लिथियम-आयन बैटरी के लिए नैनोआर्किटेक्चर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Use of nanotechnology to improve lithium-ion batteries}}
{{Short description|Use of nanotechnology to improve lithium-ion batteries}}
[[लिथियम आयन बैटरी]] के लिए [[नैनो]]आर्किटेक्चर, लिथियम-आयन बैटरी के डिज़ाइन को उचित बनाने के लिए नैनो तकनीक को नियोजित करने का प्रयास होता है। लिथियम-आयन बैटरी में अनुसंधान [[ऊर्जा घनत्व]], विद्युत घनत्व, सुरक्षा, स्थायित्व और लागत में सुधार पर केंद्रित होता है।
'''[[लिथियम आयन बैटरी]] के लिए [[नैनो]]आर्किटेक्चर''', लिथियम-आयन बैटरी के डिज़ाइन को उचित बनाने के लिए नैनो तकनीक को नियोजित करने का प्रयास होता है। लिथियम-आयन बैटरी में अनुसंधान [[ऊर्जा घनत्व]], विद्युत घनत्व, सुरक्षा, स्थायित्व और लागत में सुधार पर केंद्रित होता है।


== अनुसंधान क्षेत्र ==
== अनुसंधान क्षेत्र ==


=== ऊर्जा घनत्व ===
=== ऊर्जा घनत्व ===
बढ़ी हुई ऊर्जा घनत्व में [[इलेक्ट्रोड]] से अधिक [[आयन]] डालने/निकालने की आवश्यकता होती है। इलेक्ट्रोड क्षमता की तुलना तीन अलग-अलग विधियों के माध्यम से की जाती है: द्रव्यमान की प्रति इकाई क्षमता ([[विशिष्ट ऊर्जा]] या गुरुत्वाकर्षण क्षमता के रूप में जाना जाता है), क्षमता प्रति इकाई मात्रा (वॉल्यूमेट्रिक क्षमता), और क्षेत्र-सामान्यीकृत विशिष्ट क्षमता (क्षेत्रीय क्षमता)
बढ़ी हुई ऊर्जा घनत्व में [[इलेक्ट्रोड]] से अधिक [[आयन]] डालने/निकालने की आवश्यकता होती है। इलेक्ट्रोड क्षमता की तुलना तीन अलग-अलग विधियों के माध्यम से की जाती है: द्रव्यमान की प्रति इकाई क्षमता ([[विशिष्ट ऊर्जा]] या गुरुत्वाकर्षण क्षमता के रूप में जाना जाता है), क्षमता प्रति इकाई मात्रा (वॉल्यूमेट्रिक क्षमता), और क्षेत्र-सामान्यीकृत विशिष्ट क्षमता (क्षेत्रीय क्षमता) इसके उदाहारण है।


=== विद्युत  घनत्व ===
=== विद्युत  घनत्व ===
अलग-अलग प्रयास विद्युत घनत्व (चार्ज / डिस्चार्ज की दर) में सुधार पर ध्यान केंद्रित करते हैं। शक्ति घनत्व द्रव्यमान और आवेश परिवहन, इलेक्ट्रॉनिक और आयनिक विद्युत चालकता और इलेक्ट्रॉन-स्थानांतरण कैनेटीक्स पर आधारित होते है; कम दूरी और अधिक सतह क्षेत्र के माध्यम से आसान परिवहन दरों में सुधार होता है।<ref name="NatMat2005">{{Cite journal | last1 = Aricò | first1 = A. S. | last2 = Bruce | first2 = P. | last3 = Scrosati | first3 = B. | last4 = Tarascon | first4 = J. M. | last5 = Van Schalkwijk | first5 = W. | title = उन्नत ऊर्जा रूपांतरण और भंडारण उपकरणों के लिए नैनोसंरचित सामग्री| doi = 10.1038/nmat1368 | journal = Nature Materials | volume = 4 | issue = 5 | pages = 366–377 | year = 2005 | pmid =  15867920|bibcode = 2005NatMa...4..366A | s2cid = 35269951 }}</ref>
अलग-अलग प्रयास विद्युत घनत्व ( / विपरीत आवेश की दर) में सुधार पर ध्यान केंद्रित करते हैं। शक्ति घनत्व द्रव्यमान और आवेश परिवहन, इलेक्ट्रॉनिक और आयनिक विद्युत चालकता और इलेक्ट्रॉन-स्थानांतरण कैनेटीक्स पर आधारित होते है; कम दूरी और अधिक सतह क्षेत्र के माध्यम से आसान परिवहन दरों में सुधार होता है।<ref name="NatMat2005">{{Cite journal | last1 = Aricò | first1 = A. S. | last2 = Bruce | first2 = P. | last3 = Scrosati | first3 = B. | last4 = Tarascon | first4 = J. M. | last5 = Van Schalkwijk | first5 = W. | title = उन्नत ऊर्जा रूपांतरण और भंडारण उपकरणों के लिए नैनोसंरचित सामग्री| doi = 10.1038/nmat1368 | journal = Nature Materials | volume = 4 | issue = 5 | pages = 366–377 | year = 2005 | pmid =  15867920|bibcode = 2005NatMa...4..366A | s2cid = 35269951 }}</ref>


=== [[एनोड]] ===
=== [[एनोड]] ===
लिथियम की अस्वीकार्य वॉल्यूमेट्रिक [[अंतर्संबंध (रसायन विज्ञान)|अंतर्संबंध]] विस्तार के बिना आपस में जुड़ने की क्षमता के कारण पारंपरिक रूप [[कार्बन]] एनोड का उपयोग किया जाता हैं। उत्तरार्द्ध बैटरी को हानि पहुंचाता है और चार्ज करने के लिए उपलब्ध लिथियम की मात्रा को भी कम करता है। इस प्रकार अंतर्संबंध क्षमता को सीमित करता है। LiC<sub>6</sub> के लिए कार्बन आधारित एनोड्स की गुरुत्वाकर्षण क्षमता 372 mAh/g होती है।<sub>.</sub><ref name="ECSL2003">{{Cite journal | last1 = Graetz | first1 = J. | last2 = Ahn | first2 = C. C. | last3 = Yazami | first3 = R. | last4 = Fultz | first4 = B. | author4-link = Brent Fultz | title = नैनोसंरचित सिलिकॉन में अत्यधिक प्रतिवर्ती लिथियम भंडारण| doi = 10.1149/1.1596917 | journal = Electrochemical and Solid-State Letters | volume = 6 | issue = 9 | pages = A194 | year = 2003 | url = https://authors.library.caltech.edu/3002/1/GRAessl03.pdf }}</ref>
लिथियम की अस्वीकार्य वॉल्यूमेट्रिक [[अंतर्संबंध (रसायन विज्ञान)|अंतर्संबंध]] विस्तार के बिना आपस में जुड़ने की क्षमता के कारण पारंपरिक रूप से [[कार्बन]] एनोड का उपयोग किया जाता हैं। जो उत्तरार्द्ध बैटरी को हानि पहुंचाता है और आवेशित करने के लिए उपलब्ध लिथियम की मात्रा को भी कम करता है। इस प्रकार अंतर्संबंध क्षमता को सीमित करता है। LiC<sub>6</sub> के लिए कार्बन आधारित एनोड्स की गुरुत्वाकर्षण क्षमता 372 mAh/g होती है।<sub>.</sub><ref name="ECSL2003">{{Cite journal | last1 = Graetz | first1 = J. | last2 = Ahn | first2 = C. C. | last3 = Yazami | first3 = R. | last4 = Fultz | first4 = B. | author4-link = Brent Fultz | title = नैनोसंरचित सिलिकॉन में अत्यधिक प्रतिवर्ती लिथियम भंडारण| doi = 10.1149/1.1596917 | journal = Electrochemical and Solid-State Letters | volume = 6 | issue = 9 | pages = A194 | year = 2003 | url = https://authors.library.caltech.edu/3002/1/GRAessl03.pdf }}</ref>
[[सिलिकॉन]] की विशिष्ट क्षमता कार्बन की तुलना में लगभग दस गुना अधिक होती है। Si की परमाणु त्रिज्या 1.46 [[एंगस्ट्रॉम]] होती है, जबकि Li की परमाणु त्रिज्या 2.05 एंग्स्ट्रॉम होती है।  Li<sub>3.75</sub>S का गठन महत्वपूर्ण वॉल्यूमेट्रिक विस्तार का कारण बनता है, जो उत्तरोत्तर एनोड को नष्ट कर देता है।<ref name="JMC2007">{{Cite journal | last1 = Larcher | first1 = D. | last2 = Beattie | first2 = S. | last3 = Morcrette | first3 = M. | last4 = Edström | first4 = K. |author-link4=Kristina Edström| last5 = Jumas | first5 = J. C. | last6 = Tarascon | first6 = J. M. | doi = 10.1039/B705421C | title = ली-आयन बैटरी के लिए नकारात्मक इलेक्ट्रोड के रूप में शुद्ध धातुओं के क्षेत्र में हाल के निष्कर्ष और संभावनाएं| journal = Journal of Materials Chemistry | volume = 17 | issue = 36 | pages = 3759 | year = 2007 }}</ref> एनोड आर्किटेक्चर को नैनोस्केल में कम करने से लाभ प्राप्त होता है, जिसमें उत्रतम चक्र जीवन और कम दरार प्रसार और विफलता सम्मलित होती है। एक प्रवाहकीय बाइंडर फिल्म के भीतर नैनोस्केल कण महत्वपूर्ण त्रुटि आकार से नीचे उपस्थित होते हैं।<ref name="ECSL2003" /><ref>{{Cite journal | last1 = Talyosef | first1 = Y. | last2 = Markovsky | first2 = B. | last3 = Lavi | first3 = R. | last4 = Salitra | first4 = G. | last5 = Aurbach | first5 = D. | last6 = Kovacheva | first6 = D. | last7 = Gorova | first7 = M. | last8 = Zhecheva | first8 = E. | last9 = Stoyanova | first9 = R. | doi = 10.1149/1.2736657 | title = Comparing the Behavior of Nano- and Microsized Particles of LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub> Spinel as Cathode Materials for Li-Ion Batteries | journal = Journal of the Electrochemical Society | volume = 154 | issue = 7 | pages = A682 | year = 2007 | bibcode = 2007JElS..154A.682T }}</ref> परिवहन लंबाई (एनोड और कैथोड के बीच की दूरी) को कम करने से ओमिक हानि (प्रतिरोध) कम हो जाता है।
[[सिलिकॉन]] की विशिष्ट क्षमता कार्बन की तुलना में लगभग दस गुना अधिक होती है। Si की परमाणु त्रिज्या 1.46 [[एंगस्ट्रॉम]] होती है, जबकि Li की परमाणु त्रिज्या 2.05 एंग्स्ट्रॉम होती है।  Li<sub>3.75</sub>S का गठन महत्वपूर्ण वॉल्यूमेट्रिक विस्तार का कारण बनता है, जो उत्तरोत्तर एनोड को नष्ट कर देता है।<ref name="JMC2007">{{Cite journal | last1 = Larcher | first1 = D. | last2 = Beattie | first2 = S. | last3 = Morcrette | first3 = M. | last4 = Edström | first4 = K. |author-link4=Kristina Edström| last5 = Jumas | first5 = J. C. | last6 = Tarascon | first6 = J. M. | doi = 10.1039/B705421C | title = ली-आयन बैटरी के लिए नकारात्मक इलेक्ट्रोड के रूप में शुद्ध धातुओं के क्षेत्र में हाल के निष्कर्ष और संभावनाएं| journal = Journal of Materials Chemistry | volume = 17 | issue = 36 | pages = 3759 | year = 2007 }}</ref> एनोड आर्किटेक्चर को नैनोस्केल में कम करने से लाभ प्राप्त होता है, जिसमें उत्कृष्ट चक्र जीवन और कम विभाजन प्रसार और विफलता सम्मलित होती है। एक प्रवाहकीय बाइंडर फिल्म के भीतर नैनोस्केल कण महत्वपूर्ण त्रुटि आकार से नीचे उपस्थित होते हैं।<ref name="ECSL2003" /><ref>{{Cite journal | last1 = Talyosef | first1 = Y. | last2 = Markovsky | first2 = B. | last3 = Lavi | first3 = R. | last4 = Salitra | first4 = G. | last5 = Aurbach | first5 = D. | last6 = Kovacheva | first6 = D. | last7 = Gorova | first7 = M. | last8 = Zhecheva | first8 = E. | last9 = Stoyanova | first9 = R. | doi = 10.1149/1.2736657 | title = Comparing the Behavior of Nano- and Microsized Particles of LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub> Spinel as Cathode Materials for Li-Ion Batteries | journal = Journal of the Electrochemical Society | volume = 154 | issue = 7 | pages = A682 | year = 2007 | bibcode = 2007JElS..154A.682T }}</ref> परिवहन लंबाई (एनोड और कैथोड के बीच की दूरी) को कम करने से ओमिक हानि (प्रतिरोध) कम हो जाती है।


नैनोस्ट्रक्चरिंग सतह क्षेत्र को आयतन अनुपात में बढ़ाता है, जो विद्युत रासायनिक रूप से सक्रिय क्षेत्र में वृद्धि और परिवहन लंबाई में कमी के कारण ऊर्जा और शक्ति घनत्व दोनों में सुधार करता है। चूकिं, वृद्धि से इलेक्ट्रोड और इलेक्ट्रोलाइट के बीच पार्श्व प्रतिक्रियाएं भी बढ़ जाती हैं, जिससे उच्च स्व-निर्वहन, कम चार्ज/डिस्चार्ज चक्र और कम कैलेंडर जीवन होता है। हाल के कुछ कार्य उन सामग्रियों को विकसित करने पर केंद्रित होते हैं जो उस सीमा के भीतर विद्युत रासायनिक रूप से सक्रिय होते हैं जहां इलेक्ट्रोलाइट अपघटन या इलेक्ट्रोलाइट/इलेक्ट्रोड प्रतिक्रियाएं नहीं होती हैं।<ref name="NatMat2005" />
नैनोस्ट्रक्चरिंग सतह क्षेत्र को आयतन अनुपात में बढ़ाता है, जो विद्युत रासायनिक रूप से सक्रिय क्षेत्र में वृद्धि और परिवहन लंबाई में कमी के कारण ऊर्जा और शक्ति घनत्व दोनों में सुधार करता है। चूकिं, वृद्धि से इलेक्ट्रोड और इलेक्ट्रोलाइट के बीच पार्श्व प्रतिक्रियाएं भी बढ़ जाती हैं, जिससे उच्च स्व-निर्वहन, कम /विपरीत आवेश चक्र और कम कैलेंडर जीवन होता है। हाल के कुछ कार्य उन सामग्रियों को विकसित करने पर केंद्रित होते हैं जो उस सीमा के भीतर विद्युत रासायनिक रूप से सक्रिय होते हैं जहां इलेक्ट्रोलाइट अपघटन या इलेक्ट्रोलाइट/इलेक्ट्रोड प्रतिक्रियाएं नहीं होती हैं।<ref name="NatMat2005" />


=== गैर-पारंपरिक आर्किटेक्चर ===
=== गैर-पारंपरिक आर्किटेक्चर ===
एक शोध अवधारणा प्रस्तावित की गई है, जिसमें लिथियम-आयन बैटरी के प्रमुख भाग, अर्थात एनोड, इलेक्ट्रोलाइट और कैथोड को एक कार्यात्मक अणु में संयोजित किया जाता हैं। ऐसे कार्यात्मक अणुओं की एक परत को दो धारा संग्राहकों के बीच में लैंगमुइर-ब्लॉडगेट विधि के उपयोग से संरेखित किया जाता है  <ref name="Figshare1">{{Cite journal | last1 = Aliev| first1 = A. | title = मोनोलेयर आर्किटेक्चर पर आधारित ऊर्जा रूपांतरण और भंडारण नैनो डिवाइस।| doi = 10.6084/m9.figshare.3442784 | journal = Figshare | year = 2017 }}</ref> व्यवहार्यता की अभी पुष्टि नहीं हुई है।
एक शोध अवधारणा प्रस्तावित की गई है, जिसमें लिथियम-आयन बैटरी के प्रमुख भाग, अर्थात एनोड, इलेक्ट्रोलाइट और कैथोड को एक कार्यात्मक अणु में संयोजित किया जाता हैं। ऐसे कार्यात्मक अणुओं की एक परत को दो धारा संग्राहकों के बीच में लैंगमुइर-ब्लॉडगेट विधि के उपयोग से संरेखित किया जाता है। <ref name="Figshare1">{{Cite journal | last1 = Aliev| first1 = A. | title = मोनोलेयर आर्किटेक्चर पर आधारित ऊर्जा रूपांतरण और भंडारण नैनो डिवाइस।| doi = 10.6084/m9.figshare.3442784 | journal = Figshare | year = 2017 }}</ref> यघपि व्यवहार्यता की अभी तक पुष्टि नहीं हुई है।


== नैनोस्ट्रक्चर्ड आर्किटेक्चर ==
== नैनोस्ट्रक्चर्ड आर्किटेक्चर ==


अधिकांश बैटरी डिज़ाइन द्वि-आयामी होते हैं और स्तरित निर्माण पर निर्भर होते हैं।<ref name = CR2006>{{cite journal | last1 = Long | first1 = Jeffrey W. | last2 = Dunn | first2 = Bruce | last3 = Rolison | first3 = Debra R. | last4 = White | first4 = Henry S. | title = आर्किटेक्चर, त्रि-आयामी बैटरी| doi = 10.1021/cr020740l | journal = Chem. Rev. | volume = 104 | issue = 10| pages = 4463–4492 | pmid=15669159 | date=Oct 2004}}</ref> हाल के शोध ने इलेक्ट्रोड को तीन आयामों में लिया जाता है। यह बैटरी क्षमता में महत्वपूर्ण सुधार की अनुमति देता है; इस प्रकार 2डी मोटी फिल्म इलेक्ट्रोड और 3डी व्यूह इलेक्ट्रोड के बीच क्षेत्र क्षमता में उल्लेखनीय वृद्धि होती है।<ref name = ESI2008>{{cite journal | last1 = Dunn | first1 = Bruce | last2 = Long | first2 = Jeffrey W. | last3 = Rolison | first3 = Debra R. | title = विद्युत ऊर्जा भंडारण को छोटा करने के लिए तीन आयामों में पुनर्विचार करना| url = http://www.electrochem.org/dl/interface/fal/fal08/fal08_p49-53.pdf | journal = Electrochemical Society Interface | volume = 2008 | pages = 49–53 }}</ref>
सामान्यतः बैटरी डिज़ाइन द्वि-आयामी होते हैं और स्तरित निर्माण पर निर्भर होते हैं।<ref name = CR2006>{{cite journal | last1 = Long | first1 = Jeffrey W. | last2 = Dunn | first2 = Bruce | last3 = Rolison | first3 = Debra R. | last4 = White | first4 = Henry S. | title = आर्किटेक्चर, त्रि-आयामी बैटरी| doi = 10.1021/cr020740l | journal = Chem. Rev. | volume = 104 | issue = 10| pages = 4463–4492 | pmid=15669159 | date=Oct 2004}}</ref> हाल के शोध ने इलेक्ट्रोड को तीन आयामों में वर्णित किया जाता है। यह बैटरी क्षमता में महत्वपूर्ण सुधार की अनुमति देता है; इस प्रकार 2डी मोटी फिल्म इलेक्ट्रोड और 3डी व्यूह इलेक्ट्रोड के बीच क्षेत्र क्षमता में उल्लेखनीय वृद्धि होती है।<ref name = ESI2008>{{cite journal | last1 = Dunn | first1 = Bruce | last2 = Long | first2 = Jeffrey W. | last3 = Rolison | first3 = Debra R. | title = विद्युत ऊर्जा भंडारण को छोटा करने के लिए तीन आयामों में पुनर्विचार करना| url = http://www.electrochem.org/dl/interface/fal/fal08/fal08_p49-53.pdf | journal = Electrochemical Society Interface | volume = 2008 | pages = 49–53 }}</ref>


=== त्रि-आयामी पतली-फिल्में ===
=== त्रि-आयामी पतली-फिल्में ===
सॉलिड स्टेट बैटरियां पारंपरिक पतली-फिल्म बैटरियों के समान ज्यामिति का उपयोग करती हैं। त्रि-आयामी पतली-फिल्में विद्युत-रासायनिक रूप से सक्रिय क्षेत्र को बढ़ाने के लिए तीसरे आयाम का उपयोग करती हैं। पतली फिल्म दो आयामी बैटरी 2-5 माइक्रोमीटर के बीच प्रतिबंधित होती हैं, जो कि तीन आयामी ज्यामिति की तुलना में अधिक कम क्षेत्र क्षमता को सीमित करती हैं।
ठोस अवस्था वाली बैटरियां पारंपरिक रूप से पतली-फिल्म बैटरियों के समान ज्यामिति का उपयोग करती हैं। त्रि-आयामी पतली-फिल्में विद्युत-रासायनिक रूप से सक्रिय क्षेत्र को बढ़ाने के लिए तीसरे आयाम का उपयोग करती हैं। पतली फिल्म दो आयामी बैटरी 2-5 माइक्रोमीटर के बीच प्रतिबंधित होती हैं, जो कि तीन आयामी ज्यामिति की तुलना में अधिक कम क्षेत्र क्षमता को सीमित करती हैं।


एक छिद्रित सब्सट्रेट का उपयोग करके आयाम बढ़ाया जाता है। छिद्र बनाने का एक तरीका सिलिकॉन पर प्रेरक युग्मित प्लाज्मा निक्षारण के माध्यम से है।<ref name=JMS2005>{{Cite journal | last1 = Nathan | first1 = M. | last2 = Golodnitsky | first2 = D. | last3 = Yufit | first3 = V. | last4 = Strauss | first4 = E. | last5 = Ripenbein | first5 = T. | last6 = Shechtman | first6 = I. | last7 = Menkin | first7 = S. | last8 = Peled | first8 = E. | doi = 10.1109/JMEMS.2005.851860 | title = स्वायत्त एमईएमएस के लिए त्रि-आयामी पतली-फिल्म ली-आयन माइक्रोबैटरी| journal = Journal of Microelectromechanical Systems | volume = 14 | issue = 5 | pages = 879–885 | year = 2005 | s2cid = 17973543 }}</ref>
एक छिद्रित सब्सट्रेट का उपयोग करके आयाम बढ़ाया जाता है। छिद्र बनाने का एक तरीका सिलिकॉन पर प्रेरक युग्मित प्लाज्मा निक्षारण के माध्यम से होता है।<ref name=JMS2005>{{Cite journal | last1 = Nathan | first1 = M. | last2 = Golodnitsky | first2 = D. | last3 = Yufit | first3 = V. | last4 = Strauss | first4 = E. | last5 = Ripenbein | first5 = T. | last6 = Shechtman | first6 = I. | last7 = Menkin | first7 = S. | last8 = Peled | first8 = E. | doi = 10.1109/JMEMS.2005.851860 | title = स्वायत्त एमईएमएस के लिए त्रि-आयामी पतली-फिल्म ली-आयन माइक्रोबैटरी| journal = Journal of Microelectromechanical Systems | volume = 14 | issue = 5 | pages = 879–885 | year = 2005 | s2cid = 17973543 }}</ref>


एक अन्य ने गहरी खाइयों को बनाने के लिए इलेक्ट्रोकेमिकल या प्रतिक्रियाशील आयन निक्षारण के माध्यम से एक सिलिकॉन सब्सट्रेट के अत्यधिक [[एनिस्ट्रोपिक]] निक्षारण का उपयोग किया था। एक बैटरी के लिए आवश्यक परतें, एक एनोड, विभाजक और कैथोड, फिर कम दबाव वाले रासायनिक वाष्प संयोजन द्वारा जोड़ा गया था। बैटरी में एक पतली सक्रिय सिलिकॉन परत होती है जो एक ठोस अवस्था इलेक्ट्रोलाइट द्वारा पतली कैथोडिक परत से अलग होती है। विद्युत-रासायनिक रूप से सक्रिय क्षेत्र में 50 nm नैनोकण होते हैं, जो दरार प्रसार के लिए महत्वपूर्ण आकार से छोटे होते हैं।<ref name="AD2007">{{Cite journal | last1 = Pikul | first1 = J. H. | last2 = Gang Zhang | first2 = H. | last3 = Cho | first3 = J. | last4 = Braun | first4 = P. V. | last5 = King | first5 = W. P. | title = इंटरडिजिटेटेड थ्री-डायमेंशनल बाइकॉन्टिनस नैनोपोरस इलेक्ट्रोड्स से हाई-पॉवर लीथियम आयन माइक्रोबैटरी| doi = 10.1038/ncomms2747 | journal = Nature Communications | volume = 4 | pages = 1732 | year = 2013 | pmid =  23591899| bibcode = 2013NatCo...4.1732P | s2cid = 14775192 }}</ref>
एक अन्य ने गहरे  छिद्रों को बनाने के लिए इलेक्ट्रोकेमिकल या प्रतिक्रियाशील आयन निक्षारण के माध्यम से एक सिलिकॉन सब्सट्रेट के अत्यधिक [[एनिस्ट्रोपिक]] निक्षारण का उपयोग किया था। एक बैटरी के लिए आवश्यक परतें, एक एनोड, विभाजक और कैथोड, फिर कम दबाव वाले रासायनिक वाष्प याके संयोजन द्वारा जोड़ा जाता है। बैटरी में एक पतली सक्रिय सिलिकॉन परत होती है जो एक ठोस अवस्था इलेक्ट्रोलाइट द्वारा पतली कैथोडिक परत से अलग होती है। विद्युत-रासायनिक रूप से सक्रिय क्षेत्र में 50 nm नैनोकण होते हैं, जो विभाजन प्रसार के लिए विशेष रूप से आकार में छोटे होते हैं।<ref name="AD2007">{{Cite journal | last1 = Pikul | first1 = J. H. | last2 = Gang Zhang | first2 = H. | last3 = Cho | first3 = J. | last4 = Braun | first4 = P. V. | last5 = King | first5 = W. P. | title = इंटरडिजिटेटेड थ्री-डायमेंशनल बाइकॉन्टिनस नैनोपोरस इलेक्ट्रोड्स से हाई-पॉवर लीथियम आयन माइक्रोबैटरी| doi = 10.1038/ncomms2747 | journal = Nature Communications | volume = 4 | pages = 1732 | year = 2013 | pmid =  23591899| bibcode = 2013NatCo...4.1732P | s2cid = 14775192 }}</ref>


=== इंटरडिजिटल इलेक्ट्रोड ===
=== अंतर्विभाजित इलेक्ट्रोड ===
एक अन्य वास्तुकला एनोडिक और कैथोडिक ध्रुवों का एक आवधिक समूहन होता है। इस डिजाइन के लिए इलेक्ट्रोड पृथक्करण को कम करके शक्ति और ऊर्जा घनत्व को अधिकतम किया जाता है। एक जन्मजात गैर-समान धारा घनत्व होता है और सेल की क्षमता को कम करता है, स्थिरता को कम करता है और सेल के भीतर गैर-समान ताप पैदा करता है। दो आयामी बैटरी के सापेक्ष लंबाई ((L) जिस पर परिवहन होना चाहिए, दो-तिहाई से कम हो जाता है, जो कैनेटीक्स में सुधार करता है और ओमिक हानि को कम करता है। Lके अनुकूलन से क्षेत्रीय क्षमता में महत्वपूर्ण सुधार हो सकता है; 500 माइक्रोमीटर के आकार के पैमाने पर एक Lके परिणामस्वरूप तुलनीय दो आयामी बैटरी की तुलना में क्षमता में 350% की वृद्धि होती है। चूकिं, L के साथ ओमिक हानि बढ़ता है, अंततः L को बढ़ाने के माध्यम से प्राप्त वृद्धि को समायोजित करता है।
एक अन्य वास्तुकला एनोडिक और कैथोडिक ध्रुवों का एक आवधिक समूहन होता है। इस डिजाइन के लिए इलेक्ट्रोड पृथक्करण को कम करके शक्ति और ऊर्जा घनत्व को अधिकतम किया जाता है। एक जन्मजात गैर-समान धारा घनत्व होता है और सेल की क्षमता को कम करता है, स्थिरता को कम करता है और सेल के भीतर गैर-समान ताप पैदा करता है। दो आयामी बैटरी के सापेक्ष लंबाई (L) जिस पर परिवहन होना चाहिए, दो-तिहाई से कम हो जाता है, जो कैनेटीक्स में सुधार करता है और ओमिक हानि को कम करता है। Lके अनुकूलन से क्षेत्रीय क्षमता में महत्वपूर्ण सुधार हो सकता है; 500 माइक्रोमीटर के आकार के स्तर  पर एक Lके परिणामस्वरूप तुलनीय दो आयामी बैटरी की तुलना में क्षमता में 350% की वृद्धि होती है। चूकिं, L के साथ ओमिक हानि बढ़ता है, अंततः L को बढ़ाने के माध्यम से प्राप्त वृद्धि को समायोजित करता है।


इस ज्यामिति के लिए, चार मुख्य डिजाइन प्रस्तावित किए गए थे: एनोड्स और कैथोड्स की पंक्तियां, वैकल्पिक एनोड्स और कैथोड्स, हेक्सागोनली रूप से पैक किये गये 1:2 एनोड्स: कैथोड्स, और वैकल्पिक एनोडिक और कैथोडिक त्रिकोणीय ध्रुव जहां पंक्ति में निकटतम पड़ोसियों को 180 डिग्री घुमाया जाता है।
इस ज्यामिति के लिए, चार मुख्य डिजाइन प्रस्तावित किए गए थे: एनोड्स और कैथोड्स की पंक्तियां, वैकल्पिक एनोड्स और कैथोड्स, षट्कोणीय रूप से   पैक किये गये 1:2 एनोड्स: कैथोड्स, और वैकल्पिक एनोडिक और कैथोडिक त्रिकोणीय ध्रुव जहां पंक्ति में निकटतम पड़ोसियों को 180 डिग्री घुमाया जाता है।


पंक्ति डिजाइन में एक बड़ा, गैर-समान धारा वितरण होता है। वैकल्पिक विद्युत ध्रुवता के इलेक्ट्रोड की उच्च संख्या को देखते हुए वैकल्पिक डिजाइन बेहतर एकरूपता प्रदर्शित करता है। एनोड या कैथोड वाले सिस्टम के लिए जो गैर-समान धारा घनत्व के प्रति संवेदनशील होता है, कैथोड और एनोड की गैर-बराबर संख्या का उपयोग किया जा सकता है; 2:1 हेक्सागोनल डिजाइन एनोड पर एक समान धारा घनत्व की अनुमति देता है लेकिन कैथोड पर एक गैर-समान धारा वितरण की अनुमति देता है। ध्रुवों के आकार को परिवर्तित करके प्रदर्शन को बढ़ाया जा सकता है। त्रिकोणीय डिजाइन धारा एकरूपता का त्याग करके सेल की क्षमता और शक्ति में सुधार करता है।<ref name="CR2006" /> एक समान प्रणाली ध्रुवों के अतिरिक्त इंटरडिजिटल प्लेट्स का उपयोग करती है।<ref name="CR2006" />
पंक्ति डिजाइन में एक बड़ा, गैर-समान धारा वितरण होता है। वैकल्पिक विद्युत ध्रुवता के इलेक्ट्रोड की उच्च संख्या को देखते हुए वैकल्पिक डिजाइन बेहतर एकरूपता प्रदर्शित करता है। एनोड या कैथोड वाले प्रणाली के लिए जो गैर-समान धारा घनत्व के प्रति संवेदनशील होता है, कैथोड और एनोड की गैर-बराबर संख्या का उपयोग किया जा सकता है; 2:1 हेक्सागोनल डिजाइन एनोड पर एक समान धारा घनत्व की अनुमति देता है परन्तु कैथोड पर एक गैर-समान धारा वितरण की अनुमति देता है। ध्रुवों के आकार को परिवर्तित करके प्रदर्शन को बढ़ाया जा सकता है। त्रिकोणीय डिजाइन धारा एकरूपता का त्याग करके सेल की क्षमता और शक्ति में सुधार करता है।<ref name="CR2006" /> एक समान प्रणाली ध्रुवों के अतिरिक्त इंटरडिजिटल प्लेट्स का उपयोग करती है।<ref name="CR2006" />


2013 में शोधकर्ताओं ने स्टैक्ड, इंटरडिजिटेड इलेक्ट्रोड बनाने के लिए [[ योगात्मक विनिर्माण |योगात्मक विनिर्माण]] का उपयोग किया। बैटरी रेत के दाने से बड़ी नहीं थी। इस प्रक्रिया ने एनोड और कैथोड को पहले की तुलना में एक दूसरे के समीप रखा था। एनोड के लिए स्याही एक लिथियम धातु ऑक्साइड यौगिक के नैनोकण बनी थी, और कैथोड के लिए स्याही दूसरे के नैनोकणों से बनी थी। प्रिंटर ने स्याही को दो सोने के कंघों के दांतों पर एकत्रित किया, जिससे एनोड और कैथोड का एक इंटरलेस्ड स्टैक बन गया था।<ref>{{Cite journal | last1 = Sun | first1 = K. | last2 = Wei | first2 = T. S. | last3 = Ahn | first3 = B. Y. | last4 = Seo | first4 = J. Y. | last5 = Dillon | first5 = S. J. | last6 = Lewis | first6 = J. A. | title = 3D Printing of Interdigitated Li-Ion Microbattery Architectures | doi = 10.1002/adma.201301036 | journal = Advanced Materials | pages =  4539–4543| year = 2013 | pmid =  23776158| volume=25| issue = 33 | bibcode = 2013AdM....25.4539S | s2cid = 41428069 | url = http://nrs.harvard.edu/urn-3:HUL.InstRepos:33471104 }}</ref><ref>{{cite web |url=http://engineering.illinois.edu/news/2013/06/18/3-d-printing-could-lead-tiny-medical-implants-electronics-robots-more |title=3-D printing could lead to tiny medical implants, electronics, robots, more &#124; Engineering at Illinois |publisher=Engineering.illinois.edu |date=2013-06-19 |access-date=2013-06-23 |archive-date=2013-07-09 |archive-url=https://web.archive.org/web/20130709225808/https://engineering.illinois.edu/news/2013/06/18/3-d-printing-could-lead-tiny-medical-implants-electronics-robots-more |url-status=dead }}</ref>
2013 में शोधकर्ताओं ने स्टैक्ड, इंटरडिजिटेड इलेक्ट्रोड बनाने के लिए [[ योगात्मक विनिर्माण |योगात्मक विनिर्माण]] का उपयोग किया था। बैटरी रेत के दाने से बड़ी नहीं थी। इस प्रक्रिया ने एनोड और कैथोड को पहले की तुलना में एक दूसरे के समीप रखा था। एनोड के लिए स्याही(इंक) एक लिथियम धातु ऑक्साइड यौगिक के नैनोकण बनी थी, और कैथोड के लिए स्याही दूसरे के नैनोकणों से बनी थी। प्रिंटर ने स्याही को दो सोने के कंघों के दांतों पर एकत्रित किया, जिससे एनोड और कैथोड का एक इंटरलेस्ड स्टैक बन गया था।<ref>{{Cite journal | last1 = Sun | first1 = K. | last2 = Wei | first2 = T. S. | last3 = Ahn | first3 = B. Y. | last4 = Seo | first4 = J. Y. | last5 = Dillon | first5 = S. J. | last6 = Lewis | first6 = J. A. | title = 3D Printing of Interdigitated Li-Ion Microbattery Architectures | doi = 10.1002/adma.201301036 | journal = Advanced Materials | pages =  4539–4543| year = 2013 | pmid =  23776158| volume=25| issue = 33 | bibcode = 2013AdM....25.4539S | s2cid = 41428069 | url = http://nrs.harvard.edu/urn-3:HUL.InstRepos:33471104 }}</ref><ref>{{cite web |url=http://engineering.illinois.edu/news/2013/06/18/3-d-printing-could-lead-tiny-medical-implants-electronics-robots-more |title=3-D printing could lead to tiny medical implants, electronics, robots, more &#124; Engineering at Illinois |publisher=Engineering.illinois.edu |date=2013-06-19 |access-date=2013-06-23 |archive-date=2013-07-09 |archive-url=https://web.archive.org/web/20130709225808/https://engineering.illinois.edu/news/2013/06/18/3-d-printing-could-lead-tiny-medical-implants-electronics-robots-more |url-status=dead }}</ref>


=== संकेंद्रित इलेक्ट्रोड ===
=== संकेंद्रित इलेक्ट्रोड ===
संकेंद्रित सिलेंडर का डिज़ाइन इंटरडिजिटल ध्रुवों  के समान होता है। असतत एनोड और कैथोड ध्रुवों के अतिरिक्त, एनोड या कैथोड को ध्रुव के रूप में रखा जाता है जो इलेक्ट्रोलाइट द्वारा लेपित होता है। अन्य इलेक्ट्रोड निरंतर चरण के रूप में कार्य करता है जिसमें एनोड/कैथोड रहता है। मुख्य लाभ यह है कि इलेक्ट्रोलाइट की मात्रा कम हो जाती है, जिससे ऊर्जा घनत्व बढ़ जाता है। यह डिज़ाइन इंटरडिजिटल सिस्टम की तरह एक छोटी परिवहन दूरी को बनाए रखता है और इस प्रकार ओमिक हानि को कम करते हुए चार्ज और बड़े पैमाने पर परिवहन समान लाभ प्राप्त होता है।<ref name = CR2006/>
संकेंद्रित सिलेंडर का डिज़ाइन इंटरडिजिटल ध्रुवों  के समान होता है। असतत एनोड और कैथोड ध्रुवों के अतिरिक्त, एनोड या कैथोड को ध्रुव के रूप में रखा जाता है जो इलेक्ट्रोलाइट द्वारा लेपित होता है। अन्य इलेक्ट्रोड निरंतर चरण के रूप में कार्य करता है जिसमें एनोड/कैथोड उपस्थित रहता है। इसका मुख्य लाभ यह होता है कि इलेक्ट्रोलाइट की मात्रा कम हो जाती है, जिससे ऊर्जा घनत्व बढ़ जाता है। यह डिज़ाइन अंतर्विभाजित प्रणाली की तरह एक छोटी परिवहन दूरी को बनाए रखता है और इस प्रकार ओमिक हानि को कम करते हुए आवेश और बड़े स्तर  पर परिवहन के समान लाभ प्राप्त करता है।<ref name = CR2006/>


=== विपरीत ओपल ===
=== विपरीत ओपल ===
तीन आयामी आदेशित मैक्रोपोरस (3DOM) कार्बन एनोड बनाने के लिए गाढ़ा सिलेंडर पैक्ड पार्टिकल्स या क्लोज-पैक पॉलीमर का एक संस्करण। इस प्रणाली को कोलाइडल क्रिस्टल टेंपलेटिंग, इलेक्ट्रोकेमिकल थिन-फिल्म ग्रोथ और सॉफ्ट सोल-जेल केमिस्ट्री का उपयोग करके बनाया गया है। 3DOM सामग्रियों में नैनोमीटर मोटी दीवारों की एक अनूठी संरचना होती है जो आपस में जुड़े और बंद-पैक सब-माइक्रोमीटर वॉयड्स को घेरे रहती है। 3DOM संरचना को एक पतली बहुलक परत के साथ लेपित किया जाता है और फिर दूसरे संचालन चरण से भरा जाता है। यह विधि कम परिवहन लंबाई, उच्च आयनिक चालकता और उचित विद्युत चालकता वाली बैटरी की ओर ले जाती है। यह उन एडिटिव्स की आवश्यकता को दूर करता है जो विद्युत रासायनिक प्रदर्शन में योगदान नहीं करते हैं। प्रारंभिक क्षमता को बढ़ाने के लिए टिन ऑक्साइड नैनोकणों के साथ कोटिंग करके प्रदर्शन में सुधार किया जा सकता है।<ref name = AM2006>{{Cite journal | last1 = Ergang | first1 = N. S. | last2 = Lytle | first2 = J. C. | last3 = Lee | first3 = K. T. | last4 = Oh | first4 = S. M. | last5 = Smyrl | first5 = W. H. | last6 = Stein | first6 = A. | doi = 10.1002/adma.200600295 | title = फोटोनिक क्रिस्टल संरचनाएं त्रि-आयामी इंटरपेनिट्रेटिंग इलेक्ट्रोकेमिकल-सेल सिस्टम के आधार के रूप में| journal = Advanced Materials | volume = 18 | issue = 13 | pages = 1750–1753 | year = 2006 | bibcode = 2006AdM....18.1750E | s2cid = 137275587 }}</ref> कोटिंग समान मोटाई का उत्पादन करने के लिए 3DOM संरचना द्वारा गठित नेटवर्क में घुसपैठ करती है।
त्रि-आयामी क्रमबद्ध मैक्रोपोरस (3डीओएम ) कार्बन एनोड बनाने के लिए संकेंद्रित सिलेंडर पैक्ड कणों या क्लोज-पैक पॉलीमर का एक संस्करण होता है। इस प्रणाली को कोलाइडल क्रिस्टल टेंपलेटिंग, इलेक्ट्रोकेमिकल पतली-फिल्म वृद्धि और नरम सोल-जेल रसायन विज्ञान का उपयोग करके निर्मित की जाती है। 3डीओएम  सामग्रियों में नैनोमीटर मोटी दीवारों की एक अनूठी संरचना होती है जो परस्पर जुड़े होते है और बंद-पैक सब-माइक्रोमीटर रिक्तियों को घेरे रहते है। 3डीओएम संरचना को एक पतली बहुलक परत के साथ लेपित किया जाता है और फिर दूसरे संचालन चरण से भरा जाता है। यह विधि कम परिवहन लंबाई, उच्च आयनिक चालकता और उचित विद्युत चालकता वाली बैटरी की ओर ले जाती है। यह उन योजक की आवश्यकता को दूर करता है जो विद्युत रासायनिक प्रदर्शन में योगदान नहीं करते हैं। प्रारंभिक क्षमता को बढ़ाने के लिए टिन ऑक्साइड नैनोकणों के साथ कोटिंग करके प्रदर्शन में सुधार किया जा सकता है।<ref name = AM2006>{{Cite journal | last1 = Ergang | first1 = N. S. | last2 = Lytle | first2 = J. C. | last3 = Lee | first3 = K. T. | last4 = Oh | first4 = S. M. | last5 = Smyrl | first5 = W. H. | last6 = Stein | first6 = A. | doi = 10.1002/adma.200600295 | title = फोटोनिक क्रिस्टल संरचनाएं त्रि-आयामी इंटरपेनिट्रेटिंग इलेक्ट्रोकेमिकल-सेल सिस्टम के आधार के रूप में| journal = Advanced Materials | volume = 18 | issue = 13 | pages = 1750–1753 | year = 2006 | bibcode = 2006AdM....18.1750E | s2cid = 137275587 }}</ref> कोटिंग समान मोटाई का उत्पादन करने के लिए 3डीओएम संरचना द्वारा गठित नेटवर्क में अनधिकार प्रवेश करती है।


=== [[नैनोवायर]] और नैनोट्यूब ===
=== [[नैनोवायर]] और नैनोट्यूब ===


नैनोवायर और [[कार्बन नैनोट्यूब]] को विभिन्न बैटरी घटकों के साथ एकीकृत किया गया है। इस रुचि का कारण कम परिवहन लंबाई, गिरावट और भंडारण के प्रतिरोध के कारण है। कार्बन नैनोट्यूब (CNT) के लिए, लिथियम-आयन को बाहरी सतह पर, नैनोट्यूब के बीच अंतरालीय स्थलों में और ट्यूब के आंतरिक भाग में संग्रहित किया जा सकता है।<ref>{{Cite journal | last1 = Landi | first1 = B. J. | last2 = Ganter | first2 = M. J. | last3 = Schauerman | first3 = C. M. | last4 = Cress | first4 = C. D. | last5 = Raffaelle | first5 = R. P. | title = सिंगल वॉल कार्बन नैनोट्यूब पेपर इलेक्ट्रोड की लिथियम आयन क्षमता| doi = 10.1021/jp710921k | journal = Journal of Physical Chemistry C | volume = 112 | issue = 19 | pages = 7509–7515 | year = 2008 }}</ref>
नैनोवायर और [[कार्बन नैनोट्यूब]] को विभिन्न बैटरी घटकों के साथ एकीकृत किया गया है। इस रुचि का कारण कम परिवहन लंबाई, गिरावट और संचय के प्रतिरोध के कारण होता है। कार्बन नैनोट्यूब (सीएनटी) के लिए, लिथियम-आयन को बाहरी सतह पर, नैनोट्यूब के बीच अंतरालीय स्थलों में और ट्यूब के आंतरिक भाग में संग्रहित किया जा सकता है।<ref>{{Cite journal | last1 = Landi | first1 = B. J. | last2 = Ganter | first2 = M. J. | last3 = Schauerman | first3 = C. M. | last4 = Cress | first4 = C. D. | last5 = Raffaelle | first5 = R. P. | title = सिंगल वॉल कार्बन नैनोट्यूब पेपर इलेक्ट्रोड की लिथियम आयन क्षमता| doi = 10.1021/jp710921k | journal = Journal of Physical Chemistry C | volume = 112 | issue = 19 | pages = 7509–7515 | year = 2008 }}</ref>
एक अंतर्निहित प्रवाहकीय आवेश संग्राहक प्रदान करने और क्षमता बढ़ाने के लिए नैनोवायरों को एनोड/कैथोड मैट्रिक्स में शामिल किया गया है। नैनोवायरों को समाधान-आधारित विधि के माध्यम से शामिल किया गया था जो सक्रिय सामग्री को सब्सट्रेट पर मुद्रित करने की अनुमति देता है।<ref>{{Cite journal | last1 = Kiebele | first1 = A. | last2 = Gruner | first2 = G. | doi = 10.1063/1.2795328 | title = कार्बन नैनोट्यूब आधारित बैटरी संरचना| journal = Applied Physics Letters | volume = 91 | issue = 14 | pages = 144104 | year = 2007 |bibcode = 2007ApPhL..91n4104K }}</ref>
 
एक अन्य दृष्टिकोण सीएनटी-सेलूलोज़ सम्मिश्र का उपयोग करता है। CNT को थर्मल-CVD द्वारा एक सिलिकॉन सब्सट्रेट पर उगाया गया और फिर सेलूलोज़ में एम्बेड किया गया। अंत में सीएनटी से [[सेल्यूलोज]] के ऊपर एक लिथियम इलेक्ट्रोड जोड़ा जाता है।<ref>{{cite journal | last1 = Pushparaj | first1 = Victor L. | last2 = Shaijumon | first2 = Manikoth M. | last3 = Kumar | first3 = Ashavani | last4 = Murugesan | first4 = Saravanababu | last5 = Ci | first5 = Lijie | last6 = Vajtai | first6 = Robert | last7 = Linhardt | first7 = Robert J. | last8 = Nalamasu | first8 = Omkaram | last9 = Ajayan | first9 = Pulickel M. | title = नैनोकम्पोजिट पेपर पर आधारित लचीले ऊर्जा भंडारण उपकरण| doi = 10.1073/pnas.0706508104| journal = PNAS | year = 2007 | issue = 34| pages = 13574–13577 | volume=104| pmc = 1959422 | bibcode = 2007PNAS..10413574P | pmid=17699622| doi-access = free }}</ref>
एक अंतर्निहित प्रवाहकीय आवेश संग्राहक प्रदान करने और क्षमता बढ़ाने के लिए नैनोवायरों को एनोड/कैथोड मैट्रिक्स में सम्मलित किया जाता है। नैनोवायरों को समाधान-आधारित विधि के माध्यम से सम्मलित किया गया था जो सक्रिय सामग्री को सब्सट्रेट पर मुद्रित करने की अनुमति देता है।<ref>{{Cite journal | last1 = Kiebele | first1 = A. | last2 = Gruner | first2 = G. | doi = 10.1063/1.2795328 | title = कार्बन नैनोट्यूब आधारित बैटरी संरचना| journal = Applied Physics Letters | volume = 91 | issue = 14 | pages = 144104 | year = 2007 |bibcode = 2007ApPhL..91n4104K }}</ref> एक अन्य विधि सीएनटी-सेलूलोज़ सम्मिश्र का उपयोग करती है। सीएनटी को थर्मल-सीवीडी द्वारा एक सिलिकॉन सब्सट्रेट पर उगाया जाता है और फिर सेलूलोज़ में एम्बेड किया जाता है। अंत में सीएनटी से [[सेल्यूलोज]] के ऊपर एक लिथियम इलेक्ट्रोड जोड़ा जाता है।<ref>{{cite journal | last1 = Pushparaj | first1 = Victor L. | last2 = Shaijumon | first2 = Manikoth M. | last3 = Kumar | first3 = Ashavani | last4 = Murugesan | first4 = Saravanababu | last5 = Ci | first5 = Lijie | last6 = Vajtai | first6 = Robert | last7 = Linhardt | first7 = Robert J. | last8 = Nalamasu | first8 = Omkaram | last9 = Ajayan | first9 = Pulickel M. | title = नैनोकम्पोजिट पेपर पर आधारित लचीले ऊर्जा भंडारण उपकरण| doi = 10.1073/pnas.0706508104| journal = PNAS | year = 2007 | issue = 34| pages = 13574–13577 | volume=104| pmc = 1959422 | bibcode = 2007PNAS..10413574P | pmid=17699622| doi-access = free }}</ref>
2007 में सी [[नैनोवायर बैटरी]] को वाष्प-तरल ठोस विकास विधि द्वारा स्टील सब्सट्रेट पर बनाया गया था। इन नैनोवायरों ने सिलिकॉन के लिए सैद्धांतिक मूल्य के करीब प्रदर्शित किया और पहले से दूसरे चक्रों के बीच 20% की गिरावट के बाद केवल न्यूनतम लुप्त होती दिखाई दी। इस प्रदर्शन को सहज तनाव छूट के लिए जिम्मेदार ठहराया जाता है जो नैनोवायर के साथ धारा कलेक्टर और कुशल 1डी इलेक्ट्रॉन परिवहन के साथ अच्छा संपर्क बनाए रखते हुए बड़े उपभेदों के आवास की अनुमति देता है।<ref name="NatNan2008">{{Cite journal | last1 = Chan | first1 = C. K. | last2 = Peng | first2 = H. | last3 = Liu | first3 = G. | last4 = McIlwrath | first4 = K. | last5 = Zhang | first5 = X. F. | last6 = Huggins | first6 = R. A. | last7 = Cui | first7 = Y. | doi = 10.1038/nnano.2007.411 | title = सिलिकॉन नैनोवायरों का उपयोग करते हुए उच्च-प्रदर्शन लिथियम बैटरी एनोड| journal = Nature Nanotechnology | volume = 3 | issue = 1 | pages = 31–35 | year = 2007 | pmid =  18654447| bibcode = 2008NatNa...3...31C }}</ref>
 
2007 में सी [[नैनोवायर बैटरी]] को वाष्प-तरल ठोस विकास विधि द्वारा स्टील सब्सट्रेट पर बनाया गया था। इन नैनोवायरों ने सिलिकॉन के लिए सैद्धांतिक मूल्य के निकट प्रदर्शित किया और पहले से दूसरे चक्रों के बीच 20% की कमी के बाद केवल न्यूनतम लुप्त होती दिखाई दी। इस प्रदर्शन को सहज तनाव छूट के लिए उत्तरदायी ठहराया जाता है जो नैनोवायर के साथ धारा वर्तमान संग्राहक और कुशल 1डी इलेक्ट्रॉन परिवहन के साथ अच्छा संपर्क बनाए रखते हुए बड़े उपभेदों को समायोजित करने की अनुमति देता है।<ref name="NatNan2008">{{Cite journal | last1 = Chan | first1 = C. K. | last2 = Peng | first2 = H. | last3 = Liu | first3 = G. | last4 = McIlwrath | first4 = K. | last5 = Zhang | first5 = X. F. | last6 = Huggins | first6 = R. A. | last7 = Cui | first7 = Y. | doi = 10.1038/nnano.2007.411 | title = सिलिकॉन नैनोवायरों का उपयोग करते हुए उच्च-प्रदर्शन लिथियम बैटरी एनोड| journal = Nature Nanotechnology | volume = 3 | issue = 1 | pages = 31–35 | year = 2007 | pmid =  18654447| bibcode = 2008NatNa...3...31C }}</ref>


=== एपेरियोडिक इलेक्ट्रोड ===
=== एपेरियोडिक इलेक्ट्रोड ===
आवधिक संरचनाएं गैर-समान धारा घनत्व की ओर ले जाती हैं जो कम दक्षता और स्थिरता को कम करती हैं। एपेरियोडिक संरचना आमतौर पर या तो [[aerogels]] या कुछ अधिक सघन एंबिगल्स से बनी होती है<ref>{{Cite web|url = http://eng.thesaurus.rusnano.com/wiki/article507|title = शब्दावली - एंबिगेल|access-date = April 9, 2015|website = Glossary of nanotechnology terms|last = Shlyakhtin|first = Oleg A.}}</ref> जो झरझरा एपेरियोडिक स्पंज बनाता है। एरोजेल और एंबिगेल गीले जैल से बनते हैं; एरोगल्स तब बनते हैं जब गीले जैल को ऐसे सुखाया जाता है कि कोई केशिका बल स्थापित नहीं होता है, जबकि एंबिगेल गीले जैल होते हैं जो केशिका बलों को कम करने वाली परिस्थितियों में सुखाए जाते हैं।<ref  name = CSR2009>{{Cite journal | last1 = Rolison | first1 = D. R. | last2 = Long | first2 = J. W. | last3 = Lytle | first3 = J. C. | last4 = Fischer | first4 = A. E. | last5 = Rhodes | first5 = C. P. | last6 = McEvoy | first6 = T. M. | last7 = Bourg | first7 = M. E. | last8 = Lubers | first8 = A. M. | doi = 10.1039/B801151F | title = Multifunctional 3D nanoarchitectures for energy storage and conversion | journal = [[Chemical Society Reviews]]| publisher = [[Royal Society of Chemistry]]| volume = 38 | issue = 1 | pages = 226–252 | year = 2009 | pmid =  19088976}}</ref> एरोजेल और एंबीगल इस मायने में अद्वितीय हैं कि 75-99% सामग्री 'खुली' है, लेकिन एक ठोस द्वारा इंटरपेनेट्रेट किया गया है जो 10 एनएम के क्रम में है, जिसके परिणामस्वरूप 10 से 100 एनएम के क्रम में छिद्र होते हैं। ठोस सहसंयोजक नेटवर्क और समूह और [[सिंटरिंग]] के लिए प्रतिरोधी है। एपेरियोडिसिटी से परे, इन संरचनाओं का उपयोग किया जाता है क्योंकि झरझरा संरचना पूरे सामग्री में तेजी से प्रसार की अनुमति देती है, और झरझरा संरचना एक बड़ी प्रतिक्रिया सतह प्रदान करती है। अंबिजेल पर पॉलीमर इलेक्ट्रोलाइट की परत चढ़ाकर और फिर रिक्त स्थान को RuO2|RuO से भरकर निर्माण किया जाता है<sub>2</sub>कोलाइड्स जो एनोड के रूप में कार्य करते हैं।<ref name = ACR2007>{{Cite journal | last1 = Long | first1 = J. W. | last2 = Rolison | first2 = D. R. | doi = 10.1021/ar6000445 | title = मल्टीफ़ंक्शनल नैनोआर्किटेक्चर के लिए आर्किटेक्चरल डिज़ाइन, इंटीरियर डेकोरेशन, और थ्री-डायमेंशनल प्लंबिंग एन रूट| journal = Accounts of Chemical Research | volume = 40 | issue = 9 | pages = 854–862 | year = 2007 | pmid =  17530736}}</ref>
आवधिक संरचनाएं गैर-समान धारा घनत्व की ओर ले जाती हैं जो कम दक्षता और स्थिरता को कम करती हैं। एपेरियोडिक(अनावधिक) संरचना सामान्यतः या तो [[aerogels|एरोजेल्स]] या कुछ अधिक सघन एंबिगल्स से बनी होती है<ref>{{Cite web|url = http://eng.thesaurus.rusnano.com/wiki/article507|title = शब्दावली - एंबिगेल|access-date = April 9, 2015|website = Glossary of nanotechnology terms|last = Shlyakhtin|first = Oleg A.}}</ref> जो एक छिद्रपूर्ण एपेरियोडिक स्पंज बनाता है। एरोजेल और एंबिगेल गीले जैल से बनते हैं; एरोजेल तब बनते हैं जब गीले जैल को ऐसे सुखाया जाता है कि कोई केशिका बल स्थापित नहीं होता है, जबकि एंबिगेल गीले जैल होते हैं जो केशिका बलों को कम करने वाली परिस्थितियों में सुखाए जाते हैं।<ref  name = CSR2009>{{Cite journal | last1 = Rolison | first1 = D. R. | last2 = Long | first2 = J. W. | last3 = Lytle | first3 = J. C. | last4 = Fischer | first4 = A. E. | last5 = Rhodes | first5 = C. P. | last6 = McEvoy | first6 = T. M. | last7 = Bourg | first7 = M. E. | last8 = Lubers | first8 = A. M. | doi = 10.1039/B801151F | title = Multifunctional 3D nanoarchitectures for energy storage and conversion | journal = [[Chemical Society Reviews]]| publisher = [[Royal Society of Chemistry]]| volume = 38 | issue = 1 | pages = 226–252 | year = 2009 | pmid =  19088976}}</ref> एरोजेल और एंबीगल इस मायने में अद्वितीय हैं कि 75-99% सामग्री 'खुली' होती है, परन्तु यह 10 एनएम के क्रम पर एक ठोस द्वारा अंतःप्रवेशित होती है, जिसके परिणामस्वरूप 10 से 100 एनएम के क्रम में छिद्र होते हैं। ठोस सहसंयोजक नेटवर्क और समूह और [[सिंटरिंग]] के लिए प्रतिरोधी होता है। एपेरियोडिसिटी से परे, इन संरचनाओं का उपयोग किया जाता है क्योंकि छिद्रपूर्ण संरचना पूरे सामग्री में शीघ्र से प्रसार की अनुमति देती है, और छिद्रपूर्ण संरचना एक बड़ी प्रतिक्रिया सतह प्रदान करती है। अंबिजेल पर पॉलीमर इलेक्ट्रोलाइट की परत चढ़ाकर और फिर रिक्त स्थान को RuO<sub>2</sub> कोलाइड्स से भरकर निर्माण किया जाता है जो एनोड के रूप में कार्य करते हैं।<ref name = ACR2007>{{Cite journal | last1 = Long | first1 = J. W. | last2 = Rolison | first2 = D. R. | doi = 10.1021/ar6000445 | title = मल्टीफ़ंक्शनल नैनोआर्किटेक्चर के लिए आर्किटेक्चरल डिज़ाइन, इंटीरियर डेकोरेशन, और थ्री-डायमेंशनल प्लंबिंग एन रूट| journal = Accounts of Chemical Research | volume = 40 | issue = 9 | pages = 854–862 | year = 2007 | pmid =  17530736}}</ref>


== अनुरूप कोटिंग्स ==
== अनुरूप कोटिंग्स ==
अधिकांश डिज़ाइन अर्ध-सेल प्रयोग थे; केवल एनोड या कैथोड का परीक्षण करना। चूंकि ज्यामितीय अधिक जटिल हो जाते हैं, इलेक्ट्रोलाइट सामग्री के साथ डिजाइन को भरने के लिए गैर-लाइन-ऑफ-दृष्टि विधियां विपरीत चार्ज इलेक्ट्रोड की आपूर्ति करती हैं, यह आवश्यक है। इन बैटरियों को उनके प्रदर्शन और स्थिरता में सुधार के लिए विभिन्न सामग्रियों के साथ लेपित किया जा सकता है। चूकिं, रासायनिक और भौतिक विषमता आणविक-स्तर के नियंत्रण को एक महत्वपूर्ण चुनौती छोड़ देती है, खासकर जब से ऊर्जा भंडारण के लिए इलेक्ट्रोकैमिस्ट्री दोष-सहिष्णु नहीं है।<ref name = ACR2007/>
अधिकांश डिज़ाइन अर्ध-सेल प्रयोग थे; जो मात्र एनोड या कैथोड का परीक्षण करते थे। जैसे-जैसे ज्यामितीय अधिक जटिल हो जाती हैं, इलेक्ट्रोलाइट सामग्री के साथ डिजाइन को भरने के लिए गैर-लाइन-ऑफ-दृष्टि विधियां विपरीत आवेश वाले इलेक्ट्रोड की आपूर्ति करना आवश्यक हो जाता हैं। इन बैटरियों को उनके प्रदर्शन और स्थिरता में सुधार के लिए विभिन्न सामग्रियों के साथ लेपित किया जा सकता है। चूकिं, रासायनिक और भौतिक विषमता आणविक-स्तर के नियंत्रण को एक महत्वपूर्ण कठिन कार्य बना देता है, विशेषकर रूप से जब ऊर्जा संचय के लिए इलेक्ट्रोकैमिस्ट्री दोष-सहिष्णु नहीं होते है।<ref name = ACR2007/>


=== परत-दर-परत (LbL) ===
=== परत-दर-परत (एलबीएल) ===
[[परत दर परत]] दृष्टिकोण का उपयोग 3डी नैनोआर्किटेक्चर को कोट करने के लिए किया जाता है। इलेक्ट्रोस्टैटिक रूप से एक आवेशित बहुलक को विपरीत रूप से आवेशित सतह से बाँधने से सतह पर बहुलक की परत चढ़ जाती है। विपरीत रूप से आवेशित बहुलक के बार-बार कदम एक अच्छी तरह से नियंत्रित मोटी परत का निर्माण करते हैं। इस विधि का उपयोग करके प्लानर सबस्ट्रेट्स पर [[पॉलीइलेक्ट्रोलाइट]] फिल्मों और इलेक्ट्रोएक्टिव पॉलिमर के अल्ट्राथिन (5 एनएम से कम) जमा किए गए हैं। हालाँकि, जटिल ज्यामिति के भीतर पॉलिमर के जमाव के साथ समस्याएँ मौजूद हैं, उदा। छिद्र, 50-300 एनएम के आकार के पैमाने पर, जिसके परिणामस्वरूप दोषपूर्ण कोटिंग्स होती हैं। एक संभावित समाधान स्व-सीमित दृष्टिकोणों का उपयोग करना है।<ref name = ACR2007/>
[[परत दर परत]] दृष्टिकोण का उपयोग 3डी नैनोआर्किटेक्चर को कोट करने के लिए किया जाता है। इलेक्ट्रोस्टैटिक रूप से एक आवेशित बहुलक को विपरीत रूप से आवेशित सतह से बाँधने से सतह पर बहुलक की परत चढ़ जाती है। विपरीत रूप से आवेशित बहुलक के बार-बार चरण एक अच्छी तरह से नियंत्रित मोटी परत का निर्माण करते हैं। इस विधि का उपयोग करके प्लानर सबस्ट्रेट्स पर [[पॉलीइलेक्ट्रोलाइट]] फिल्मों और इलेक्ट्रोएक्टिव पॉलिमर के अल्ट्राथिन (5 एनएम से कम) निक्षेपित किए जाते हैं। चूकिं, जटिल ज्यामिति के भीतर पॉलिमर के निक्षेपण के साथ समस्याएँ उपस्थित होती हैं, उदा के लिए 50-300 एनएम के आकार के स्तर पर, जिसके परिणामस्वरूप दोषपूर्ण कोटिंग्स होती हैं। एक संभावित समाधान स्व-सीमित दृष्टिकोणों का उपयोग करता है।<ref name = ACR2007/>


=== परमाणु परत जमाव (ALD) ===
=== परमाणु परत निक्षेपण (एएलडी) ===
कोटिंग के लिए एक अन्य दृष्टिकोण परमाणु परत जमाव है जो परमाणु सटीकता के साथ सब्सट्रेट परत-दर-परत को कोट करता है। सटीकता इसलिए है क्योंकि प्रतिक्रियाएं एक सक्रिय रासायनिक अंश (रसायन) युक्त सतह तक ही सीमित होती हैं जो एक अग्रदूत के साथ प्रतिक्रिया करती हैं; यह मोटाई को एक मोनोलेयर तक सीमित करता है। पूर्ण कोटिंग्स के लिए यह स्व-सीमित वृद्धि आवश्यक है क्योंकि निक्षेपण अन्य बहुलक इकाइयों द्वारा गैर-लेपित साइटों तक पहुंच को बाधित नहीं करता है। एलबीLमें विपरीत रूप से आवेशित पॉलिमर के साथ बारी-बारी से समान तरीके से साइकलिंग गैसों द्वारा मोटे नमूनों का उत्पादन किया जा सकता है। व्यवहार में ALD को वांछित कवरेज प्राप्त करने के लिए कुछ चक्रों की आवश्यकता हो सकती है और इसके परिणामस्वरूप विभिन्न आकारिकी जैसे द्वीप, पृथक क्रिस्टलीय या नैनोकण हो सकते हैं। आकृति विज्ञान विद्युत रासायनिक व्यवहार को बदल सकता है और इसलिए इसे सावधानीपूर्वक नियंत्रित किया जाना चाहिए।<ref name = ACR2007/>
कोटिंग के लिए एक अन्य दृष्टिकोण परमाणु परत निक्षेपण होता है जो परमाणु परिशुद्धता के साथ सब्सट्रेट परत-दर-परत को कोट करता है। परिशुद्धता इसलिए होती है क्योंकि प्रतिक्रियाएं एक सक्रिय रासायनिक अंश (रसायन) युक्त सतह तक ही सीमित होती हैं जो एक अग्रदूत के साथ प्रतिक्रिया करती हैं; यह मोटाई को एक मोनोलेयर तक सीमित करता है। पूर्ण कोटिंग्स के लिए यह स्व-सीमित वृद्धि आवश्यक है क्योंकि निक्षेपण अन्य बहुलक इकाइयों द्वारा गैर-लेपित साइटों तक पहुंच को बाधित नहीं करता है। एलबी में विपरीत रूप से आवेशित पॉलिमर के साथ बारी-बारी से समान तरीके से साइकलिंग गैसों द्वारा मोटे प्रारूप का उत्पादन किया जा सकता है। व्यवहार में एएलडी को वांछित कवरेज प्राप्त करने के लिए कुछ चक्रों की आवश्यकता हो सकती है और इसके परिणामस्वरूप विभिन्न आकारिकी जैसे द्वीप, पृथक क्रिस्टलीय या नैनोकण हो सकते हैं। आकृति विज्ञान विद्युत रासायनिक व्यवहार को बदल सकता है और इसलिए इसे सावधानीपूर्वक नियंत्रित किया जाना चाहिए।<ref name = ACR2007/>


लिथियम और ऑक्सीजन के बीच प्रतिक्रियाशीलता बढ़ाने के लिए 3DOM कार्बन पर आयरन ऑक्साइड जमा करने के लिए भी ALD का उपयोग किया गया था। लोहे को तब पैलेडियम नैनोकणों के साथ लेपित किया गया था, जिसने ऑक्सीजन के साथ कार्बन की विनाशकारी प्रतिक्रिया को प्रभावी ढंग से कम किया और निर्वहन चक्र में सुधार किया। वांग ने कहा कि निष्कर्ष दिखाते हैं कि 3DOm कार्बन स्थिर होने पर नए प्रदर्शन मानकों को पूरा कर सकता है।<ref>{{Cite news|title = बेहतर लिथियम-एयर बैटरी के लिए कार्बन की स्थिरता को बढ़ाना|last = Hayward|first = Ed|date = 2015-02-25|work = R&D}}</ref>
लिथियम और ऑक्सीजन के बीच प्रतिक्रियाशीलता बढ़ाने के लिए 3डीओएम  कार्बन पर आयरन ऑक्साइड निक्षेप  करने के लिए भी एएलडी का उपयोग किया गया था। फिर लोहे को तब पैलेडियम नैनोकणों के साथ लेपित किया गया था, जिसने ऑक्सीजन के साथ कार्बन की विनाशकारी प्रतिक्रिया को प्रभावी रूप  से कम किया जाता है और निर्वहन चक्र में सुधार किया जाताहै। वांग ने कहा कि निष्कर्ष से पता चलता है कि 3डीओएम  कार्बन स्थिर होने पर नए प्रदर्शन मानकों को पूरा कर सकता है।<ref>{{Cite news|title = बेहतर लिथियम-एयर बैटरी के लिए कार्बन की स्थिरता को बढ़ाना|last = Hayward|first = Ed|date = 2015-02-25|work = R&D}}</ref>


=== इलेक्ट्रोपॉलीमराइजेशन ===
=== इलेक्ट्रोपॉलीमराइजेशन ===
इलेक्ट्रोपॉलीमराइजेशन एक पतली बहुलक फिल्म, 10 से 100 एनएम की आपूर्ति करता है। इंसुलेटिंग पॉलीमर के इलेक्ट्रोपॉलीमराइजेशन से सेल्फ-लिमिटिंग डिपोजिशन होता है क्योंकि एक्टिव मोएटिटी सुरक्षित रहती है; यदि बहुलक घुलनशील मोनोमर को अवरुद्ध कर सकता है और निरंतर विकास को रोक सकता है, तो निक्षेपण स्वयं-सीमित भी हो सकता है। विद्युत रासायनिक चर के नियंत्रण के माध्यम से, पॉलीएनिलिन और [[पॉलीथियोफीन]] को नियंत्रित तरीके से जमा किया जा सकता है। [[स्टाइरीन]], [[मिथाइल मेथाक्रायलेट]], [[फिनोल]] और अन्य विद्युत इन्सुलेट पॉलिमर एक विभाजक के रूप में कार्य करने के लिए इलेक्ट्रोड पर जमा किए गए हैं जो आयनिक परिवहन की अनुमति देता है, लेकिन शॉर्ट्स को रोकने के लिए विद्युत परिवहन को रोकता है। मेसोपोरस मैंगनीज डाइऑक्साइड एंबिगेल्स को बहुलक की 7-9 एनएम फिल्मों द्वारा संरक्षित किया गया है, ताकि जलीय एसिड में मैंगनीज डाइऑक्साइड के विघटन से बचा जा सके। समान कोटिंग्स को मोनोमर समाधान द्वारा आर्किटेक्चर को गीला करने की आवश्यकता होती है; यह एक समाधान के माध्यम से प्राप्त किया जा सकता है जो झरझरा ठोस के समान सतह ऊर्जा प्रदर्शित करता है। जैसे-जैसे स्केल लगातार घटता जाता है और ठोस के माध्यम से परिवहन अधिक कठिन होता जाता है, कोटिंग की एकरूपता सुनिश्चित करने के लिए पूर्व-संतुलन की आवश्यकता होती है।<ref name =CSR2009/>
इलेक्ट्रोपॉलीमराइजेशन एक पतली बहुलक फिल्म, 10 से 100 एनएम की आपूर्ति करता है। इंसुलेटिंग पॉलीमर के इलेक्ट्रोपॉलीमराइजेशन के परिणामस्वरूप स्व-सीमित निक्षेपण होता है क्योंकि इसका सक्रिय भाग संरक्षित होता है; यदि बहुलक घुलनशील मोनोमर को अवरुद्ध कर सकता है और निरंतर विकास को रोक सकता है, तो निक्षेपण स्वयं-सीमित भी हो सकता है। विद्युत रासायनिक चर के नियंत्रण के माध्यम से, पॉलीएनिलिन और [[पॉलीथियोफीन]] को नियंत्रित तरीके से निक्षेप किया जा सकता है। [[स्टाइरीन]], [[मिथाइल मेथाक्रायलेट]], [[फिनोल]] और अन्य विद्युत इन्सुलेट पॉलिमर एक विभाजक के रूप में कार्य करने के लिए इलेक्ट्रोड पर निक्षेप  किए गए हैं जो आयनिक परिवहन की अनुमति देता है, परन्तु शॉर्ट्स को रोकने के लिए विद्युत परिवहन को रोकता है। मेसोपोरस मैंगनीज डाइऑक्साइड एंबिगेल्स को बहुलक की 7-9 एनएम फिल्मों द्वारा संरक्षित किया गया है, जिससे जलीय एसिड में मैंगनीज डाइऑक्साइड के विघटन से बचा जा सके। समान कोटिंग्स को मोनोमर समाधान द्वारा आर्किटेक्चर को आर्द्र करने की आवश्यकता होती है; यह एक समाधान के माध्यम से प्राप्त किया जा सकता है जो छिद्रपूर्ण ठोस के समान सतह ऊर्जा प्रदर्शित करता है। जैसे-जैसे पैमाने में कमी आती जाती है और ठोस के माध्यम से परिवहन अधिक कठिन होता जाता है, इस प्रकार कोटिंग की एकरूपता सुनिश्चित करने के लिए पूर्व-संतुलन की आवश्यकता होती है।<ref name =CSR2009/>


== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
[[Category: लिथियम आयन बैटरी]] [[Category: नैनो]]


[[Category: Machine Translated Page]]
[[Category:Created On 19/06/2023]]
[[Category:Created On 19/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:नैनो]]
[[Category:लिथियम आयन बैटरी]]

Latest revision as of 15:02, 14 July 2023

लिथियम आयन बैटरी के लिए नैनोआर्किटेक्चर, लिथियम-आयन बैटरी के डिज़ाइन को उचित बनाने के लिए नैनो तकनीक को नियोजित करने का प्रयास होता है। लिथियम-आयन बैटरी में अनुसंधान ऊर्जा घनत्व, विद्युत घनत्व, सुरक्षा, स्थायित्व और लागत में सुधार पर केंद्रित होता है।

अनुसंधान क्षेत्र

ऊर्जा घनत्व

बढ़ी हुई ऊर्जा घनत्व में इलेक्ट्रोड से अधिक आयन डालने/निकालने की आवश्यकता होती है। इलेक्ट्रोड क्षमता की तुलना तीन अलग-अलग विधियों के माध्यम से की जाती है: द्रव्यमान की प्रति इकाई क्षमता (विशिष्ट ऊर्जा या गुरुत्वाकर्षण क्षमता के रूप में जाना जाता है), क्षमता प्रति इकाई मात्रा (वॉल्यूमेट्रिक क्षमता), और क्षेत्र-सामान्यीकृत विशिष्ट क्षमता (क्षेत्रीय क्षमता) इसके उदाहारण है।

विद्युत घनत्व

अलग-अलग प्रयास विद्युत घनत्व ( / विपरीत आवेश की दर) में सुधार पर ध्यान केंद्रित करते हैं। शक्ति घनत्व द्रव्यमान और आवेश परिवहन, इलेक्ट्रॉनिक और आयनिक विद्युत चालकता और इलेक्ट्रॉन-स्थानांतरण कैनेटीक्स पर आधारित होते है; कम दूरी और अधिक सतह क्षेत्र के माध्यम से आसान परिवहन दरों में सुधार होता है।[1]

एनोड

लिथियम की अस्वीकार्य वॉल्यूमेट्रिक अंतर्संबंध विस्तार के बिना आपस में जुड़ने की क्षमता के कारण पारंपरिक रूप से कार्बन एनोड का उपयोग किया जाता हैं। जो उत्तरार्द्ध बैटरी को हानि पहुंचाता है और आवेशित करने के लिए उपलब्ध लिथियम की मात्रा को भी कम करता है। इस प्रकार अंतर्संबंध क्षमता को सीमित करता है। LiC6 के लिए कार्बन आधारित एनोड्स की गुरुत्वाकर्षण क्षमता 372 mAh/g होती है।.[2] सिलिकॉन की विशिष्ट क्षमता कार्बन की तुलना में लगभग दस गुना अधिक होती है। Si की परमाणु त्रिज्या 1.46 एंगस्ट्रॉम होती है, जबकि Li की परमाणु त्रिज्या 2.05 एंग्स्ट्रॉम होती है। Li3.75S का गठन महत्वपूर्ण वॉल्यूमेट्रिक विस्तार का कारण बनता है, जो उत्तरोत्तर एनोड को नष्ट कर देता है।[3] एनोड आर्किटेक्चर को नैनोस्केल में कम करने से लाभ प्राप्त होता है, जिसमें उत्कृष्ट चक्र जीवन और कम विभाजन प्रसार और विफलता सम्मलित होती है। एक प्रवाहकीय बाइंडर फिल्म के भीतर नैनोस्केल कण महत्वपूर्ण त्रुटि आकार से नीचे उपस्थित होते हैं।[2][4] परिवहन लंबाई (एनोड और कैथोड के बीच की दूरी) को कम करने से ओमिक हानि (प्रतिरोध) कम हो जाती है।

नैनोस्ट्रक्चरिंग सतह क्षेत्र को आयतन अनुपात में बढ़ाता है, जो विद्युत रासायनिक रूप से सक्रिय क्षेत्र में वृद्धि और परिवहन लंबाई में कमी के कारण ऊर्जा और शक्ति घनत्व दोनों में सुधार करता है। चूकिं, वृद्धि से इलेक्ट्रोड और इलेक्ट्रोलाइट के बीच पार्श्व प्रतिक्रियाएं भी बढ़ जाती हैं, जिससे उच्च स्व-निर्वहन, कम /विपरीत आवेश चक्र और कम कैलेंडर जीवन होता है। हाल के कुछ कार्य उन सामग्रियों को विकसित करने पर केंद्रित होते हैं जो उस सीमा के भीतर विद्युत रासायनिक रूप से सक्रिय होते हैं जहां इलेक्ट्रोलाइट अपघटन या इलेक्ट्रोलाइट/इलेक्ट्रोड प्रतिक्रियाएं नहीं होती हैं।[1]

गैर-पारंपरिक आर्किटेक्चर

एक शोध अवधारणा प्रस्तावित की गई है, जिसमें लिथियम-आयन बैटरी के प्रमुख भाग, अर्थात एनोड, इलेक्ट्रोलाइट और कैथोड को एक कार्यात्मक अणु में संयोजित किया जाता हैं। ऐसे कार्यात्मक अणुओं की एक परत को दो धारा संग्राहकों के बीच में लैंगमुइर-ब्लॉडगेट विधि के उपयोग से संरेखित किया जाता है। [5] यघपि व्यवहार्यता की अभी तक पुष्टि नहीं हुई है।

नैनोस्ट्रक्चर्ड आर्किटेक्चर

सामान्यतः बैटरी डिज़ाइन द्वि-आयामी होते हैं और स्तरित निर्माण पर निर्भर होते हैं।[6] हाल के शोध ने इलेक्ट्रोड को तीन आयामों में वर्णित किया जाता है। यह बैटरी क्षमता में महत्वपूर्ण सुधार की अनुमति देता है; इस प्रकार 2डी मोटी फिल्म इलेक्ट्रोड और 3डी व्यूह इलेक्ट्रोड के बीच क्षेत्र क्षमता में उल्लेखनीय वृद्धि होती है।[7]

त्रि-आयामी पतली-फिल्में

ठोस अवस्था वाली बैटरियां पारंपरिक रूप से पतली-फिल्म बैटरियों के समान ज्यामिति का उपयोग करती हैं। त्रि-आयामी पतली-फिल्में विद्युत-रासायनिक रूप से सक्रिय क्षेत्र को बढ़ाने के लिए तीसरे आयाम का उपयोग करती हैं। पतली फिल्म दो आयामी बैटरी 2-5 माइक्रोमीटर के बीच प्रतिबंधित होती हैं, जो कि तीन आयामी ज्यामिति की तुलना में अधिक कम क्षेत्र क्षमता को सीमित करती हैं।

एक छिद्रित सब्सट्रेट का उपयोग करके आयाम बढ़ाया जाता है। छिद्र बनाने का एक तरीका सिलिकॉन पर प्रेरक युग्मित प्लाज्मा निक्षारण के माध्यम से होता है।[8]

एक अन्य ने गहरे छिद्रों को बनाने के लिए इलेक्ट्रोकेमिकल या प्रतिक्रियाशील आयन निक्षारण के माध्यम से एक सिलिकॉन सब्सट्रेट के अत्यधिक एनिस्ट्रोपिक निक्षारण का उपयोग किया था। एक बैटरी के लिए आवश्यक परतें, एक एनोड, विभाजक और कैथोड, फिर कम दबाव वाले रासायनिक वाष्प याके संयोजन द्वारा जोड़ा जाता है। बैटरी में एक पतली सक्रिय सिलिकॉन परत होती है जो एक ठोस अवस्था इलेक्ट्रोलाइट द्वारा पतली कैथोडिक परत से अलग होती है। विद्युत-रासायनिक रूप से सक्रिय क्षेत्र में 50 nm नैनोकण होते हैं, जो विभाजन प्रसार के लिए विशेष रूप से आकार में छोटे होते हैं।[9]

अंतर्विभाजित इलेक्ट्रोड

एक अन्य वास्तुकला एनोडिक और कैथोडिक ध्रुवों का एक आवधिक समूहन होता है। इस डिजाइन के लिए इलेक्ट्रोड पृथक्करण को कम करके शक्ति और ऊर्जा घनत्व को अधिकतम किया जाता है। एक जन्मजात गैर-समान धारा घनत्व होता है और सेल की क्षमता को कम करता है, स्थिरता को कम करता है और सेल के भीतर गैर-समान ताप पैदा करता है। दो आयामी बैटरी के सापेक्ष लंबाई (L) जिस पर परिवहन होना चाहिए, दो-तिहाई से कम हो जाता है, जो कैनेटीक्स में सुधार करता है और ओमिक हानि को कम करता है। Lके अनुकूलन से क्षेत्रीय क्षमता में महत्वपूर्ण सुधार हो सकता है; 500 माइक्रोमीटर के आकार के स्तर पर एक Lके परिणामस्वरूप तुलनीय दो आयामी बैटरी की तुलना में क्षमता में 350% की वृद्धि होती है। चूकिं, L के साथ ओमिक हानि बढ़ता है, अंततः L को बढ़ाने के माध्यम से प्राप्त वृद्धि को समायोजित करता है।

इस ज्यामिति के लिए, चार मुख्य डिजाइन प्रस्तावित किए गए थे: एनोड्स और कैथोड्स की पंक्तियां, वैकल्पिक एनोड्स और कैथोड्स, षट्कोणीय रूप से पैक किये गये 1:2 एनोड्स: कैथोड्स, और वैकल्पिक एनोडिक और कैथोडिक त्रिकोणीय ध्रुव जहां पंक्ति में निकटतम पड़ोसियों को 180 डिग्री घुमाया जाता है।

पंक्ति डिजाइन में एक बड़ा, गैर-समान धारा वितरण होता है। वैकल्पिक विद्युत ध्रुवता के इलेक्ट्रोड की उच्च संख्या को देखते हुए वैकल्पिक डिजाइन बेहतर एकरूपता प्रदर्शित करता है। एनोड या कैथोड वाले प्रणाली के लिए जो गैर-समान धारा घनत्व के प्रति संवेदनशील होता है, कैथोड और एनोड की गैर-बराबर संख्या का उपयोग किया जा सकता है; 2:1 हेक्सागोनल डिजाइन एनोड पर एक समान धारा घनत्व की अनुमति देता है परन्तु कैथोड पर एक गैर-समान धारा वितरण की अनुमति देता है। ध्रुवों के आकार को परिवर्तित करके प्रदर्शन को बढ़ाया जा सकता है। त्रिकोणीय डिजाइन धारा एकरूपता का त्याग करके सेल की क्षमता और शक्ति में सुधार करता है।[6] एक समान प्रणाली ध्रुवों के अतिरिक्त इंटरडिजिटल प्लेट्स का उपयोग करती है।[6]

2013 में शोधकर्ताओं ने स्टैक्ड, इंटरडिजिटेड इलेक्ट्रोड बनाने के लिए योगात्मक विनिर्माण का उपयोग किया था। बैटरी रेत के दाने से बड़ी नहीं थी। इस प्रक्रिया ने एनोड और कैथोड को पहले की तुलना में एक दूसरे के समीप रखा था। एनोड के लिए स्याही(इंक) एक लिथियम धातु ऑक्साइड यौगिक के नैनोकण बनी थी, और कैथोड के लिए स्याही दूसरे के नैनोकणों से बनी थी। प्रिंटर ने स्याही को दो सोने के कंघों के दांतों पर एकत्रित किया, जिससे एनोड और कैथोड का एक इंटरलेस्ड स्टैक बन गया था।[10][11]

संकेंद्रित इलेक्ट्रोड

संकेंद्रित सिलेंडर का डिज़ाइन इंटरडिजिटल ध्रुवों के समान होता है। असतत एनोड और कैथोड ध्रुवों के अतिरिक्त, एनोड या कैथोड को ध्रुव के रूप में रखा जाता है जो इलेक्ट्रोलाइट द्वारा लेपित होता है। अन्य इलेक्ट्रोड निरंतर चरण के रूप में कार्य करता है जिसमें एनोड/कैथोड उपस्थित रहता है। इसका मुख्य लाभ यह होता है कि इलेक्ट्रोलाइट की मात्रा कम हो जाती है, जिससे ऊर्जा घनत्व बढ़ जाता है। यह डिज़ाइन अंतर्विभाजित प्रणाली की तरह एक छोटी परिवहन दूरी को बनाए रखता है और इस प्रकार ओमिक हानि को कम करते हुए आवेश और बड़े स्तर पर परिवहन के समान लाभ प्राप्त करता है।[6]

विपरीत ओपल

त्रि-आयामी क्रमबद्ध मैक्रोपोरस (3डीओएम ) कार्बन एनोड बनाने के लिए संकेंद्रित सिलेंडर पैक्ड कणों या क्लोज-पैक पॉलीमर का एक संस्करण होता है। इस प्रणाली को कोलाइडल क्रिस्टल टेंपलेटिंग, इलेक्ट्रोकेमिकल पतली-फिल्म वृद्धि और नरम सोल-जेल रसायन विज्ञान का उपयोग करके निर्मित की जाती है। 3डीओएम सामग्रियों में नैनोमीटर मोटी दीवारों की एक अनूठी संरचना होती है जो परस्पर जुड़े होते है और बंद-पैक सब-माइक्रोमीटर रिक्तियों को घेरे रहते है। 3डीओएम संरचना को एक पतली बहुलक परत के साथ लेपित किया जाता है और फिर दूसरे संचालन चरण से भरा जाता है। यह विधि कम परिवहन लंबाई, उच्च आयनिक चालकता और उचित विद्युत चालकता वाली बैटरी की ओर ले जाती है। यह उन योजक की आवश्यकता को दूर करता है जो विद्युत रासायनिक प्रदर्शन में योगदान नहीं करते हैं। प्रारंभिक क्षमता को बढ़ाने के लिए टिन ऑक्साइड नैनोकणों के साथ कोटिंग करके प्रदर्शन में सुधार किया जा सकता है।[12] कोटिंग समान मोटाई का उत्पादन करने के लिए 3डीओएम संरचना द्वारा गठित नेटवर्क में अनधिकार प्रवेश करती है।

नैनोवायर और नैनोट्यूब

नैनोवायर और कार्बन नैनोट्यूब को विभिन्न बैटरी घटकों के साथ एकीकृत किया गया है। इस रुचि का कारण कम परिवहन लंबाई, गिरावट और संचय के प्रतिरोध के कारण होता है। कार्बन नैनोट्यूब (सीएनटी) के लिए, लिथियम-आयन को बाहरी सतह पर, नैनोट्यूब के बीच अंतरालीय स्थलों में और ट्यूब के आंतरिक भाग में संग्रहित किया जा सकता है।[13]

एक अंतर्निहित प्रवाहकीय आवेश संग्राहक प्रदान करने और क्षमता बढ़ाने के लिए नैनोवायरों को एनोड/कैथोड मैट्रिक्स में सम्मलित किया जाता है। नैनोवायरों को समाधान-आधारित विधि के माध्यम से सम्मलित किया गया था जो सक्रिय सामग्री को सब्सट्रेट पर मुद्रित करने की अनुमति देता है।[14] एक अन्य विधि सीएनटी-सेलूलोज़ सम्मिश्र का उपयोग करती है। सीएनटी को थर्मल-सीवीडी द्वारा एक सिलिकॉन सब्सट्रेट पर उगाया जाता है और फिर सेलूलोज़ में एम्बेड किया जाता है। अंत में सीएनटी से सेल्यूलोज के ऊपर एक लिथियम इलेक्ट्रोड जोड़ा जाता है।[15]

2007 में सी नैनोवायर बैटरी को वाष्प-तरल ठोस विकास विधि द्वारा स्टील सब्सट्रेट पर बनाया गया था। इन नैनोवायरों ने सिलिकॉन के लिए सैद्धांतिक मूल्य के निकट प्रदर्शित किया और पहले से दूसरे चक्रों के बीच 20% की कमी के बाद केवल न्यूनतम लुप्त होती दिखाई दी। इस प्रदर्शन को सहज तनाव छूट के लिए उत्तरदायी ठहराया जाता है जो नैनोवायर के साथ धारा वर्तमान संग्राहक और कुशल 1डी इलेक्ट्रॉन परिवहन के साथ अच्छा संपर्क बनाए रखते हुए बड़े उपभेदों को समायोजित करने की अनुमति देता है।[16]

एपेरियोडिक इलेक्ट्रोड

आवधिक संरचनाएं गैर-समान धारा घनत्व की ओर ले जाती हैं जो कम दक्षता और स्थिरता को कम करती हैं। एपेरियोडिक(अनावधिक) संरचना सामान्यतः या तो एरोजेल्स या कुछ अधिक सघन एंबिगल्स से बनी होती है[17] जो एक छिद्रपूर्ण एपेरियोडिक स्पंज बनाता है। एरोजेल और एंबिगेल गीले जैल से बनते हैं; एरोजेल तब बनते हैं जब गीले जैल को ऐसे सुखाया जाता है कि कोई केशिका बल स्थापित नहीं होता है, जबकि एंबिगेल गीले जैल होते हैं जो केशिका बलों को कम करने वाली परिस्थितियों में सुखाए जाते हैं।[18] एरोजेल और एंबीगल इस मायने में अद्वितीय हैं कि 75-99% सामग्री 'खुली' होती है, परन्तु यह 10 एनएम के क्रम पर एक ठोस द्वारा अंतःप्रवेशित होती है, जिसके परिणामस्वरूप 10 से 100 एनएम के क्रम में छिद्र होते हैं। ठोस सहसंयोजक नेटवर्क और समूह और सिंटरिंग के लिए प्रतिरोधी होता है। एपेरियोडिसिटी से परे, इन संरचनाओं का उपयोग किया जाता है क्योंकि छिद्रपूर्ण संरचना पूरे सामग्री में शीघ्र से प्रसार की अनुमति देती है, और छिद्रपूर्ण संरचना एक बड़ी प्रतिक्रिया सतह प्रदान करती है। अंबिजेल पर पॉलीमर इलेक्ट्रोलाइट की परत चढ़ाकर और फिर रिक्त स्थान को RuO2 कोलाइड्स से भरकर निर्माण किया जाता है जो एनोड के रूप में कार्य करते हैं।[19]

अनुरूप कोटिंग्स

अधिकांश डिज़ाइन अर्ध-सेल प्रयोग थे; जो मात्र एनोड या कैथोड का परीक्षण करते थे। जैसे-जैसे ज्यामितीय अधिक जटिल हो जाती हैं, इलेक्ट्रोलाइट सामग्री के साथ डिजाइन को भरने के लिए गैर-लाइन-ऑफ-दृष्टि विधियां विपरीत आवेश वाले इलेक्ट्रोड की आपूर्ति करना आवश्यक हो जाता हैं। इन बैटरियों को उनके प्रदर्शन और स्थिरता में सुधार के लिए विभिन्न सामग्रियों के साथ लेपित किया जा सकता है। चूकिं, रासायनिक और भौतिक विषमता आणविक-स्तर के नियंत्रण को एक महत्वपूर्ण कठिन कार्य बना देता है, विशेषकर रूप से जब ऊर्जा संचय के लिए इलेक्ट्रोकैमिस्ट्री दोष-सहिष्णु नहीं होते है।[19]

परत-दर-परत (एलबीएल)

परत दर परत दृष्टिकोण का उपयोग 3डी नैनोआर्किटेक्चर को कोट करने के लिए किया जाता है। इलेक्ट्रोस्टैटिक रूप से एक आवेशित बहुलक को विपरीत रूप से आवेशित सतह से बाँधने से सतह पर बहुलक की परत चढ़ जाती है। विपरीत रूप से आवेशित बहुलक के बार-बार चरण एक अच्छी तरह से नियंत्रित मोटी परत का निर्माण करते हैं। इस विधि का उपयोग करके प्लानर सबस्ट्रेट्स पर पॉलीइलेक्ट्रोलाइट फिल्मों और इलेक्ट्रोएक्टिव पॉलिमर के अल्ट्राथिन (5 एनएम से कम) निक्षेपित किए जाते हैं। चूकिं, जटिल ज्यामिति के भीतर पॉलिमर के निक्षेपण के साथ समस्याएँ उपस्थित होती हैं, उदा के लिए 50-300 एनएम के आकार के स्तर पर, जिसके परिणामस्वरूप दोषपूर्ण कोटिंग्स होती हैं। एक संभावित समाधान स्व-सीमित दृष्टिकोणों का उपयोग करता है।[19]

परमाणु परत निक्षेपण (एएलडी)

कोटिंग के लिए एक अन्य दृष्टिकोण परमाणु परत निक्षेपण होता है जो परमाणु परिशुद्धता के साथ सब्सट्रेट परत-दर-परत को कोट करता है। परिशुद्धता इसलिए होती है क्योंकि प्रतिक्रियाएं एक सक्रिय रासायनिक अंश (रसायन) युक्त सतह तक ही सीमित होती हैं जो एक अग्रदूत के साथ प्रतिक्रिया करती हैं; यह मोटाई को एक मोनोलेयर तक सीमित करता है। पूर्ण कोटिंग्स के लिए यह स्व-सीमित वृद्धि आवश्यक है क्योंकि निक्षेपण अन्य बहुलक इकाइयों द्वारा गैर-लेपित साइटों तक पहुंच को बाधित नहीं करता है। एलबी में विपरीत रूप से आवेशित पॉलिमर के साथ बारी-बारी से समान तरीके से साइकलिंग गैसों द्वारा मोटे प्रारूप का उत्पादन किया जा सकता है। व्यवहार में एएलडी को वांछित कवरेज प्राप्त करने के लिए कुछ चक्रों की आवश्यकता हो सकती है और इसके परिणामस्वरूप विभिन्न आकारिकी जैसे द्वीप, पृथक क्रिस्टलीय या नैनोकण हो सकते हैं। आकृति विज्ञान विद्युत रासायनिक व्यवहार को बदल सकता है और इसलिए इसे सावधानीपूर्वक नियंत्रित किया जाना चाहिए।[19]

लिथियम और ऑक्सीजन के बीच प्रतिक्रियाशीलता बढ़ाने के लिए 3डीओएम कार्बन पर आयरन ऑक्साइड निक्षेप करने के लिए भी एएलडी का उपयोग किया गया था। फिर लोहे को तब पैलेडियम नैनोकणों के साथ लेपित किया गया था, जिसने ऑक्सीजन के साथ कार्बन की विनाशकारी प्रतिक्रिया को प्रभावी रूप से कम किया जाता है और निर्वहन चक्र में सुधार किया जाताहै। वांग ने कहा कि निष्कर्ष से पता चलता है कि 3डीओएम कार्बन स्थिर होने पर नए प्रदर्शन मानकों को पूरा कर सकता है।[20]

इलेक्ट्रोपॉलीमराइजेशन

इलेक्ट्रोपॉलीमराइजेशन एक पतली बहुलक फिल्म, 10 से 100 एनएम की आपूर्ति करता है। इंसुलेटिंग पॉलीमर के इलेक्ट्रोपॉलीमराइजेशन के परिणामस्वरूप स्व-सीमित निक्षेपण होता है क्योंकि इसका सक्रिय भाग संरक्षित होता है; यदि बहुलक घुलनशील मोनोमर को अवरुद्ध कर सकता है और निरंतर विकास को रोक सकता है, तो निक्षेपण स्वयं-सीमित भी हो सकता है। विद्युत रासायनिक चर के नियंत्रण के माध्यम से, पॉलीएनिलिन और पॉलीथियोफीन को नियंत्रित तरीके से निक्षेप किया जा सकता है। स्टाइरीन, मिथाइल मेथाक्रायलेट, फिनोल और अन्य विद्युत इन्सुलेट पॉलिमर एक विभाजक के रूप में कार्य करने के लिए इलेक्ट्रोड पर निक्षेप किए गए हैं जो आयनिक परिवहन की अनुमति देता है, परन्तु शॉर्ट्स को रोकने के लिए विद्युत परिवहन को रोकता है। मेसोपोरस मैंगनीज डाइऑक्साइड एंबिगेल्स को बहुलक की 7-9 एनएम फिल्मों द्वारा संरक्षित किया गया है, जिससे जलीय एसिड में मैंगनीज डाइऑक्साइड के विघटन से बचा जा सके। समान कोटिंग्स को मोनोमर समाधान द्वारा आर्किटेक्चर को आर्द्र करने की आवश्यकता होती है; यह एक समाधान के माध्यम से प्राप्त किया जा सकता है जो छिद्रपूर्ण ठोस के समान सतह ऊर्जा प्रदर्शित करता है। जैसे-जैसे पैमाने में कमी आती जाती है और ठोस के माध्यम से परिवहन अधिक कठिन होता जाता है, इस प्रकार कोटिंग की एकरूपता सुनिश्चित करने के लिए पूर्व-संतुलन की आवश्यकता होती है।[18]

संदर्भ

  1. 1.0 1.1 Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. (2005). "उन्नत ऊर्जा रूपांतरण और भंडारण उपकरणों के लिए नैनोसंरचित सामग्री". Nature Materials. 4 (5): 366–377. Bibcode:2005NatMa...4..366A. doi:10.1038/nmat1368. PMID 15867920. S2CID 35269951.
  2. 2.0 2.1 Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. (2003). "नैनोसंरचित सिलिकॉन में अत्यधिक प्रतिवर्ती लिथियम भंडारण" (PDF). Electrochemical and Solid-State Letters. 6 (9): A194. doi:10.1149/1.1596917.
  3. Larcher, D.; Beattie, S.; Morcrette, M.; Edström, K.; Jumas, J. C.; Tarascon, J. M. (2007). "ली-आयन बैटरी के लिए नकारात्मक इलेक्ट्रोड के रूप में शुद्ध धातुओं के क्षेत्र में हाल के निष्कर्ष और संभावनाएं". Journal of Materials Chemistry. 17 (36): 3759. doi:10.1039/B705421C.
  4. Talyosef, Y.; Markovsky, B.; Lavi, R.; Salitra, G.; Aurbach, D.; Kovacheva, D.; Gorova, M.; Zhecheva, E.; Stoyanova, R. (2007). "Comparing the Behavior of Nano- and Microsized Particles of LiMn1.5Ni0.5O4 Spinel as Cathode Materials for Li-Ion Batteries". Journal of the Electrochemical Society. 154 (7): A682. Bibcode:2007JElS..154A.682T. doi:10.1149/1.2736657.
  5. Aliev, A. (2017). "मोनोलेयर आर्किटेक्चर पर आधारित ऊर्जा रूपांतरण और भंडारण नैनो डिवाइस।". Figshare. doi:10.6084/m9.figshare.3442784.
  6. 6.0 6.1 6.2 6.3 Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.; White, Henry S. (Oct 2004). "आर्किटेक्चर, त्रि-आयामी बैटरी". Chem. Rev. 104 (10): 4463–4492. doi:10.1021/cr020740l. PMID 15669159.
  7. Dunn, Bruce; Long, Jeffrey W.; Rolison, Debra R. "विद्युत ऊर्जा भंडारण को छोटा करने के लिए तीन आयामों में पुनर्विचार करना" (PDF). Electrochemical Society Interface. 2008: 49–53.
  8. Nathan, M.; Golodnitsky, D.; Yufit, V.; Strauss, E.; Ripenbein, T.; Shechtman, I.; Menkin, S.; Peled, E. (2005). "स्वायत्त एमईएमएस के लिए त्रि-आयामी पतली-फिल्म ली-आयन माइक्रोबैटरी". Journal of Microelectromechanical Systems. 14 (5): 879–885. doi:10.1109/JMEMS.2005.851860. S2CID 17973543.
  9. Pikul, J. H.; Gang Zhang, H.; Cho, J.; Braun, P. V.; King, W. P. (2013). "इंटरडिजिटेटेड थ्री-डायमेंशनल बाइकॉन्टिनस नैनोपोरस इलेक्ट्रोड्स से हाई-पॉवर लीथियम आयन माइक्रोबैटरी". Nature Communications. 4: 1732. Bibcode:2013NatCo...4.1732P. doi:10.1038/ncomms2747. PMID 23591899. S2CID 14775192.
  10. Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. (2013). "3D Printing of Interdigitated Li-Ion Microbattery Architectures". Advanced Materials. 25 (33): 4539–4543. Bibcode:2013AdM....25.4539S. doi:10.1002/adma.201301036. PMID 23776158. S2CID 41428069.
  11. "3-D printing could lead to tiny medical implants, electronics, robots, more | Engineering at Illinois". Engineering.illinois.edu. 2013-06-19. Archived from the original on 2013-07-09. Retrieved 2013-06-23.
  12. Ergang, N. S.; Lytle, J. C.; Lee, K. T.; Oh, S. M.; Smyrl, W. H.; Stein, A. (2006). "फोटोनिक क्रिस्टल संरचनाएं त्रि-आयामी इंटरपेनिट्रेटिंग इलेक्ट्रोकेमिकल-सेल सिस्टम के आधार के रूप में". Advanced Materials. 18 (13): 1750–1753. Bibcode:2006AdM....18.1750E. doi:10.1002/adma.200600295. S2CID 137275587.
  13. Landi, B. J.; Ganter, M. J.; Schauerman, C. M.; Cress, C. D.; Raffaelle, R. P. (2008). "सिंगल वॉल कार्बन नैनोट्यूब पेपर इलेक्ट्रोड की लिथियम आयन क्षमता". Journal of Physical Chemistry C. 112 (19): 7509–7515. doi:10.1021/jp710921k.
  14. Kiebele, A.; Gruner, G. (2007). "कार्बन नैनोट्यूब आधारित बैटरी संरचना". Applied Physics Letters. 91 (14): 144104. Bibcode:2007ApPhL..91n4104K. doi:10.1063/1.2795328.
  15. Pushparaj, Victor L.; Shaijumon, Manikoth M.; Kumar, Ashavani; Murugesan, Saravanababu; Ci, Lijie; Vajtai, Robert; Linhardt, Robert J.; Nalamasu, Omkaram; Ajayan, Pulickel M. (2007). "नैनोकम्पोजिट पेपर पर आधारित लचीले ऊर्जा भंडारण उपकरण". PNAS. 104 (34): 13574–13577. Bibcode:2007PNAS..10413574P. doi:10.1073/pnas.0706508104. PMC 1959422. PMID 17699622.
  16. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. (2007). "सिलिकॉन नैनोवायरों का उपयोग करते हुए उच्च-प्रदर्शन लिथियम बैटरी एनोड". Nature Nanotechnology. 3 (1): 31–35. Bibcode:2008NatNa...3...31C. doi:10.1038/nnano.2007.411. PMID 18654447.
  17. Shlyakhtin, Oleg A. "शब्दावली - एंबिगेल". Glossary of nanotechnology terms. Retrieved April 9, 2015.
  18. 18.0 18.1 Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. (2009). "Multifunctional 3D nanoarchitectures for energy storage and conversion". Chemical Society Reviews. Royal Society of Chemistry. 38 (1): 226–252. doi:10.1039/B801151F. PMID 19088976.
  19. 19.0 19.1 19.2 19.3 Long, J. W.; Rolison, D. R. (2007). "मल्टीफ़ंक्शनल नैनोआर्किटेक्चर के लिए आर्किटेक्चरल डिज़ाइन, इंटीरियर डेकोरेशन, और थ्री-डायमेंशनल प्लंबिंग एन रूट". Accounts of Chemical Research. 40 (9): 854–862. doi:10.1021/ar6000445. PMID 17530736.
  20. Hayward, Ed (2015-02-25). "बेहतर लिथियम-एयर बैटरी के लिए कार्बन की स्थिरता को बढ़ाना". R&D.