपयोगिता ज्ञात नहीं होती है। इसी तरह, एफपीजीए या गेट सरणियों का उपयोगकर्ता केवल विश्लेषण भाग का ही उपयोग करता है, क्योंकि इसकी संरचना पहले से ही तय होती है।
अन्य IC (आईसी) अनुप्रयोग यहाँ उल्लिखित प्रवाह के केवल एक भाग का उपयोग कर सकते हैं। उदाहरण के लिए, एक गेट ऐरे या [[ क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला |फील्ड प्रोग्रामेबल गेट ऐरे (एफपीजीए)]] संरचनाकर्ता, केवल संरचना चरण को ही पूर्ण करता है, क्योंकि विद्युत आपूर्ति की संरचना आवश्यक रूप से करते समय इन भागों की विस्तृत उपयोगिता ज्ञात नहीं होती है। इसी तरह, एफपीजीए या गेट सरणियों का उपयोगकर्ता केवल विश्लेषण भाग का ही उपयोग करता है, क्योंकि इसकी संरचना पहले से ही तय होती है।


==यह भी देखें==
==यह भी देखें==
Line 34: Line 33:
*''Electronic Design Automation For Integrated Circuits Handbook'', by Lavagno, Martin, and Scheffer, {{ISBN|0-8493-3096-3}} A survey of the field of [[electronic design automation]]. This summary was derived (with permission) from Vol II, Chapter 20, ''Design and Analysis of Power Supply Networks'', by David Blaauw, Sanjay Pant, Rajat Chaudhry, and Rajendran Panda.
*''Electronic Design Automation For Integrated Circuits Handbook'', by Lavagno, Martin, and Scheffer, {{ISBN|0-8493-3096-3}} A survey of the field of [[electronic design automation]]. This summary was derived (with permission) from Vol II, Chapter 20, ''Design and Analysis of Power Supply Networks'', by David Blaauw, Sanjay Pant, Rajat Chaudhry, and Rajendran Panda.
{{Reflist|2}}
{{Reflist|2}}
{{Design}}
[[Category:डिजिटल इलेक्ट्रॉनिक्स]]
[[Category: इलेक्ट्रॉनिक डिजाइन स्वचालन]]




==




[[Category: Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:इलेक्ट्रॉनिक डिजाइन स्वचालन]]
[[Category:डिजिटल इलेक्ट्रॉनिक्स]]

Latest revision as of 16:21, 12 September 2023

इस प्रोसेसर परिपथ के लिए धातु चालक की शीर्ष परत लगभग पूरी तरह से चिप पर विद्युत वितरण के लिए उपयोग की जाती है।

पावर नेटवर्क डिजाइन (आईसी), एकीकृत परिपथ संरचना में एक चिप पर स्थित चालकों के जालतंत्र का विश्लेषण और संरचना है, जो उस चिप पर विद्युत शक्ति का वितरण करती है। सभी अभियांत्रिकियों के समान इसमें भी एक दुविधा सम्मिलित होती है, जैसे जालतंत्र में पर्याप्त प्रदर्शन और पर्याप्त विश्वसनीयता होनी चाहिए, लेकिन आवश्यकता से अधिक संसाधनों का उपयोग नहीं होना चाहिए।

कार्य

विद्युत वितरण जालतंत्र, एक संरचना में सभी उपकरणों के लिए तार बंधन स्थानों से विद्युत और ग्राउंड विभवान्तर वितरित करता है। उपकरण के सिकुड़ते आयाम, तेज स्विचिंग आवृत्ति और गहन उप-माइक्रोमीटर प्रौद्योगिकियों में विद्युत की खपत बढ़ने से शक्ति और ग्राउंड जालतंत्र में बड़ी स्विचिंग धाराएँ प्रवाहित होती हैं, जो प्रदर्शन और विश्वसनीयता को कम करती हैं। एक चिप पर परिपथों के विश्वसनीय संचालन को सुनिश्चित करने के लिए एक सुदृढ़ विद्युत वितरण जालतंत्र आवश्यक है। विद्युत आपूर्ति अखंडता सत्यापन, उच्च प्रदर्शन वाली संरचनाओं में चिंता का महत्वपूर्ण विषय है।

रचना विवेचन

जालतंत्र का निर्माण करने वाले अंतर्संयोजनों के प्रतिरोध के कारण, पूरे जालतंत्र में एक विभव-पात होता है, जिसे सामान्यतः आईआर-पात (ड्रॉप) के रूप में जाना जाता है। यह संकुल (पैकेज), पावर ग्रिड के तार-बंधन को या तो तार-बंधन चिपों में संकुल लीड के माध्यम से या फ्लिप चिप तकनीक में सी4 बम्प ऐरे के माध्यम से धाराओं की आपूर्ति करता है। संकुल के प्रतिरोध के काफी छोटा होने के कारण संकुल लीड का प्रेरण महत्वपूर्ण होता है जो डाई पर उपकरणों द्वारा खींची जाने वाली समय-परिवर्तनीय धारा के कारण तार-बंधन वाले स्थानों पर होने वाले विभव-पात का कारण बनता है। इस विभव-पात को di/dt-पात के रूप में जाना जाता है। इसलिए उपकरणों पर प्रदर्शित होने वाला विभवान्तर, आपूर्ति विभवान्तर और आईआर-पात एवं di/dt-पात का अंतर होता है।

पावर ग्रिड में अत्यधिक विभव पात, परिपथ की पारस्परिक परिवर्तन की गति और ध्वनि के अंतर को कम करता है, और ध्वनि को अंतःक्षेपित करता है जिससे कार्यात्मक विफलता हो सकती है। उच्च औसत धारा घनत्व, विद्युत-प्रवास के कारण धात्विक तारों के अवांछनीय घिसाव का कारण बनते हैं। इसलिए, विद्युत वितरण जालतंत्र की संरचना में चिप में विद्युत की माँग में व्यापक उतार-चढ़ाव होते हुए भी उपभोग बिंदुओं पर उत्कृष्ट विभवान्तर की निरंतरता प्राप्त करना और धातु परतों के न्यूनतम क्षेत्र का उपयोग करके ऐसे जालतंत्रों का निर्माण करना एक चुनौती है। माइक्रोप्रोसेसरों जैसी उच्च प्रदर्शन चिपों में ये मुद्दे प्रमुख होते हैं, क्योंकि इसमें विद्युत की बड़ी मात्रा को धातु की कई परतों के पदानुक्रम के माध्यम से वितरित करना होता है। प्रदर्शन प्रत्याभूति को पूर्ण करने और विश्वसनीय संचालन को सुनिश्चित करने के लिए एक मजबूत विद्युत वितरण जालतंत्र का होना महत्वपूर्ण है।

पावर और ग्राउंड वितरण जालतंत्रों के बीच धारिता (प्रति-युग्मन संधारित्र या डिकैप्स) स्थानीय आवेश संग्राहक के रूप में कार्य करती है और आपूर्ति बिंदुओं पर विभव-पात को कम करने में सहायक होती है। आपूर्ति लाइनों के धातु के तारों के बीच पराश्रयी धारिता, गैर पारस्परिक परिवर्तन वाले उपकरणों की उपकरण धारिता और एन-वेल एवं अधःस्तर के बीच धारिता, एक विद्युत वितरण जालतंत्र में निहित प्रति-युग्मन धारिता के रूप में होती हैं। दुर्भाग्य से, यह निहित प्रति-युग्मन धारिता कभी-कभी सुरक्षित सीमा के भीतर विभव-पात को बाधित करने के लिए पर्याप्त नहीं होती है और संरचनाकर्ताओं को प्रायः डाई के रणनीतिक स्थानों पर जानबूझकर स्पष्ट प्रति-युग्मन धारिता संरचनाओं को जोड़ना पड़ता है। स्पष्ट रूप से जोड़ी गईं ये प्रति-युग्मन धारिताएँ मुक्त नहीं होती हैं, ये चिप के क्षेत्र और विद्युत रिसाव की खपत को बढ़ाती हैं। पराश्रयी अंतर्संयोजित प्रतिरोध, प्रति-युग्मन धारिता और संकुल/अंतर्संयोजित प्रेरण, स्वयं की अनुनाद आवृत्ति वाले एक जटिल आरएलसी परिपथ का निर्माण करते हैं। यदि अनुनाद आवृत्ति संरचना की संचालन आवृत्ति के करीब होती है, तो ग्रिड में उच्च विभव-पात विकसित हो सकता है।

पावर ग्रिड की संरचना में समस्या की जड़ यह है कि संरचना चक्र के लगभग अंत तक कई अज्ञात राशियाँ होती हैं। फिर भी पावर ग्रिड की संरचना, आकार और अभि-विन्यास के बारे में बहुत प्रारम्भिक चरणों में ही निर्णय किये जाने की आवश्यकता होती है, जब कि चिप संरचना के एक बड़े हिस्से का निर्माण शुरू भी नहीं हुआ हो। दुर्भाग्य से, अधिकांश व्यावसायिक उपकरण चिप संरचना के पूर्ण होने तथा पावर और ग्राउंड लाइनों के पराश्रयी और ट्रांजिस्टर द्वारा खींची गई धाराओं के बारे में विस्तृत जानकारी प्राप्त हो जाने पर पावर ग्रिड के उत्तर अभि-विन्यास सत्यापन पर ध्यान केंद्रित करते हैं। इस स्तर पर सामने आने वाली पावर ग्रिड की समस्याएँ सामान्यतः बहुत मुश्किल या महंगी होती हैं, इसलिए संरचना की प्रचलित कार्यविधियाँ प्रारंभिक पावर ग्रिड की संरचना करने और इसे विभिन्न संरचना चरणों में उत्तरोत्तर परिष्कृत करने में सहायता प्रदान करती हैं।

विद्युत की खपत में वृद्धि और आधुनिक उच्च प्रदर्शन वाले माइक्रोप्रोसेसरों के पारस्परिक परिवर्तन की गति के कारण उच्च गति वाली संरचनाओं में di/dt प्रभाव एक बढ़ती हुई समस्या के रूप में उभर रहे हैं। उच्च प्रदर्शन संरचनाओं के शक्ति प्रबंधन के लिए एक पसंदीदा योजना, क्लॉक गेटिंग, सूक्ष्म-खण्डों की वर्तमान माँगों में तेजी से वृद्धि कर सकती हैं और di/dt प्रभाव को बढ़ा सकती हैं। संरचनाकर्ता ऑन-चिप पराश्रयी धारिता और विभवान्तर में di/dt भिन्नताओं का प्रतिकार करने के लिए जानबूझकर जोड़े गए प्रति-युग्मन संधारित्रों पर विश्वास करते हैं। लेकिन संकुल और चिप के प्रेरण और धारिता को सटीक रूप से मॉडल करना और ऐसे मॉडल के साथ ग्रिड का विश्लेषण करना आवश्यक होता है, अन्यथा जोड़ी जाने वाली प्रति-युग्मन की मात्रा को अवप्राक्कलित या अधिप्राक्कलित किया जा सकता है। साथ ही इन विस्तृत मॉडलों को सम्मिलित करते हुए भी विश्लेषण की दक्षता को व्यवस्थित रखना आवश्यक होता है।

विश्लेषण

पावर ग्रिड के विश्लेषण में जालतंत्र का बड़ा आकार (सामान्यतः अत्याधुनिक माइक्रोप्रोसेसर में लाखों नोड्स) एक महत्वपूर्ण मुद्दा है। एक चिप के सभी अरैखिक उपकरणों को पावर ग्रिड के साथ अनुरूपित करना गणकीय रूप से संभव नहीं है। इसके आकार को प्रबंधनीय बनाने के लिए अनुरूपता को दो चरणों में पूर्ण किया जाता है। सर्वप्रथम अरैखिक उपकरणों को पूर्ण आपूर्ति विभवान्तर मानकर अनुरूपित किया जाता है और उपकरणों द्वारा रेखांकित धाराओं को मापा जाता है। इसके बाद इन उपकरणों को पावर ग्रिड के अनुरूप बनाने के लिए स्वतंत्र समय-परिवर्तित धारा स्रोतों के रूप में व्यवस्थित किया जाता है और फिर ट्रांजिस्टर पर विभव-पातों को मापा जाता है। चूंकि विभव-पात सामान्यतः विद्युत आपूर्ति विभवान्तर के 10% से कम होते हैं, इसलिए उपकरण धाराओं और आपूर्ति विभवान्तर की पारस्परिक-क्रिया को अनदेखा करते हुए होने वाली त्रुटि छोटी होती है। एक रैखिक जालतंत्र को हल करने के लिए पावर ग्रिड विश्लेषण की समस्या इन दो चरणों के क्रियान्वयन से कम हो जाती है जो अभी भी काफी बड़ा जालतंत्र है। जालतंत्र आकार को और कम करने के लिए विद्युत वितरण मॉडल में पदानुक्रम का लाभ उठाया जा सकता है।

खण्डों के बीच संकेत सहसंबंधों के कारण परिपथ धाराएँ स्वतंत्र नहीं होती हैं। इसे चिप-वाइड इनपुट प्रतिरूप के एक सामान्य समूह का उपयोग करके तर्क अनुरूपण के परिणामों से चिप के अलग-अलग खण्डों के लिए इनपुट प्राप्त करके संबोधित किया जाता है। पावर ग्रिड विश्लेषण में इनपुट प्रतिरूपों का निर्धारण एक महत्वपूर्ण मुद्दा है। आईआर-ड्रॉप विश्लेषण के लिए अधिकतम तात्कालिक धाराओं का उत्पादन करने वाले प्रतिरूपों की आवश्यकता होती है, जबकि विद्युत्-प्रवास के उद्देश्यों के लिए बड़ी निरंतर (औसत) धाराओं का उत्पादन करने वाले प्रतिरूपों का चयन रुचिपूर्ण है।

पावर ग्रिड विश्लेषण को इनपुट सदिश आश्रित[1][2] विधियों और सदिशहीन[3] विधियों में वर्गीकृत किया जा सकता है। इनपुट सदिश प्रतिरूपों पर निर्भर विधियाँ, इनपुट प्रतिरूप के एक समूह को प्राप्त करने के लिए खोज तकनीकों को नियोजित करते हैं, जो ग्रिड में सबसे निकृष्ट गिरावट का कारण बनती हैं। साहित्य में कई विधियों को प्रस्तावित किया गया है, जो सदिश या सदिश के एक प्रतिरूप को प्राप्त करने के लिए आनुवंशिक एल्गोरिथम या अन्य खोज तकनीकों का उपयोग करते हैं, जो आपूर्ति जालतंत्र से खींची गई कुल धारा को अधिकतम करते हैं। इनपुट सदिश-प्रतिरूपों पर निर्भर दृष्टिकोण गणकीय रूप से गहन होते हैं जो पूर्ण-चिप विश्लेषण के स्थान पर परिपथ खंड तक ही सीमित होते हैं। इसके अतिरिक्त ये दृष्टिकोण स्वाभाविक रूप से आशावादी होते हैं, और विभव पात का अवप्राक्कलन (कम आँकना) करते हुए आपूर्ति ध्वनि की कुछ समस्याओं पर ध्यान नहीं देते हैं। दूसरी ओर, सदिश-हीन दृष्टिकोण का उद्देश्य एक कुशल तरीके से सबसे खराब स्थिति में ऊपरी सीमा की गणना करना है। इन दृष्टिकोणों में तीव्र और रूढ़िवादी होने का लाभ होता है, लेकिन कभी-कभी इसके अधिक रूढ़िवादी होने के कारण अधिसंरचना की समस्या होती है।[4]

शक्ति जालतंत्र विश्लेषण पर आधारित अधिकांश साहित्य, शक्ति जालतंत्र में सबसे खराब विभव-पात की गणना के मुद्दे से संबंधित है। विद्युत-प्रवास की समस्या एक समान रूप से गंभीर है, लेकिन इस पर लगभग समान विधियों से ही आक्षेप किया जाता है। प्रत्येक आसंधि पर विभवान्तर के स्थान पर ईएम विश्लेषण, प्रत्येक शाखा में धारा की व्याख्या करता है, और इसकी परत और चौड़ाई के आधार पर विभवान्तर सीमा के स्थान पर प्रति तार एक धारा सीमा होती है।

अन्य IC (आईसी) अनुप्रयोग यहाँ उल्लिखित प्रवाह के केवल एक भाग का उपयोग कर सकते हैं। उदाहरण के लिए, एक गेट ऐरे या फील्ड प्रोग्रामेबल गेट ऐरे (एफपीजीए) संरचनाकर्ता, केवल संरचना चरण को ही पूर्ण करता है, क्योंकि विद्युत आपूर्ति की संरचना आवश्यक रूप से करते समय इन भागों की विस्तृत उपयोगिता ज्ञात नहीं होती है। इसी तरह, एफपीजीए या गेट सरणियों का उपयोगकर्ता केवल विश्लेषण भाग का ही उपयोग करता है, क्योंकि इसकी संरचना पहले से ही तय होती है।

यह भी देखें

संदर्भ

  • Electronic Design Automation For Integrated Circuits Handbook, by Lavagno, Martin, and Scheffer, ISBN 0-8493-3096-3 A survey of the field of electronic design automation. This summary was derived (with permission) from Vol II, Chapter 20, Design and Analysis of Power Supply Networks, by David Blaauw, Sanjay Pant, Rajat Chaudhry, and Rajendran Panda.