एकसमान मानदंड: Difference between revisions
(Created page with "{{Short description|Function in mathematical analysis}} {{About|the function space norm|the finite-dimensional vector space distance|Chebyshev distance|the uniformity norm in...") |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Function in mathematical analysis}} | {{Short description|Function in mathematical analysis}} | ||
[[Image:Vector norm sup.svg|frame|right|वर्ग की परिधि बिंदुओं का समूह {{math|ℝ{{sup|2}}}} होता है जहाँ सुपर मानदंड एक निश्चित सकारात्मक स्थिरांक के बराबर होता है। उदाहरण के लिए, अंक {{math|(2, 0)}}, {{math|(2, 1)}}, और {{math|(2, 2)}} एक वर्ग की परिधि के साथ स्थित हैं और उन सदिशों के समूह से संबंधित हैं जिनका सुपर मान 2 होता है।]][[गणितीय विश्लेषण]] में, '''एकसमान मानदंड (या {{visible anchor|सुपर मानदंड}})''' एक समुच्चय {{tmath|S}} पर परिभाषित [[वास्तविक संख्या]] या [[जटिल संख्या]] बंधे हुए फलन {{tmath|f}} को गैर-ऋणात्मक संख्या निर्दिष्ट करता है। | |||
:<math>\|f\|_\infty = \|f\|_{\infty,S} = \sup\left\{\,|f(s)| : s \in S\,\right\}</math> | |||
[[Image:Vector norm sup.svg|frame|right|वर्ग की परिधि बिंदुओं का समूह | इस मानदंड को '''सर्वोच्च मानदंड''', '''चेबीशेव मानदंड''', '''अनंत मानदंड''' या, जब [[सबसे निचला और उच्चतम|सर्वोच्च]] वास्तव में अधिकतम होता है, तो '''{{visible anchor|अधिकतम मानदंड}}''' भी कहा जाता है। "समान मानदंड" नाम इस तथ्य से लिया गया है कि कार्यों का एक क्रम {{tmath|\left\{f_n\right\} }} में समान मानदंड से प्राप्त आव्युह के अनुसार {{tmath|f}} में परिवर्तित हो जाता है यदि {{tmath|f_n}} समान रूप से {{tmath|f}} के [[एकसमान अभिसरण]] में परिवर्तित हो जाता है।<ref>{{cite book|last=Rudin|first=Walter|title=गणितीय विश्लेषण के सिद्धांत|url=https://archive.org/details/principlesofmath00rudi|url-access=registration|year=1964|publisher=McGraw-Hill|location=New York|isbn=0-07-054235-X|pages=[https://archive.org/details/principlesofmath00rudi/page/151 151]}}</ref> | ||
:<math>\|f\|_\infty = \|f\|_{\infty,S} = \sup\left\{\,|f(s)| : s \in S\,\right\} | |||
इस | अगर {{tmath|f}} एक बंद और बंधे हुए अंतराल पर एक [[सतत कार्य]] है, या अधिक सामान्यतः एक [[ सघन स्थान |सघन स्थान]] समुच्चय होता है, तो यह घिरा हुआ होता है और उपरोक्त परिभाषा में सर्वोच्च वीयरस्ट्रैस [[चरम मूल्य प्रमेय]] द्वारा प्राप्त किया जाता है, इसलिए हम सर्वोच्च को अधिकतम से प्रतिस्थापित कर सकते हैं। इस स्थिति में, मानदंड को {{visible anchor|अधिकतम मानदंड}} भी कहा जाता है, विशेषकर, यदि {{tmath|x}} कुछ ऐसा सदिश होता है <math>x = \left(x_1, x_2, \ldots, x_n\right) </math> [[परिमित सेट|परिमित समुच्चय]] आयामी समन्वय स्थान में, यह रूप लेता है: | ||
अगर {{tmath|f}} एक बंद और बंधे हुए अंतराल पर एक [[सतत कार्य]] है, या अधिक | |||
विशेषकर, यदि {{tmath|x}} कुछ | |||
:<math>\|x\|_\infty := \max \left(\left|x_1\right| , \ldots , \left|x_n\right|\right).</math> | :<math>\|x\|_\infty := \max \left(\left|x_1\right| , \ldots , \left|x_n\right|\right).</math> | ||
== आव्युह और टोपोलॉजी == | |||
इस मानदंड द्वारा उत्पन्न आव्युह को [[पफनुटी चेबीशेव]] के नाम पर '''{{visible anchor|चेबीशेव आव्युह}}''' कहा जाता है, जो इसका व्यवस्थित अध्ययन करने वाले पहले व्यक्ति थे। | |||
यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या आव्युह उत्पन्न नहीं करता है, यघपि प्राप्त तथाकथित आव्युह सामान्यीकृत आव्युह अभी भी किसी को प्रश्न में फलन स्थान पर टोपोलॉजी को परिभाषित करने की अनुमति देता है। | |||
यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या | |||
== | बाइनरी फलन <math display=block>d(f, g) = \|f - g\|_\infty</math>फिर एक विशेष कार्यक्षेत्र पर सभी बंधे हुए फलनों (और, जाहिर है, इसके किसी भी सबसमुच्चय) के स्थान पर एक आव्युह होता है। एक क्रम <math>\left\{f_n : n = 1, 2, 3, \ldots\right\}</math> किसी फलन में एक समान अभिसरण <math>f</math> होता है अगर और मात्र अगर<math display="block">\lim_{n\rightarrow\infty} \left\|f_n - f\right\|_\infty = 0.\,</math>हम इस आव्युह टोपोलॉजी के संबंध में बंद समुच्चय और समुच्चय के समापन को परिभाषित कर सकते हैं; एकसमान मानदंड में बंद समुच्चय को कभी-कभी समान रूप से बंद और एक समान बंद होने वाला कहा जाता है। फलन <math>A</math> के एक समुच्चय का एक समान समापन सभी फलन का स्थान है जिसे समान रूप से परिवर्तित फलन के अनुक्रम द्वारा अनुमानित किया जा सकता है उदाहरण के लिए, स्टोन-वीयरस्ट्रैस प्रमेय का एक पुनर्कथन यह है कि सभी निरंतर कार्यों का समुच्चय <math>[a,b]</math> बहुपदों के समुच्चय <math>[a, b]</math> का एकसमान समापन होता है। | ||
एक सघन स्थान पर जटिल सतत फलन (टोपोलॉजी) फलन के लिए, यह इसे [[सी-स्टार बीजगणित]] C* में बदल देता है। | |||
सदिशों का समुच्चय जिसका अनंत मान एक दिया गया स्थिरांक है, <math>c | == गुण == | ||
सबस्क्रिप्ट | सदिशों का समुच्चय जिसका अनंत मान एक दिया गया स्थिरांक <math>c</math> होता है, किनारे की <math>2 c</math> लंबाई के साथ एक [[ अतिविम |अतिविम]] की सतह बनाता है | ||
<math display=block>\lim_{p \to \infty}\|f\|_p = \|f\|_\infty,</math> | जब भी है <math>f</math> सतत होता है जिस कारण सबस्क्रिप्ट <math>\infty</math> होता है <math display="block">\lim_{p \to \infty}\|f\|_p = \|f\|_\infty,</math>जहाँ<math display="block">\|f\|_p = \left(\int_D |f|^p\,d\mu\right)^{1/p}</math>जहाँ <math>D</math> <math>f</math> का डोमेन होता है और अभिन्न का योग यदि होता है तो <math>D</math> एक भिन्न समुच्चय होता है (p-मानदंड देखें)। | ||
<math display=block>\|f\|_p = \left(\int_D |f|^p\,d\mu\right)^{1/p}</math> | |||
==यह भी देखें== | ==यह भी देखें== | ||
* {{annotated link|L- | * {{annotated link|L-अनन्तता}} – बंधे हुए अनुक्रमों का स्थान | ||
* {{annotated link| | * {{annotated link|एकसमान निरंतरता}} | ||
* {{annotated link| | * {{annotated link|एकसमान स्थान}} –समान गुणों की धारणा के साथ टोपोलॉजिकल स्थान | ||
* {{annotated link| | * {{annotated link|चेबीशेव दूरी}} | ||
==संदर्भ== | ==संदर्भ== | ||
Line 43: | Line 30: | ||
{{reflist}} | {{reflist}} | ||
[[Category:Collapse templates|Uniform Norm]] | |||
[[Category:Created On 02/07/2023|Uniform Norm]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page|Uniform Norm]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category: | [[Category:Navigational boxes without horizontal lists|Uniform Norm]] | ||
[[Category:Pages with script errors|Uniform Norm]] | |||
[[Category:Short description with empty Wikidata description|Uniform Norm]] | |||
[[Category:Sidebars with styles needing conversion|Uniform Norm]] | |||
[[Category: | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category: | [[Category:Templates Vigyan Ready|Uniform Norm]] | ||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 11:31, 13 July 2023
गणितीय विश्लेषण में, एकसमान मानदंड (या सुपर मानदंड) एक समुच्चय पर परिभाषित वास्तविक संख्या या जटिल संख्या बंधे हुए फलन को गैर-ऋणात्मक संख्या निर्दिष्ट करता है।
इस मानदंड को सर्वोच्च मानदंड, चेबीशेव मानदंड, अनंत मानदंड या, जब सर्वोच्च वास्तव में अधिकतम होता है, तो अधिकतम मानदंड भी कहा जाता है। "समान मानदंड" नाम इस तथ्य से लिया गया है कि कार्यों का एक क्रम में समान मानदंड से प्राप्त आव्युह के अनुसार में परिवर्तित हो जाता है यदि समान रूप से के एकसमान अभिसरण में परिवर्तित हो जाता है।[1]
अगर एक बंद और बंधे हुए अंतराल पर एक सतत कार्य है, या अधिक सामान्यतः एक सघन स्थान समुच्चय होता है, तो यह घिरा हुआ होता है और उपरोक्त परिभाषा में सर्वोच्च वीयरस्ट्रैस चरम मूल्य प्रमेय द्वारा प्राप्त किया जाता है, इसलिए हम सर्वोच्च को अधिकतम से प्रतिस्थापित कर सकते हैं। इस स्थिति में, मानदंड को अधिकतम मानदंड भी कहा जाता है, विशेषकर, यदि कुछ ऐसा सदिश होता है परिमित समुच्चय आयामी समन्वय स्थान में, यह रूप लेता है:
आव्युह और टोपोलॉजी
इस मानदंड द्वारा उत्पन्न आव्युह को पफनुटी चेबीशेव के नाम पर चेबीशेव आव्युह कहा जाता है, जो इसका व्यवस्थित अध्ययन करने वाले पहले व्यक्ति थे।
यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या आव्युह उत्पन्न नहीं करता है, यघपि प्राप्त तथाकथित आव्युह सामान्यीकृत आव्युह अभी भी किसी को प्रश्न में फलन स्थान पर टोपोलॉजी को परिभाषित करने की अनुमति देता है।
बाइनरी फलन
गुण
सदिशों का समुच्चय जिसका अनंत मान एक दिया गया स्थिरांक होता है, किनारे की लंबाई के साथ एक अतिविम की सतह बनाता है जब भी है सतत होता है जिस कारण सबस्क्रिप्ट होता है
यह भी देखें
- L-अनन्तता – बंधे हुए अनुक्रमों का स्थान
- एकसमान निरंतरता – Uniform restraint of the change in functions
- एकसमान स्थान –समान गुणों की धारणा के साथ टोपोलॉजिकल स्थान
- चेबीशेव दूरी – Mathematical metric
संदर्भ
- ↑ Rudin, Walter (1964). गणितीय विश्लेषण के सिद्धांत. New York: McGraw-Hill. pp. 151. ISBN 0-07-054235-X.