प्रति इंच बिंदू: Difference between revisions
m (20 revisions imported from alpha:प्रति_इंच_बिंदू) |
No edit summary |
||
Line 137: | Line 137: | ||
* [https://cssunitconverter.com/pixels-to-inches/ A Pixels to Inches Calculator based on DPI/PPI] | * [https://cssunitconverter.com/pixels-to-inches/ A Pixels to Inches Calculator based on DPI/PPI] | ||
{{DEFAULTSORT:Dots Per Inch}} | {{DEFAULTSORT:Dots Per Inch}} | ||
[[Category:All articles with unsourced statements|Dots Per Inch]] | |||
[[Category:Articles with invalid date parameter in template|Dots Per Inch]] | |||
[[Category: | [[Category:Articles with unsourced statements from April 2014|Dots Per Inch]] | ||
[[Category:Created On 19/06/2023]] | [[Category:Convert errors|सेंटीमीटर]] | ||
[[Category:Vigyan Ready]] | [[Category:Created On 19/06/2023|Dots Per Inch]] | ||
[[Category:Lua-based templates|Dots Per Inch]] | |||
[[Category:Machine Translated Page|Dots Per Inch]] | |||
[[Category:Pages with broken file links|Dots Per Inch]] | |||
[[Category:Pages with script errors|Dots Per Inch]] | |||
[[Category:Templates Vigyan Ready|Dots Per Inch]] | |||
[[Category:Templates that add a tracking category|Dots Per Inch]] | |||
[[Category:Templates that generate short descriptions|Dots Per Inch]] | |||
[[Category:Templates using TemplateData|Dots Per Inch]] | |||
[[Category:Use Oxford spelling from June 2023|Dots Per Inch]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:कंप्यूटर प्रिंटिंग|Dots Per Inch]] | |||
[[Category:घनत्व की इकाइयाँ|Dots Per Inch]] | |||
[[Category:मुद्रण शब्दावली|Dots Per Inch]] |
Latest revision as of 17:03, 7 July 2023
प्रति इंच बिंदू (DPI या dpi[1]) स्थानिक मुद्रण, वीडियो या छवि स्कैनर डॉट घनत्व का एक माप है, विशेष रूप से व्यक्तिगत बिंदुओं की संख्या जिन्हें 1 inch (2.54 cm) की अवधि के भीतर एक पंक्ति में रखा जा सकता है। इसी प्रकार बिंदुओं प्रति सेंटीमीटर (d/cm या dpcm) व्यक्तिगत बिंदुओं की संख्या को संदर्भित करता है जिन्हें 1 सेंटीमीटर[convert: unknown unit] (0.394 इंच) की एक पंक्ति के भीतर रखा जा सकता है।[2]
मुद्रण में डीपीआई माप
DPI का उपयोग डिजिटल प्रिंट में बिंदुओं प्रति इंच की रिज़ॉल्यूशन संख्या और हार्ड कॉपी प्रिंट डॉट गेन के प्रिंटिंग रिज़ॉल्यूशन का वर्णन करने के लिए किया जाता है, जो कि प्रिंटिंग के दौरान हाफ़टोन बिंदुओं के आकार में वृद्धि है। यह मीडिया की सतह पर स्याही के फैलने के कारण होता है।
एक बिंदु तक उच्च DPI वाले प्रिंटर संगणक मुद्रक स्पष्ट और अधिक विस्तृत आउटपुट देते है। एक प्रिंटर में आवश्यक रूप से एक ही DPI मापन नहीं होता है, यह प्रिंट मोड पर निर्भर है जो सामान्यतौर पर ड्राइवर सेटिंग्स से प्रभावित होता है। एक प्रिंटर द्वारा समर्थित DPI की सीमा उसके द्वारा उपयोग की जाने वाली प्रिंट हेड तकनीक पर सबसे अधिक निर्भर करती है। उदाहरण के लिए, एक डॉट मैट्रिक्स प्रिंटर स्याही रिबन पर प्रहार करने वाली छोटी छड़ों के माध्यम से स्याही लगाता है और इसका रिज़ॉल्यूशन अपेक्षाकृत कम होता है, सामान्यतौर पर इसकी सीमा 60 to 90 DPI (420 to 280 μm) है। एक इंकजेट प्रिंटर छोटे नोज़ल के माध्यम से स्याही छिड़कता है और सामान्यतौर पर 300-720 डीपीआई में सक्षम होता है।[3] एक लेज़र प्रिंटर एक नियंत्रित इलेक्ट्रोस्टैटिक चार्ज के माध्यम से टोनर लागू करता है, यह 600 से 2,400 डीपीआई की सीमा में हो सकता है।
समान-गुणवत्ता वाले आउटपुट का उत्पादन करने के लिए एक प्रिंटर के डीपीआई माप को अक्सर वीडियो डिस्प्ले के पिक्सल प्रति इंच (पीपीआई) माप से काफी अधिक होना चाहिए। यह सामान्यतौर पर प्रिंटर पर उपलब्ध प्रत्येक बिंदु के लिए रंगों की सीमित सीमा के कारण होता है। प्रत्येक बिंदु स्थिति में सबसे सरल प्रकार का रंगीन प्रिंटर या तो कोई बिंदु प्रिंट कर सकता है या रंगीन चैनलों में से प्रत्येक में (सामान्यतौर पर सियान, मैजेंटा, पीली और काली स्याही के साथ CMYK) में स्याही की एक निश्चित मात्रा से युक्त एक डॉट प्रिंट कर सकता है या 24 = लेजर, मोम और अधिकांश इंकजेट प्रिंटर पर 16 रंग, जिनमें से केवल 14 या 15 (या कम से कम 8 या 9) वास्तव में काले घटक की ताकत, ओवरलेइंग और इसे दूसरे के साथ संयोजित करने के लिए उपयोग की जाने वाली रणनीति के आधार पर पहचाने जा सकते हैं। रंग और क्या यह "रंग" मोड में है।
उच्च-स्तरीय इंकजेट प्रिंटर प्रति बिंदु स्थान पर 32, 64 या 128 संभावित टन देते हुए 5, 6 या 7 स्याही रंग प्रदान कर सकते हैं (और यह हो सकता है कि सभी संयोजन एक अद्वितीय परिणाम नहीं देंगे)। इसकी तुलना एक मानक sRGB मॉनिटर से करें जहां प्रत्येक पिक्सेल तीन चैनलों (RGB) में से प्रत्येक में 256 तीव्रता का प्रकाश उत्पन्न करता है।
जबकि कुछ रंगीन प्रिंटर प्रत्येक डॉट स्थिति पर परिवर्तनीय ड्रॉप वॉल्यूम उत्पन्न कर सकते हैं, और अतिरिक्त स्याही-रंग चैनलों का उपयोग कर सकते हैं, फिर भी रंगों की संख्या सामान्यतौर पर मॉनिटर की तुलना में कम होती है इसलिए अधिकांश प्रिंटरों को हाफ़टोन या डिथरिंग प्रक्रिया के माध्यम से अतिरिक्त रंगों का उत्पादन करना चाहिए, और उनके आधार रिज़ॉल्यूशन पर भरोसा करना चाहिए जो मानव पर्यवेक्षक की आंख को एक ही चिकने रंग के पैच को समझने में "मूर्ख" बनाने के लिए पर्याप्त है।
इस नियम का अपवाद डाई-सब्लिमेशन प्रिंटर है, जो बिना किसी विचलन के पृष्ठ पर प्रत्येक "पिक्सेल" पर डाई की बहुत अधिक परिवर्तनीय मात्रा - एक सामान्य मॉनिटर पर उपलब्ध प्रति चैनल 256 स्तरों की संख्या के करीब या उससे अधिक लागू कर सकता है लेकिन अन्य सीमाओं के साथ:
- कम स्थानिक रिज़ॉल्यूशन (सामान्यतौर पर 200 से 300 डीपीआई) जो पाठ और पंक्तियों को कुछ हद तक खुरदरा बना सकता है
- निम्न आउटपुट गति (एक पृष्ठ के लिए तीन या चार पूर्ण पास की आवश्यकता होती है, प्रत्येक डाई रंग के लिए एक जिनमें से प्रत्येक में पंद्रह सेकंड से अधिक समय लग सकता है - हालांकि, अधिकांश इंकजेट प्रिंटर के "फोटो" मोड की तुलना में तेज़)
- एक बेकार (और गोपनीय दस्तावेजों के लिए असुरक्षित) डाई-फिल्म रोल कार्ट्रिज प्रणाली
- सामयिक रंग पंजीकरण त्रुटियां (मुख्य रूप से पृष्ठ की लंबी धुरी के साथ), जिसके कारण पेपर फीड सिस्टम में फिसलन और बहाव को ध्यान में रखते हुए प्रिंटर को पुन: कैलिब्रेट करने की आवश्यकता होती है।
इन नुकसानों का मतलब है कि, अच्छे फोटोग्राफिक और गैर-रैखिक आरेखीय आउटपुट के उत्पादन में उनकी उल्लेखनीय श्रेष्ठता के बावजूद, डाई-सब्लिमेशन प्रिंटर विशिष्ट उत्पाद बने हुए हैं, और इस प्रकार उच्च रिज़ॉल्यूशन, कम रंग की गहराई और अलग-अलग पैटर्न का उपयोग करने वाले अन्य उपकरण आदर्श बने हुए हैं।
एक ही पिक्सेल में रंग को ईमानदारी से पुन: उत्पन्न करने के लिए इस डिथर्ड मुद्रण प्रक्रिया को चार से छह बिंदुओं (प्रत्येक तरफ मापा गया) के क्षेत्र की आवश्यकता हो सकती है। एक छवि जो 100 पिक्सेल चौड़ी है, उसे मुद्रित आउटपुट में 400 से 600 बिंदुओं की चौड़ाई की आवश्यकता हो सकती है; अगर 100 × 100-पिक्सेल की छवि को एक इंच वर्ग में मुद्रित करना है तो छवि को पुन: प्रस्तुत करने के लिए प्रिंटर को 400 से 600 डॉट प्रति इंच की क्षमता होनी चाहिए। उपयुक्त रूप से 600 डीपीआई (कभी-कभी 720) अब एंट्री-लेवल लेजर प्रिंटर और कुछ उपयोगिता इंकजेट प्रिंटर का विशिष्ट आउटपुट रिज़ॉल्यूशन है, जिसमें 1200-1440 और 2400-2880 सामान्य उच्च रिज़ॉल्यूशन हैं। यह प्रारंभिक मॉडलों के 300-360 (या 240) डीपीआई और डॉट-मैट्रिक्स प्रिंटर और फैक्स मशीनों के लगभग 200 डीपीआई के विपरीत है, जो फैक्स और कंप्यूटर-मुद्रित दस्तावेज़ देते थे- विशेष रूप से वे जो ग्राफिक्स या रंगीन ब्लॉक का भारी उपयोग करते थे। पाठ—एक विशिष्ट "डिजिटलीकृत" उपस्थिति, उनके मोटे, स्पष्ट अलग-अलग पैटर्न, गलत रंग, तस्वीरों में स्पष्टता की कमी और कुछ पाठ और रेखा कला पर दांतेदार ("उपनाम") किनारों के कारण।
डीपीआई या पीपीआई डिजिटल छवि फ़ाइलों में
मुद्रण में, DPI (बिंदुओं प्रति इंच) एक प्रिंटर या इमेजसेटर के आउटपुट रिज़ॉल्यूशन को संदर्भित करता है, और PPI (पिक्सेल प्रति इंच) एक तस्वीर या छवि के इनपुट रिज़ॉल्यूशन को संदर्भित करता है। डीपीआई एक छवि के भौतिक डॉट घनत्व को संदर्भित करता है जब इसे वास्तविक भौतिक इकाई के रूप में पुन: प्रस्तुत किया जाता है, उदाहरण के लिए कागज पर मुद्रित किया जाता है। डिजिटल रूप से संग्रहीत छवि में इंच या सेंटीमीटर में मापा गया कोई अंतर्निहित भौतिक आयाम नहीं होता है। कुछ डिजिटल फ़ाइल प्रारूप एक DPI मान या अधिक सामान्यतः एक PPI (पिक्सेल प्रति इंच) मान रिकॉर्ड करते हैं, जिसका उपयोग छवि को प्रिंट करते समय किया जाता है। यह संख्या प्रिंटर या सॉफ़्टवेयर को छवि के इच्छित आकार या स्कैन की गई छवियों के मामले में मूल स्कैन की गई वस्तु का आकार बताती है। उदाहरण के लिए, एक बिटमैप छवि 1,000 × 1,000 पिक्सेल, माप सकती है, जिसका रिज़ॉल्यूशन 1 मेगापिक्सेल हैं। यदि इसे 250 पीपीआई के रूप में लेबल किया गया है, तो यह प्रिंटर (कंप्यूटिंग) को इसे 4 × 4 इंच के आकार में प्रिंट करने का निर्देश है। छवि संपादन प्रोग्राम में PPI को 100 में बदलने से प्रिंटर को इसे 10 × 10 इंच के आकार में प्रिंट करने के लिए कहा जाएगा हालाँकि, PPI मान बदलने से छवि का आकार पिक्सेल में नहीं बदलेगा जो अभी भी 1,000 × 1,000 होगा। पिक्सेल की संख्या और छवि के आकार या रिज़ॉल्यूशन को बदलने के लिए एक छवि को पुन: नमूनाकरण भी किया जा सकता है, लेकिन यह फ़ाइल के लिए एक नया PPI सेट करने से काफी अलग है।
सदिश छवियों के लिए किसी छवि का आकार बदलने पर उसका पुन: नमूनाकरण करने का कोई समतुल्य नहीं है और फ़ाइल में कोई PPI नहीं है क्योंकि यह रिज़ॉल्यूशन स्वतंत्र है (सभी आकारों में समान रूप से अच्छी तरह से प्रिंट करता है) हालाँकि, अभी भी एक लक्षित मुद्रण आकार है। कुछ छवि प्रारूप जैसे कि फोटोशॉप प्रारूप में एक ही फ़ाइल में बिटमैप और सदिश डेटा दोनों सम्मिलित हो सकते हैं। PPI को एक फोटोशॉप फ़ाइल में समायोजित करने से डेटा के बिटमैप भाग का इच्छित मुद्रण आकार बदल जाएगा और मिलान करने के लिए सदिश डेटा का इच्छित मुद्रण आकार भी बदल जाएगा। इस तरह लक्ष्य मुद्रण आकार बदलने पर सदिश और बिटमैप डेटा एक सुसंगत आकार संबंध बनाए रखते हैं। बिटमैप छवि प्रारूपों में रूपरेखा फ़ॉन्ट के रूप में संग्रहीत पाठ को उसी तरह से नियंत्रित किया जाता है। अन्य प्रारूप, जैसे कि पीडीएफ मुख्य रूप से सदिश प्रारूप होते हैं जिनमें संभावित रूप से रिज़ॉल्यूशन के मिश्रण में छवियां हो सकती हैं। इन प्रारूपों में बिटमैप्स के लक्ष्य पीपीआई को फ़ाइल के लक्ष्य प्रिंट आकार को बदलने पर मिलान करने के लिए समायोजित किया जाता है। यह इसके विपरीत है कि यह फ़ोटोशॉप जैसे मुख्य रूप से बिटमैप प्रारूप में कैसे काम करता है, लेकिन डेटा के सदिश और बिटमैप भागों के बीच संबंध बनाए रखने का परिणाम बिल्कुल समान है।
कंप्यूटर मॉनिटर डीपीआई मानक
1980 के दशक से मैक (कंप्यूटर) ने डिफ़ॉल्ट डिस्प्ले DPI को 72 PPI पर सेट किया है, जबकि माइक्रोसॉफ्ट विंडोज ऑपरेटिंग सिस्टम ने 96 PPI के डिफ़ॉल्ट का उपयोग किया है।[4] ये डिफ़ॉल्ट विनिर्देश 1980 के दशक के प्रारंभिक डिस्प्ले सिस्टम में मानक फ़ॉन्ट प्रस्तुत करने में समस्याओं से उत्पन्न हुए जिनमें आईबीएम-आधारित सीजीए, ईजीए, वीजीए और 8514 डिस्प्ले के साथ-साथ 128K कंप्यूटर और उसके उत्तराधिकारियों में प्रदर्शित मैकिंटोश डिस्प्ले भी सम्मिलित थे। मैकिंटोश द्वारा उनके डिस्प्ले के लिए 72 PPI का चुनाव उपस्थित सम्मेलन से उत्पन्न हुआ: आधिकारिक 72 पॉइंट प्रति इंच उनके डिस्प्ले स्क्रीन पर दिखाई देने वाले 72 पिक्सेल प्रति इंच को प्रतिबिंबित करता है। (प्वाइंट टाइपोग्राफी में माप की एक भौतिक इकाई है, जो प्रिंटिंग प्रेस के दिनों से चली आ रही है, जहां आधुनिक परिभाषा के अनुवाद 1 बिंदु अंतरराष्ट्रीय इंच (25.4 मिमी) का 1⁄72 हैं, जिससे 1 बिंदु लगभग 0.0139 या 352.8 µm बनाता है)। इस प्रकार डिस्प्ले पर दिखाई देने वाले 72 पिक्सेल प्रति इंच के भौतिक आयाम बिल्कुल वही थे जो बाद में एक प्रिंटआउट पर देखे गए 72 पॉइंट प्रति इंच के थे, जिसमें मुद्रित पाठ में 1 पीटी डिस्प्ले स्क्रीन पर 1 पीएक्स के बराबर था। जैसा कि, मैकिंटोश 128K में 512 पिक्सेल की चौड़ाई और 342 पिक्सेल की ऊँचाई वाली स्क्रीन थी और यह मानक कार्यालय पेपर की चौड़ाई के अनुरूप है (512 px ÷ 72 px/in ≈ 7.1 in, प्रत्येक नीचे 0.7 मार्जिन के अनुरूप थी। उत्तर अमेरिकी कागज के आकार में |8+1⁄2 × 11 मानने पर, बाकी दुनिया में यह 210 मिमी × 297 मिमी है – जिसे A4 कहा जाता है। B5 176 मिमी × 250 मिमी है)।
ऐप्पल के निर्णय का एक परिणाम यह था कि टाइपराइटर युग से व्यापक रूप से उपयोग किए जाने वाले 10-पॉइंट फ़ॉन्ट को एम (टाइपोग्राफी) ऊंचाई में 10 डिस्प्ले पिक्सल और एक्स-ऊंचाई में 5 डिस्प्ले पिक्सल आवंटित करना पड़ा। इसे तकनीकी रूप से 10 पिक्सेल प्रति एम (PPEm) के रूप में वर्णित किया गया है। इसने 10-बिंदु फ़ॉन्ट को भद्दे तरीके से प्रस्तुत किया क्रूडली रेंडर और उन्हें डिस्प्ले स्क्रीन पर पढ़ना मुश्किल बना दिया, विशेषकर छोटे अक्षरों को (लोअरकेस कैरेक्टर)। इसके अलावा, यह विचार था कि कंप्यूटर स्क्रीन को आम तौर पर (डेस्क पर) मुद्रित सामग्री की तुलना में 30% अधिक दूरी पर देखा जाता है, जिससे कंप्यूटर स्क्रीन पर देखे गए अनुमानित आकार और प्रिंटआउट पर दिखाई देने वाले आकार के बीच बेमेल हो जाता है।[citation needed]
माइक्रोसॉफ्ट ने एक हैक के साथ दोनों समस्याओं को हल करने का प्रयास किया, जिसके डीपीआई और पीपीआई के अर्थ को समझने के लिए दीर्घकालिक परिणाम हुए।[5] माइक्रोसॉफ्ट ने स्क्रीन को ट्रीट करने के लिए अपने सॉफ़्टवेयर को लिखना शुरू किया जैसे कि उसने एक PPI विशेषता प्रदान की हो जो कि स्क्रीन पर वास्तव में प्रदर्शित होने वाली सामग्री का frac|4|3 है क्योंकि उस समय अधिकांश स्क्रीन लगभग 72 पीपीआई प्रदान करते थी, माइक्रोसॉफ्ट ने अनिवार्य रूप से अपने सॉफ़्टवेयर को यह मानने के लिए लिखा था कि प्रत्येक स्क्रीन 96 पीपीआई प्रदान करती है (क्योंकि 72 × 4⁄3 = 96)। इस प्रवंचना का अल्पकालिक लाभ दुगुना था:
- सॉफ्टवेयर को ऐसा प्रतीत होता है कि एक छवि को प्रस्तुत करने के लिए एक तिहाई अधिक पिक्सेल उपलब्ध थे, जिससे बिटमैप फ़ॉन्ट को अधिक विवरण के साथ बनाने की अनुमति मिलती है।
- प्रत्येक स्क्रीन पर जो वास्तव में 72 पीपीआई प्रदान करती है, प्रत्येक ग्राफिकल तत्व (जैसे पाठ का एक चरित्र) एक तिहाई बड़े आकार में प्रस्तुत किया जाएगा, जिससे एक व्यक्ति को स्क्रीन से आरामदायक दूरी पर बैठने की अनुमति मिलेगी। हालाँकि, बड़े ग्राफिकल तत्वों का मतलब था कि प्रोग्राम बनाने के लिए कम स्क्रीन स्थान उपलब्ध था, वास्तव में, हालांकि हरक्यूलिस मोनो ग्राफिक्स एडाप्टर (उच्च रिज़ॉल्यूशन पीसी ग्राफिक्स के लिए एक बार का स्वर्ण मानक) का डिफ़ॉल्ट 720-पिक्सेल वाइड मोड - या "ट्वीक्ड" वीजीए एडाप्टर - एक स्पष्ट 7+1⁄2-इंच पृष्ठ चौड़ाई प्रदान करता है इस रिज़ॉल्यूशन पर, उस समय के अधिक सामान्य और रंग-सक्षम डिस्प्ले एडेप्टर सभी ने अपने उच्च रिज़ॉल्यूशन मोड में 640-पिक्सेल चौड़ी छवि प्रदान करते थे, जो 100% ज़ूम पर केवल 6+2⁄3 इंच के लिए पर्याप्त थी (और बमुश्किल कोई बड़ा दृश्यमान था - पृष्ठ की ऊँचाई अधिकतम 5 इंच, बनाम 4+3⁄4)। नतीजतन, माइक्रोसॉफ्ट वर्ड में डिफ़ॉल्ट मार्जिन सेट किए गए थे और और मानक आकार के प्रिंटर पेपर के लिए "टेक्स्ट चौड़ाई" को दृश्य सीमा के भीतर रखते हुए, पृष्ठ के सभी तरफ 1 पूर्ण इंच पर अभी भी बना हुआ है; अधिकांश कंप्यूटर मॉनिटर अब बड़े और बेहतर पिच वाले दोनों होने के बावजूद, और प्रिंटर पेपर ट्रांसपोर्ट अधिक परिष्कृत हो गए हैं, मैक-मानक आधा इंच की सीमाएं वर्ड 2010 के पृष्ठ लेआउट प्रीसेट में "संकीर्ण" विकल्प के रूप में सूचीबद्ध हैं (बनाम 1-इंच डिफ़ॉल्ट)।
- पूरक, सॉफ़्टवेयर-प्रदत्त ज़ूम स्तरों का उपयोग किए बिना प्रदर्शन और प्रिंट आकार के बीच 1:1 संबंध (जानबूझकर) खो गया था, अलग-अलग आकार के उपयोगकर्ता-समायोज्य मॉनिटर और अलग-अलग आउटपुट रिज़ॉल्यूशन वाले डिस्प्ले एडेप्टर की उपलब्धता ने इसे बढ़ा दिया, क्योंकि एक ज्ञात पीपीआई वाले उचित रूप से समायोजित मानक मॉनिटर और एडेप्टर पर भरोसा करना संभव नहीं था। उदाहरण के लिए, मोटे बेज़ेल और थोड़े अंडरस्कैन वाला 12 इंच का हरक्यूलिस मॉनिटर और एडॉप्टर 90 "भौतिक" पीपीआई की प्रस्तुतकश कर सकता है, जिसमें प्रदर्शित छवि लगभग हार्डकॉपी के समान दिखाई देती है (यह मानते हुए कि एच-स्कैन घनत्व वर्ग पिक्सेल देने के लिए ठीक से समायोजित किया गया था) लेकिन एक बॉर्डरलेस डिस्प्ले देने के लिए समायोजित एक पतला-बेज़ल 14 इंच का वीजीए मॉनिटर, 60 के करीब हो सकता है, उसी बिटमैप छवि के साथ इस प्रकार 50% बड़ा दिखाई देता है; फिर भी, 8514 (XGA) एडॉप्टर और समान मॉनिटर वाला कोई व्यक्ति इसके 1024-पिक्सेल वाइड मोड का उपयोग करके और छवि को अंडरस्कैन करने के लिए समायोजित करके 100 DPI प्राप्त कर सकता है। एक उपयोगकर्ता जो मॉनिटर के सामने स्थित मुद्रित पृष्ठ पर सीधे ऑन-स्क्रीन तत्वों की तुलना करना चाहता था इसलिए पहले परीक्षण और त्रुटि के द्वारा उपयोग करने के लिए सही ज़ूम स्तर निर्धारित करने की आवश्यकता होगी और अधिकतर ऐसा करने में सक्षम नहीं होगा उन कार्यक्रमों में एक सटीक मिलान प्राप्त करें जो केवल पूर्णांक प्रतिशत सेटिंग की अनुमति देते हैं या यहां कि पूर्व-प्रोग्राम किए गए ज़ूम स्तरों को भी निर्धारित करते हैं। उपरोक्त उदाहरणों के लिए, उन्हें क्रमशः 94% (उचित रूप से 93.75) का उपयोग करने की आवश्यकता हो सकती है - या 90⁄96, 63% (62.5) - या 60⁄96और 104% (104.167) - या 100⁄96 अधिक सामान्य रूप से सुलभ 110% के साथ निम्न उचित मिलान है।
इस प्रकार उदाहरण के लिए, मैकिंटोश (72 PPI पर) पर 10-पॉइंट फ़ॉन्ट को 10 पिक्सेल (यानी 10 PPEm) के साथ दर्शाया गया था, जबकि विंडोज प्लेटफ़ॉर्म पर 10-पॉइंट फ़ॉन्ट (96 PPI पर) समान ज़ूम स्तर पर 13 पिक्सेल के साथ दर्शाया गया है (यानी माइक्रोसॉफ्ट गोलाकार 13+1⁄3 से 13 पिक्सेल या 13 PPEm) और विशिष्ट उपभोक्ता ग्रेड मॉनिटर पर भौतिक रूप से 10 के बजाय 15⁄72 को 16⁄72 इंच ⁄72 ऊंचा दिखाई देगा। इसी तरह एक 12-बिंदु फॉन्ट को एक मैकिंटोश पर 12 पिक्सल और 16 पिक्सल (या शायद एक भौतिक प्रदर्शन ऊंचाई) के साथ दर्शाया गया था और एक ही ज़ूम पर विंडोज प्लेटफॉर्म पर 16 पिक्सल 19⁄72 इंच की भौतिक डिस्प्ले ऊंचाई) और इसी तरह एक विंडोज प्लेटफॉर्म पर एक ही ज़ूम पर।[6] इस मानक का नकारात्मक परिणाम यह है कि 96 पीपीआई डिस्प्ले के साथ पिक्सेल में फ़ॉन्ट आकार और बिंदुओं में प्रिंटआउट आकार के बीच एक-से-एक संबंध नहीं रह गया है। यह अंतर हाल के उन डिस्प्ले पर और अधिक बढ़ गया है जिनमें उच्च पिक्सेल घनत्व है। बिटमैप ग्राफिक्स और फ़ॉन्ट के स्थान पर सदिश ग्राफ़िक्स और फ़ॉन्ट के आगमन से यह समस्या कम हो गई है। इसके अलावा, 1980 के दशक से कई विंडोज सॉफ्टवेयर प्रोग्राम लिखे गए हैं जो मानते हैं कि स्क्रीन 96 पीपीआई प्रदान करती है। तदनुसार, ये प्रोग्राम 72 PPI या 120 PPI जैसे सामान्य वैकल्पिक रिज़ॉल्यूशन पर ठीक से प्रदर्शित नहीं होते हैं। इसका समाधान दो अवधारणाओं को प्रस्तुत करना है:[5]* तार्किक पीपीआई: पीपीआई जो सॉफ्टवेयर दावा करता है कि एक स्क्रीन प्रदान करता है। इसे ऑपरेटिंग सिस्टम द्वारा बनाई गई वर्चुअल स्क्रीन द्वारा प्रदान किए गए PPI के रूप में माना जा सकता है।
- भौतिक पीपीआई: वह पीपीआई जो एक भौतिक स्क्रीन वास्तव में प्रदान करता है।
सॉफ़्टवेयर प्रोग्राम छवियों को वर्चुअल स्क्रीन पर प्रस्तुत करता हैं और फिर ऑपरेटिंग सिस्टम वर्चुअल स्क्रीन को भौतिक स्क्रीन पर प्रस्तुत करता है। 96 पीपीआई के एक तार्किक पीपीआई के साथ पुराने प्रोग्राम अभी भी डिस्प्ले स्क्रीन के वास्तविक भौतिक पीपीआई की परवाह किए बिना ठीक से चल सकते हैं, हालांकि प्रभावी 133.3% पिक्सेल ज़ूम स्तर के कारण वे कुछ दृश्य विकृति प्रदर्शित कर सकते हैं (या तो हर तीसरे पिक्सेल को दोगुना करने की आवश्यकता होती है) चौड़ाई/ऊंचाई में या हैवी-हैंडेड स्मूथिंग नियोजित किया जाना चाहिए)।[citation needed]
माइक्रोसॉफ्ट विंडोज़ डीपीआई स्केलिंग को कैसे संभालता करता है
विंडोज XP युग तक उच्च पिक्सेल घनत्व वाले डिस्प्ले आम नहीं थे। विंडोज 8 के रिलीज होने के समय उच्च डीपीआई डिस्प्ले मुख्यधारा बन गए। डिस्प्ले रेज़ोल्यूशन के बावजूद कस्टम डीपीआई दर्ज करके डिस्प्ले स्केलिंग विंडोज 95 के बाद से माइक्रोसॉफ्ट विंडोज की एक विशेषता रही है।[7] विंडोज XP ने GDI+ लायब्रेरी प्रस्तुत की जो रिज़ॉल्यूशन-स्वतंत्र टेक्स्ट स्केलिंग की अनुमति देता है।[8]
विंडोज विस्टा ने कार्यक्रमों के लिए स्वयं को ओएस के लिए घोषित करने के लिए समर्थन प्रस्तुत किया कि वे एक मेनिफेस्ट फ़ाइल के माध्यम से या एपीआई का उपयोग करके उच्च-डीपीआई से अवगत हैं।[9][10] उन प्रोग्रामों के लिए जो खुद को डीपीआई-जागरूक घोषित नहीं करते हैं, विंडोज विस्टा डीपीआई वर्चुअलाइजेशन नामक एक संगतता सुविधा का समर्थन करता है, ताकि सिस्टम मेट्रिक्स और यूआई तत्वों को अनुप्रयोगों के लिए प्रस्तुत किया जा सके जैसे कि वे 96 डीपीआई पर चल रहे हों और डेस्कटॉप विंडो प्रबंधक फिर परिणामी एप्लिकेशन विंडो को मापता है डीपीआई सेटिंग से मिलान करने के लिए। विंडोज़ विस्टा विंडोज़ एक्सपी स्टाइल स्केलिंग विकल्प को बरकरार रखता है जो सक्षम होने पर विश्व स्तर पर सभी अनुप्रयोगों के लिए DPI वर्चुअलाइजेशन को बंद कर देता है। डीपीआई वर्चुअलाइजेशन एक अनुकूलता विकल्प है क्योंकि एप्लिकेशन विकासक से डीपीआई वर्चुअलाइजेशन पर भरोसा किए बिना उच्च डीपीआई का समर्थन करने के लिए अपने ऐप्स को अद्यतन करने की उम्मीद है।
विंडोज़ विस्टा ने विंडोज प्रेजेंटेशन फाउंडेशन भी प्रस्तुत करता है। WPF .NET एप्लिकेशन सदिश-आधारित हैं, पिक्सेल-आधारित नहीं हैं और इन्हें रिज़ॉल्यूशन-स्वतंत्र होने के लिए प्रारूप किया गया है। .NET फ्रेमवर्क रनटाइम पर पुराने GDI API और विंडोज फॉर्म का उपयोग करने वाले डेवलपर्स को DPI से अवगत होने के लिए अपने ऐप्स को अद्यतन करने और अपने एप्लिकेशन को डीपीआई-जागरूक के रूप में चिह्नित करने की आवश्यकता है।
विंडोज 7 डीपीआई को केवल लॉग ऑफ करके बदलने की क्षमता जोड़ता है, पूर्ण रीबूट नहीं करता है और इसे प्रति-उपयोगकर्ता सेटिंग बनाता है। इसके अतिरिक्त, विंडोज 7 ईडीआईडी विस्तारित प्रदर्शन पहचान डेटा से मॉनिटर डीपीआई को पढ़ता है और मॉनिटर के भौतिक पिक्सेल घनत्व से मिलान करने के लिए स्वचालित रूप से सिस्टम डीपीआई मान सेट करता है, जब तक कि प्रभावी रिज़ॉल्यूशन 1024 × 768 से कम न हो।
विंडोज 8 में, डीपीआई परिवर्तन संवाद में केवल डीपीआई स्केलिंग प्रतिशत दिखाया गया है और कच्चे डीपीआई मान का प्रदर्शन हटा दिया गया है।[11] Windows 8.1 में, DPI वर्चुअलाइज़ेशन को अक्षम करने के लिए वैश्विक सेटिंग (केवल XP-शैली स्केलिंग का उपयोग करें) को हटा दिया गया है और संगतता टैब से DPI वर्चुअलाइज़ेशन को अक्षम करने के लिए उपयोगकर्ता के लिए प्रति-ऐप सेटिंग जोड़ी गई है।[11]जब DPI स्केलिंग सेटिंग को 120 PPI (125%) से अधिक पर सेट किया जाता है, तो DPI वर्चुअलाइजेशन को सभी अनुप्रयोगों के लिए सक्षम किया जाता है, जब तक कि एप्लिकेशन EXE के अंदर DPI जागरूक फ़्लैग (प्रकट) को निर्दिष्ट करके इससे बाहर न निकल जाए। विंडोज 8.1 ऐप के डीपीआई वर्चुअलाइजेशन को अक्षम करने के लिए प्रति-एप्लिकेशन विकल्प को बरकरार रखता है।[11]विंडोज 8.1 विभिन्न डिस्प्ले के लिए स्वतंत्र डीपीआई स्केलिंग कारकों का उपयोग करने की क्षमता भी जोड़ता है, हालांकि यह प्रत्येक डिस्प्ले के लिए स्वचालित रूप से इसकी गणना करता है और किसी भी स्केलिंग स्तर पर सभी मॉनिटरों के लिए डीपीआई वर्चुअलाइजेशन को चालू करता है।
विंडोज 10 व्यक्तिगत मॉनिटर के लिए डीपीआई स्केलिंग पर मैनुअल नियंत्रण जोड़ता है।
प्रस्तावित माप
डीपीआई छवि रिज़ॉल्यूशन इकाई को एक मीट्रिक इकाई के पक्ष में छोड़ने के लिए कुछ प्रयास चल रहे हैं, जो बिंदु प्रति सेंटीमीटर पीएक्स/सेमी या डीपीसीएम) में अंतर-बिंदु रिक्ति देता है, जैसा कि CSS3 मीडिया क्वेरीज़ [12] या बिंदुओं के बीच माइक्रोमीटर (µm) में उपयोग किया जाता है।[13] उदाहरण के लिए, 72 DPI का रिज़ॉल्यूशन लगभग 28 dpcm के रिज़ॉल्यूशन या लगभग 353 µm के अंतर-बिंदु रिक्ति के सामान होता है।
DPI (dot/in) |
dpcm (dot/cm) |
Pitch (µm) |
---|---|---|
72 | 28 | 353 |
96 | 38 | 265 |
150 | 59 | 169 |
203 | 80 | 125 |
300 | 118 | 85 |
2540 | 1000 | 10 |
4000 | 1575 | 6 |
यह भी देखें
- पिक्सल घनत्व
- प्रति इंच नमूने - छवि स्कैनर के लिए संबंधित अवधारणा
- लाइन प्रति इंच
- मीट्रिक टाइपोग्राफ़िक इकाइयाँ
- प्रदर्शन रिज़ॉल्यूशन
- माउस डीपीआई
- ट्विप
- प्रति डिग्री अंक
संदर्भ
- ↑ The acronym appears in sources as either "DPI999999999999" or lowercase "dpi". See: "Print Resolution Understanding 4-bit depth – Xerox" Archived 2017-11-12 at the Wayback Machine (PDF). Xerox.com. September 2012.
- ↑ CSS3 Media Queries Recommendation
- ↑ "इंकजेट प्रिंटिंग के लिए ओकेआई की टेक्नोलॉजी गाइड". www.askoki.co.uk. Archived from the original on 2009-08-15.
- ↑ Hitchcock, Greg (2005-10-08). "Where does 96 DPI come from in Windows?". Microsoft Developer Network Blog. Microsoft. Retrieved 2009-11-07.
- ↑ 5.0 5.1 Hitchcock, Greg (2005-09-08). "Where does 96 DPI come from in Windows?". blogs.msdn.com. Retrieved 2010-05-09.
- ↑ Connare, Vincent (1998-04-06). "Microsoft Typography – Making TrueType bitmap fonts". Microsoft. Retrieved 2009-11-07.
- ↑ fbcontrb (2005-11-08). "Where does 96 DPI come from in Windows?". Blogs.msdn.com. Retrieved 2018-04-03.
- ↑ "जीडीआईप्लस बनाम जीडीआई के साथ तैयार किए जाने पर टेक्स्ट अलग क्यों दिखाई देता है". Support.microsoft.com. 2018-02-04. Retrieved 2018-04-03.
- ↑ "Win32 SetProcessDPIAware Function".
- ↑ "Windows Vista DPI scaling: my Vista is bigger than your Vista". December 11, 2006.
- ↑ 11.0 11.1 11.2 Christoph Nahr / (19 May 2011). "विंडोज़ में उच्च डीपीआई सेटिंग्स". Kynosarges.org. Retrieved 2018-04-03.
- ↑ "Media Queries".
- ↑ "वर्ग संकल्प सिंटेक्स". Sun Microsystems. Retrieved 2007-10-12.