कोटैंजेंट स्थान: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 64: | Line 64: | ||
* {{Citation | last1=Misner | first1=Charles W. | author1-link=Charles W. Misner | last2=Thorne | first2=Kip | author2-link=Kip Thorne | last3=Wheeler | first3=John Archibald | author3-link=John Archibald Wheeler | title=[[Gravitation (book)|Gravitation]] | publisher=W. H. Freeman | isbn=978-0-7167-0344-0 | year=1973}} | * {{Citation | last1=Misner | first1=Charles W. | author1-link=Charles W. Misner | last2=Thorne | first2=Kip | author2-link=Kip Thorne | last3=Wheeler | first3=John Archibald | author3-link=John Archibald Wheeler | title=[[Gravitation (book)|Gravitation]] | publisher=W. H. Freeman | isbn=978-0-7167-0344-0 | year=1973}} | ||
{{DEFAULTSORT:Cotangent Space}} | {{DEFAULTSORT:Cotangent Space}} | ||
[[Category:Created On 03/07/2023|Cotangent Space]] | |||
[[Category:Lua-based templates|Cotangent Space]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Cotangent Space]] | ||
[[Category: | [[Category:Pages with script errors|Cotangent Space]] | ||
[[Category:Vigyan Ready]] | [[Category:Templates Vigyan Ready|Cotangent Space]] | ||
[[Category:Templates that add a tracking category|Cotangent Space]] | |||
[[Category:Templates that generate short descriptions|Cotangent Space]] | |||
[[Category:Templates using TemplateData|Cotangent Space]] | |||
[[Category:टेंसर|Cotangent Space]] | |||
[[Category:विभेदक टोपोलॉजी|Cotangent Space]] |
Latest revision as of 10:18, 10 July 2023
विभेदक ज्यामिति में, कोटैंजेंट क्षेत्र किसी बिंदु से जुड़ा हुआ ऐसा सदिश स्थल है, जहाँ पर समतल मैनिफोल्ड पर या समतल या अलग-अलग समतल से कई गुना मान को किसी भी व्यक्ति द्वारा समतल मैनिफोल्ड पर प्रत्येक बिंदु के लिए कोटैंजेंट स्थान को परिभाषित करता है। सामान्यतः, कोटैंजेंट क्षेत्र पर स्पर्शरेखा स्थान के दोहरे स्थान , के रूप में परिभाषित किया गया है, चूंकि अधिक प्रत्यक्ष परिभाषाएँ हैं। कोटैंजेंट क्षेत्र के तत्वों को कोटैंजेंट वैक्टर या टेंगेंट सह सदिश कहा जाता है।
गुण
इस प्रकार संयोजित मैनिफोल्ड पर बिंदुओं पर सभी कोटैंजेंट क्षेत्र में सदिश क्षेत्र का समान आयाम के होते है, जो मैनिफोल्ड के आयाम के बराबर होता है। इस प्रकार मैनिफोल्ड के सभी कोटैंजेंट स्थानों को साथ चिपकाया जा सकता है, अर्थात संघबद्ध और टोपोलॉजी के साथ संपन्न किया जा सकता हैं, जिससे कि दोगुने आयाम का नया विभेदक मैनिफोल्ड, मैनिफोल्ड का कोटैंजेंट बंडल बनाया जा सके।
किसी बिंदु पर स्पर्शरेखा स्थान और कोटैंजेंट स्थान दोनों ही आयाम के वास्तविक सदिश स्थान हैं और इसलिए कई संभावित समरूपता के माध्यम से दूसरे के लिए समरूपी हैं। रीमैनियन मीट्रिक या सहानुभूतिपूर्ण रूप के प्रारंभिक बिंदु पर स्पर्शरेखा स्थान और कोटैंजेंट स्थान के बीच प्राकृतिक समरूपता को जन्म देती है, जो किसी भी स्पर्शरेखा कोसदिश के साथ विहित स्पर्शरेखा सदिश को जोड़ती है।
औपचारिक परिभाषाएँ
रेखीय फलनात्मकताओं के रूप में परिभाषा
यहाँ पर समतल कई गुना हो जाता हैं और में बिंदु प्राप्त होता हैं, इस प्रकार पर स्पर्शरेखा स्थान बनाते हैं। फिर x पर कोटैंजेंट क्षेत्र को दोहरे क्षेत्र : के रूप में परिभाषित किया गया है-
सामान्यतः कोटैंजेंट क्षेत्र के तत्व रैखिक फलनात्मक हैं, अर्ताथ इसका हर तत्व रेखीय मानचित्र को प्रदर्शित करता है।
जहाँ विचाराधीन सदिश समष्टि का अंतर्निहित क्षेत्र (गणित) है, उदाहरण के लिए, वास्तविक संख्याओं का क्षेत्र। के तत्व कोटैंजेंट सदिश कहलाते हैं।
वैकल्पिक परिभाषा
कुछ स्थितियों में, किसी विशेष परिस्थिति के लिए स्पर्शरेखा वाले क्षेत्र के संदर्भ के बिना कोटैंजेंट क्षेत्र की सीधी परिभाषा प्राप्त करना आसान होता है। ऐसी परिभाषा सुचारू फलनों के तुल्यता वर्गों के संदर्भ में तैयार की जा सकती है, इस प्रकार अनौपचारिक रूप से, हम कहेंगे कि दो सुचारु फलन f और g बिंदु पर समतुल्य हैं, जिसके कारण यदि उनके पास समान प्रथम-क्रम का व्यवहार है, उनके रैखिक टेलर बहुपद के अनुरूप; दो फलन f और g का प्रथम क्रम व्यवहार समान है, यदि फलन f - g का व्युत्पन्न विलुप्त हो जाते है, इस प्रकार . कोटैंजेंट क्षेत्र में किसी फलन के सभी संभावित प्रथम-क्रम में व्यवहारिक रूप से में सम्मलित होते हैं।
जिसके आधार पर को सहज मैनिफ़ोल्ड बनाया जाता हैं, और x को बिंदु के लिए में सभी फलनों का आदर्श (रिंग सिद्धांत) पर द्वारा लुप्त हो जाता है, और इस प्रकार फॉर्म के फलनों का सेट बनाया जाता हैं, जहाँ . तब और दोनों वास्तविक सदिश समष्टि हैं और कोटैंजेंट समष्टि को भागफल समष्टि रैखिक बीजगणित के रूप में परिभाषित किया जा सकता है। इस प्रकार इस समीकरण में दोनों स्थान एक-दूसरे के समरूप हैं।
यह सूत्रीकरण बीजगणितीय ज्यामिति में ज़ारिस्की स्पर्शरेखा स्थान को परिभाषित करने के लिए कोटैंजेंट क्षेत्र के निर्माण के अनुरूप है। निर्माण स्थानीय रूप से रिंगित स्थानों पर भी सामान्यीकृत होता है।
फलन का अंतर
यहाँ पर समतल कई गुना होने पर सुचारु फलन को प्रदर्शित करता हैं, जिसका अंतर बिंदु पर क्षेत्र को प्रकट करता है।
जहाँ पर वक्रों की विभेदक ज्यामिति है, इस प्रकार व्युत्पत्ति के रूप में हम इसे प्रकट कर सते हैं। यहाँ पर का असत्य व्युत्पन्न है, जहाँ दिशा में , और के पास है, इसके आधार पर समान रूप से, हम स्पर्शरेखा सदिशों को वक्रों की स्पर्शरेखा के रूप में सोच सकते हैं और लिख सकते हैं
किसी भी स्थिति में, पर रेखीय मानचित्र है, और इसलिए यह स्पर्शरेखा को सदिश मानते है।
फिर हम विभेदक मानचित्र को द्वारा परिभाषित कर सकते हैं, यहाँ पर बिंदु जैसा कि मानचित्र भेजता है इसमें को विभेदक मानचित्र के गुणों में सम्मिलित किया गया हैं:
- रेखीय मानचित्र है: स्थिरांक के लिए और ,
विभेदक मानचित्र ऊपर दिए गए कोटैंजेंट क्षेत्र की दो वैकल्पिक परिभाषाओं के बीच लिंक प्रदान करता है। यहाँ पर फलन सुचारु रूप से द्वारा विलुप्त हो रहा है, हम रैखिक फलनात्मक फलन बना सकते हैं, इसके आधार पर उक्त मानचित्र के बाद से पर 0 तक को सीमित किया जाता है, इस प्रकार पाठक को इसे सत्यापित करना आवश्यक होता हैं, इस प्रकार से मानचित्र पर उतरता है, जहाँ पर स्पर्शरेखा स्थान के दोहरे के लिए द्वारा प्रदर्शित करता हैं। इस प्रकार कोई यह दिखा सकता है कि यह मानचित्र समरूपता है, जो दो परिभाषाओं की समानता स्थापित करता है।
एक सहज मानचित्र का प्रतिकर्षण
बिल्कुल हर अलग-अलग मानचित्र के समान मैनिफोल्ड्स के बीच स्पर्शरेखा स्थानों के बीच रेखीय मानचित्र जिसे पुशफॉरवर्ड या व्युत्पन्न कहा जाता है, यह इसके द्वारा उत्पन्न होता है
ऐसा प्रत्येक मानचित्र कोटैंजेंट स्थानों के बीच रेखीय मानचित्र जिसे पुलबैक (विभेदक ज्यामिति) कहा जाता है, इसके द्वारा इसे उत्पन्न करते हैं, केवल इस बार विपरीत दिशा में हम इसे प्रकट करते हैं:
पुलबैक को स्वाभाविक रूप से पुशफॉरवर्ड (डिफरेंशियल) के दोहरे (या ट्रांसपोज़) के रूप में परिभाषित किया गया है। यहाँ पर उक्त परिभाषा को संदर्भित करते हुए जिसका अर्थ निम्नलिखित है:
जहाँ और . ध्यान से नोट करें कि सब कुछ जहाँ रहता है।
यदि हम बिंदु पर लुप्त होने वाले चिकने मानचित्रों के तुल्यता वर्गों के संदर्भ में स्पर्शरेखा कोसदिश को परिभाषित करते हैं तो पुलबैक की परिभाषा और भी सरल है। इस प्रकार पर सुचारू फलन हैं जहाँ पर पर लुप्त हो रहा है, फिर सदिश का पुलबैक निर्धारित किया गया हैं, जिसे (संकेतित ) द्वारा निर्देशित कर दिया गया है-
अर्थात्, यह फलनों का समतुल्य वर्ग है, जहाँ पर द्वारा निर्धारित लुप्त हो रहा है।
बाह्य बल
th>-कोटटेंजेंट क्षेत्र की बाहरी बल, निरूपित , विभेदक ज्यामिति में और महत्वपूर्ण वस्तु है। इस प्रकार किसी सदिश में -वें बाहरी बल, या अधिक सटीक रूप से के अनुभाग कोटैंजेंट बंडल की -वीं बाहरी बल को -रूप में डिफरेंशियल फॉर्म या डिफरेंशियल कहा जाता है। उन्हें वैकल्पिक, बहुरेखीय मानचित्र के रूप में सोचा जा सकता है स्पर्शरेखा सदिश द्वारा प्रकट किया जाता हैं। जिसके कारण स्पर्शरेखा कोसदिशों को अधिकांशतः इसका एक मुख्य रूप कहा जाता है।
संदर्भ
- Abraham, Ralph H.; Marsden, Jerrold E. (1978), Foundations of mechanics, London: Benjamin-Cummings, ISBN 978-0-8053-0102-1
- Jost, Jürgen (2005), Riemannian Geometry and Geometric Analysis (4th ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-25907-7
- Lee, John M. (2003), Introduction to smooth manifolds, Springer Graduate Texts in Mathematics, vol. 218, Berlin, New York: Springer-Verlag, ISBN 978-0-387-95448-6
- Misner, Charles W.; Thorne, Kip; Wheeler, John Archibald (1973), Gravitation, W. H. Freeman, ISBN 978-0-7167-0344-0