मॉरिस विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 8: Line 8:


=== विविधताएं ===
=== विविधताएं ===
मॉरिस के मूल कार्य में प्रस्तावित दो संवेदनशीलता उपाय क्रमशः माध्य, μ, थे।
मॉरिस के मूल कार्य में, प्रस्तावित दो संवेदनशीलता माप माध्य यथार्थता μ और मानक विचलन σ, थे जो Fi के लिए होते थे। यद्यपि, मॉरिस विधि का चयन करने का एक दुष्प्रभाव है कि यदि वितरण Fi में नकारात्मक तत्व होते हैं, जो सामान्यतः प्रारूप गैर-एकार्यात्मक होने पर होता है, तो माध्य गणना के समय कुछ प्रभाव एक दूसरे को समाप्त कर सकते हैं। इस प्रकार, महत्व के क्रम में श्रेणीबद्ध कारकों के लिए माप μ अपने आप में विश्वसनीय नहीं है।<ref name="Campolongo 2004" />निश्चित रूप से, μ और σ के मानों का एक साथ विचार करना आवश्यक होता है। यदि किसी कारक का प्रभाव अलग-अलग चिन्हों का होता है तो उसका मान μ से कम हो सकता है, परंतु σ का एक महत्वपूर्ण मूल्य जो कारकों को कम आंकने से बचाता है
और Fi का मानक विचलन, σ,। हालांकि, मॉरिस को चुनने में यह कमी है कि, यदि वितरण, फाई में नकारात्मक तत्व शामिल हैं, जो तब होता है जब मॉडल गैर-मोनोटोनिक होता है, मतलब की गणना करते समय कुछ प्रभाव एक दूसरे को रद्द कर सकते हैं। इस प्रकार, माप μ अपने आप क्रम में रैंकिंग कारकों के लिए विश्वसनीय नहीं है
===μ*===
महत्व की। एक ही समय में μ और σ के मूल्यों पर विचार करना आवश्यक है, विभिन्न संकेतों के प्राथमिक प्रभाव वाले कारक के रूप में (जो एक दूसरे को रद्द करते हैं) μ का कम मूल्य होगा लेकिन एक
यदि वितरण 'Fi' में नकारात्मक तत्व सम्मिलित होते हैं, जो प्रारूप गैर-एकरेखी होने के समय होता है, तो औसत गणना करते समय कुछ प्रभाव एक दूसरे को निरसित कर सकते हैं। जब लक्ष्य एकल संवेदनशीलता माप का उपयोग करके प्राथमिकता के क्रम में कारकों को श्रेणीबद्ध किया जाता है, तथा वैज्ञानिक मत है कि μ∗ का उपयोग किया जाए, जो निरपेक्ष मान का उपयोग करके, विपरीत संकेतों के प्रभाव की घटना से बचाता है। क्योंकि इसमें वैद्युतिक मान का उपयोग किया जाता है।<ref name="Campolongo 2004" />
σ का काफी मूल्य जो कारकों को कम आंकने से बचा जाता है।<ref name="Campolongo 2004" />
 
पुनर्विचारित मोरिस विधि में μ* का उपयोग किया जाता है ताकि आउटपुट पर संपूर्ण प्रभाव वाले इनपुट कारकों की पहचान की जा सके। σ का उपयोग इनपुट कारकों की पहचान करने के लिए किया जाता है जो अन्य कारकों के साथ संवेग के संपर्क में होते हैं या जिनका प्रभाव गैर-रैखिक होता है।<ref name="Campolongo 2004" />
 




===μ*===
यदि वितरण, Fi, में नकारात्मक तत्व शामिल हैं, जो तब होता है जब मॉडल गैर-मोनोटोनिक होता है, जब
माध्य की गणना करते हुए कुछ प्रभाव एक दूसरे को रद्द कर सकते हैं। जब लक्ष्य एक एकल संवेदनशीलता माप का उपयोग करके महत्व के क्रम में कारकों को रैंक करना है, तो वैज्ञानिक सलाह μ∗ का उपयोग करना है, जो पूर्ण मूल्य का उपयोग करके विपरीत संकेतों के प्रभावों की घटना से बचा जाता है।<ref name="Campolongo 2004" />


संशोधित मॉरिस पद्धति में μ* का उपयोग आउटपुट पर एक महत्वपूर्ण समग्र प्रभाव वाले इनपुट कारकों का पता लगाने के लिए किया जाता है। σ का उपयोग अन्य कारकों के साथ बातचीत में शामिल कारकों का पता लगाने के लिए किया जाता है या जिनका प्रभाव गैर-रैखिक होता है।<ref name="Campolongo 2004" />
== विधि के सोपान ==
यह विधि सभी इनपुट चर के संभावित मानों के परिभाषित सीमाओं के भीतर प्रारम्भिक मानों का प्रतिरूप लेकर आरंभ होती है और उसके बाद के प्रारूप के परिणाम की गणना करके आगामी परिणाम की गणना करती है। दूसरा कदम एक चर के मानों को बदलता है  और पहले के चलन के सापेक्ष में परिणाम स्वरूप परिवर्तन की गणना करता है। पिछले चर को उसके बदले हुए मूल्य पर रखा जाता है और अन्य सभी को उनके प्रारम्भिक मूल्यों पर रखा जाता है और दूसरे रन की तुलना में प्रारूप परिणाम में परिणामी परिवर्तन की गणना की जाती है। यह प्रक्रिया तब तक चलती रहती है जब तक सभी इनपुट चर बदल नहीं जाते हैं। यह प्रक्रिया r बार पुनरावर्तित की जाती है  जहां r सामान्यतः 5 से 15 के मध्य का होता है, हर बार एक अलग समुच्चय के प्रारम्भिक मानों के साथ, जिससे r(k + 1) चलन होते हैं, जहां k इनपुट चरों की संख्या होती है। ऐसी संख्या अधिक मांगी जाने वाली संवेदनशीलता विश्लेषण के सापेक्ष में बहुत कुशल होती है।


मोरिस द्वारा प्रस्तावित प्रतिरूपों वह एक संवेदनशीलता विश्लेषण विधि है जो विशाल आयाम के प्रारूपों में कारकों को प्रदर्शित करने के लिए व्यापक रूप से उपयोग किया जाता है। मोरिस विधि सैंकड़ों इनपुट कारकों को सम्मिलित करने वाले प्रारूपों के साथ अत्यधिक कुशलतापूर्वक पहुंचाती है और प्रारूप के बारे में सख्त धारणाओं पर निर्भर नहीं करती है, जैसे उदाहरण के लिए प्रारूप के इनपुट-आउटपुट संबंध की एकरेखिता के बारे में। मोरिस विधि सरलता से समझने और लागू करने में सरल है और इसके परिणाम सरलता से व्याख्या किए जा सकते हैं। इसके अतिरिक्त, इसकी आर्थिकता इस दृष्टि से है कि यह प्रारूप के कारकों की संख्या में रैखिक रूप से एकांशिक प्रारूप मूल्यांकन की आवश्यकता होती है।<ref name="Campolongo 2003">{{cite document | first1 = F. | first2 = J. | first3 = A. | last1 = Campolongo | last2 = Cariboni | last3 = Saltelli | url = http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-52.pdf | title = Sensitivity analysis: the Morris method versus the variance based measures |year = 2003}}</ref>मोरिस विधि को वैश्विक रूप से माना जा सकता है क्योंकि अंतिम माप एक संख्या स्थानिक मापों, जो इनपुट स्थान के विभिन्न बिंदुओं पर गणना किए गए हैं, का औसत लेकर प्राप्त किया जाता है।


== विधि के कदम ==
विधि सभी इनपुट चर के लिए संभावित मानों की परिभाषित सीमाओं के भीतर प्रारंभ मानों के एक सेट का नमूना लेकर शुरू होती है और बाद के मॉडल के परिणाम की गणना करती है। दूसरा चरण एक चर के मानों को बदलता है (अन्य सभी इनपुट उनके प्रारंभ मूल्यों पर शेष हैं) और पहले रन की तुलना में मॉडल परिणाम में परिणामी परिवर्तन की गणना करता है। इसके बाद, दूसरे चर के मानों को बदल दिया जाता है (पिछले चर को उसके बदले हुए मूल्य पर रखा जाता है और अन्य सभी को उनके शुरुआती मूल्यों पर रखा जाता है) और दूसरे रन की तुलना में मॉडल परिणाम में परिणामी परिवर्तन की गणना की जाती है। यह तब तक चलता रहता है जब तक कि सभी इनपुट चर बदल नहीं जाते। इस प्रक्रिया को r बार दोहराया जाता है (जहाँ r को आमतौर पर 5 और 15 के बीच लिया जाता है), हर बार स्टार्ट वैल्यू के एक अलग सेट के साथ, जो कई r(k + 1) रन की ओर जाता है, जहाँ k इनपुट वेरिएबल्स की संख्या है . संवेदनशीलता विश्लेषण के लिए अधिक मांग वाले तरीकों की तुलना में ऐसी संख्या बहुत कुशल है।<ref name="Campolongo 2003">{{cite document | first1 = F. | first2 = J. | first3 = A. | last1 = Campolongo | last2 = Cariboni | last3 = Saltelli | url = http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-52.pdf | title = Sensitivity analysis: the Morris method versus the variance based measures |year = 2003}}</ref>
बड़े आयाम वाले मॉडल में स्क्रीन कारकों के लिए व्यापक रूप से उपयोग की जाने वाली एक संवेदनशीलता विश्लेषण विधि मॉरिस द्वारा प्रस्तावित डिजाइन है।<ref name="Factorial Sampling Plans pg. 33">{{cite journal | first = M.D. | last = Morris | url = http://www.abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991%20SA%20paper.pdf | title = प्रारंभिक कम्प्यूटेशनल प्रयोगों के लिए क्रमगुणित नमूनाकरण योजनाएं| journal = Technometrics | volume = 33 | issue = 2 | pages = 161–174 | year = 1991 | doi = 10.2307/1269043| jstor = 1269043 | citeseerx = 10.1.1.584.521 }}</ref> मॉरिस विधि मॉडल के बारे में सख्त धारणाओं पर भरोसा किए बिना सैकड़ों इनपुट कारकों वाले मॉडल के साथ कुशलतापूर्वक व्यवहार करती है, जैसे उदाहरण के लिए मॉडल इनपुट-आउटपुट संबंध की एडिटिविटी या मोनोटोनिकिटी। मॉरिस विधि समझने और लागू करने में सरल है, और इसके परिणामों की आसानी से व्याख्या की जाती है। इसके अलावा, यह इस मायने में आर्थिक है कि इसके लिए कई मॉडल मूल्यांकन की आवश्यकता होती है जो कि मॉडल कारकों की संख्या में रैखिक है। विधि को वैश्विक माना जा सकता है क्योंकि इनपुट स्थान के विभिन्न बिंदुओं पर गणना की गई कई स्थानीय उपायों (प्राथमिक प्रभाव) के औसत से अंतिम उपाय प्राप्त किया जाता है।<ref name="Campolongo 2003" />




Line 36: Line 34:
* [http://www.abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991%20SA%20paper.pdf Morris method paper]
* [http://www.abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991%20SA%20paper.pdf Morris method paper]
*{{cite journal|last=Campolongo, F., S. Tarantola and A. Saltelli. |title=Tackling quantitatively large dimensionality problems. |journal= Computer Physics Communications|volume= 1999|issue=1–2|pages= 75–85|year= 1999| ref=Campolongo|doi=10.1016/S0010-4655(98)00165-9|bibcode=1999CoPhC.117...75C}}
*{{cite journal|last=Campolongo, F., S. Tarantola and A. Saltelli. |title=Tackling quantitatively large dimensionality problems. |journal= Computer Physics Communications|volume= 1999|issue=1–2|pages= 75–85|year= 1999| ref=Campolongo|doi=10.1016/S0010-4655(98)00165-9|bibcode=1999CoPhC.117...75C}}
[[Category: सांख्यिकीय यांत्रिकी]] [[Category: कम्प्यूटेशनल भौतिकी]] [[Category: सांख्यिकीय अनुमान]] [[Category: यादृच्छिक एल्गोरिदम]]


[[Category: Machine Translated Page]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Created On 19/06/2023]]
[[Category:Created On 19/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:कम्प्यूटेशनल भौतिकी]]
[[Category:यादृच्छिक एल्गोरिदम]]
[[Category:सांख्यिकीय अनुमान]]
[[Category:सांख्यिकीय यांत्रिकी]]

Latest revision as of 17:36, 16 July 2023

एकीकृत सांख्यिकी में, मॉरिस विधि वैश्विक संवेदनशीलता विश्लेषण के लिए एक सांख्यिकीय विधि है जिसे वन-स्टेप-एट-ए-टाइम विधि (ओएटी) कहा जाता है, जिसका अर्थ है कि प्रत्येक दौड़ में केवल एक इनपुट पैरामीटर को एक नया मूल्य दिया जाता है।यह विश्लेषण विधि प्रत्येक इनपुट पैरामीटर के लिए विश्वसनीयता विश्लेषण का समर्थन करती है, जिसमें प्रायोगिक रूप से संभव मूल्य सीमा के विभिन्न बिंदुओं x(1 → r) पर r की संख्या में स्थानीय परिवर्तन किए जाते हैं।

विधि का विवरण

प्राथमिक प्रभाव 'वितरण

Iवें इनपुट कारक से जुड़े प्राथमिक प्रभावों का परिमित वितरण, यादृच्छिक रूप से भिन्न x को Ω से प्रतिरूपण करके प्राप्त किया जाता है, और इसे Fi द्वारा निरूपित किया जाता है[1]


विविधताएं

मॉरिस के मूल कार्य में, प्रस्तावित दो संवेदनशीलता माप माध्य यथार्थता μ और मानक विचलन σ, थे जो Fi के लिए होते थे। यद्यपि, मॉरिस विधि का चयन करने का एक दुष्प्रभाव है कि यदि वितरण Fi में नकारात्मक तत्व होते हैं, जो सामान्यतः प्रारूप गैर-एकार्यात्मक होने पर होता है, तो माध्य गणना के समय कुछ प्रभाव एक दूसरे को समाप्त कर सकते हैं। इस प्रकार, महत्व के क्रम में श्रेणीबद्ध कारकों के लिए माप μ अपने आप में विश्वसनीय नहीं है।[1]निश्चित रूप से, μ और σ के मानों का एक साथ विचार करना आवश्यक होता है। यदि किसी कारक का प्रभाव अलग-अलग चिन्हों का होता है तो उसका मान μ से कम हो सकता है, परंतु σ का एक महत्वपूर्ण मूल्य जो कारकों को कम आंकने से बचाता है

μ*

यदि वितरण 'Fi' में नकारात्मक तत्व सम्मिलित होते हैं, जो प्रारूप गैर-एकरेखी होने के समय होता है, तो औसत गणना करते समय कुछ प्रभाव एक दूसरे को निरसित कर सकते हैं। जब लक्ष्य एकल संवेदनशीलता माप का उपयोग करके प्राथमिकता के क्रम में कारकों को श्रेणीबद्ध किया जाता है, तथा वैज्ञानिक मत है कि μ∗ का उपयोग किया जाए, जो निरपेक्ष मान का उपयोग करके, विपरीत संकेतों के प्रभाव की घटना से बचाता है। क्योंकि इसमें वैद्युतिक मान का उपयोग किया जाता है।[1]

पुनर्विचारित मोरिस विधि में μ* का उपयोग किया जाता है ताकि आउटपुट पर संपूर्ण प्रभाव वाले इनपुट कारकों की पहचान की जा सके। σ का उपयोग इनपुट कारकों की पहचान करने के लिए किया जाता है जो अन्य कारकों के साथ संवेग के संपर्क में होते हैं या जिनका प्रभाव गैर-रैखिक होता है।[1]



विधि के सोपान

यह विधि सभी इनपुट चर के संभावित मानों के परिभाषित सीमाओं के भीतर प्रारम्भिक मानों का प्रतिरूप लेकर आरंभ होती है और उसके बाद के प्रारूप के परिणाम की गणना करके आगामी परिणाम की गणना करती है। दूसरा कदम एक चर के मानों को बदलता है और पहले के चलन के सापेक्ष में परिणाम स्वरूप परिवर्तन की गणना करता है। पिछले चर को उसके बदले हुए मूल्य पर रखा जाता है और अन्य सभी को उनके प्रारम्भिक मूल्यों पर रखा जाता है और दूसरे रन की तुलना में प्रारूप परिणाम में परिणामी परिवर्तन की गणना की जाती है। यह प्रक्रिया तब तक चलती रहती है जब तक सभी इनपुट चर बदल नहीं जाते हैं। यह प्रक्रिया r बार पुनरावर्तित की जाती है जहां r सामान्यतः 5 से 15 के मध्य का होता है, हर बार एक अलग समुच्चय के प्रारम्भिक मानों के साथ, जिससे r(k + 1) चलन होते हैं, जहां k इनपुट चरों की संख्या होती है। ऐसी संख्या अधिक मांगी जाने वाली संवेदनशीलता विश्लेषण के सापेक्ष में बहुत कुशल होती है।

मोरिस द्वारा प्रस्तावित प्रतिरूपों वह एक संवेदनशीलता विश्लेषण विधि है जो विशाल आयाम के प्रारूपों में कारकों को प्रदर्शित करने के लिए व्यापक रूप से उपयोग किया जाता है। मोरिस विधि सैंकड़ों इनपुट कारकों को सम्मिलित करने वाले प्रारूपों के साथ अत्यधिक कुशलतापूर्वक पहुंचाती है और प्रारूप के बारे में सख्त धारणाओं पर निर्भर नहीं करती है, जैसे उदाहरण के लिए प्रारूप के इनपुट-आउटपुट संबंध की एकरेखिता के बारे में। मोरिस विधि सरलता से समझने और लागू करने में सरल है और इसके परिणाम सरलता से व्याख्या किए जा सकते हैं। इसके अतिरिक्त, इसकी आर्थिकता इस दृष्टि से है कि यह प्रारूप के कारकों की संख्या में रैखिक रूप से एकांशिक प्रारूप मूल्यांकन की आवश्यकता होती है।[2]मोरिस विधि को वैश्विक रूप से माना जा सकता है क्योंकि अंतिम माप एक संख्या स्थानिक मापों, जो इनपुट स्थान के विभिन्न बिंदुओं पर गणना किए गए हैं, का औसत लेकर प्राप्त किया जाता है।


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Andrea Saltelli; Stefano Tarantola; Francesca Campolongo; Marco Ratto (2004). Sensitivity analysis in practice: a guide to assessing scientific models. John Willy & Sons, Ltd. pp. 94–120. ISBN 9780470870938.
  2. Campolongo, F.; Cariboni, J.; Saltelli, A. (2003). "Sensitivity analysis: the Morris method versus the variance based measures" (PDF). {{cite journal}}: Cite journal requires |journal= (help)


बाहरी संबंध