बेयर समष्टि (समुच्चय सिद्धांत): Difference between revisions

From Vigyanwiki
(Created page with "{{For|the concept in topology|Baire space}} {{short description|Concept in set theory}} सेट सिद्धांत में, बेयर स्पेस एक न...")
 
 
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{For|the concept in topology|Baire space}}
{{For|टोपोलॉजी में अवधारणा|बेयर स्पेस}}
{{short description|Concept in set theory}}
{{short description|Concept in set theory}}
सेट सिद्धांत में, बेयर स्पेस एक निश्चित [[टोपोलॉजी]] के साथ [[प्राकृतिक संख्या]]ओं के सभी अनंत अनुक्रमों का [[सेट (गणित)]] है। यह स्थान आमतौर पर वर्णनात्मक सेट सिद्धांत में उपयोग किया जाता है, इस हद तक कि इसके तत्वों को अक्सर वास्तविक कहा जाता है। इसे N से दर्शाया जाता है<sup>एन</sup>, <sup>ओ</sup>ओ, प्रतीक द्वारा <math>\mathcal{N}</math> या ω भी<sup>ω</sup>, Ordinal_arithmetic#Exponentiation द्वारा प्राप्त गणनीय क्रमसूचक के साथ भ्रमित न हों।


बेयर स्पेस को प्राकृतिक संख्याओं के सेट की कई प्रतियों के गणनीय सेट के कार्टेशियन उत्पाद के रूप में परिभाषित किया गया है, और इसे [[उत्पाद टोपोलॉजी]] दी गई है (जहां प्राकृतिक संख्याओं के सेट की प्रत्येक प्रतिलिपि को [[असतत टोपोलॉजी]] दी गई है)। बेयर स्पेस को अक्सर प्राकृतिक संख्याओं के परिमित अनुक्रमों के पेड़ (वर्णनात्मक सेट सिद्धांत) का उपयोग करके दर्शाया जाता है।


बेयर स्पेस की तुलना [[कैंटर स्पेस]] से की जा सकती है, जो बाइनरी अंकों के अनंत अनुक्रमों का सेट है।


== टोपोलॉजी और पेड़ ==
समुच्चय सिद्धांत में, '''बेयर समष्टि''' एक निश्चित टोपोलॉजी के साथ प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय है। यह स्थान सामान्यतः वर्णनात्मक समुच्चय सिद्धांत में उपयोग किया जाता है, इस हद तक कि इसके तत्वों को अधिकांशतः "वास्तविक" कहा जाता है। इसे '''N<sup>N</sup>''', <sup>ω</sup>ω, प्रतीक <math>\mathcal{N}</math> या ω<sup>ω</sup> द्वारा दर्शाया जाता है, इसे क्रमसूचक घातांक द्वारा प्राप्त गणनीय क्रमसूचक के साथ अस्पष्ट न करें।


{{See also|Countable set}}
बेयर समष्टि को प्राकृतिक संख्याओं के समुच्चय की अनगिनत प्रतियों के कार्टेशियन उत्पाद के रूप में परिभाषित किया गया है, और इसे उत्पाद टोपोलॉजी दी गई है (जहां प्राकृतिक संख्याओं के समुच्चय की प्रत्येक प्रतिलिपि को असतत टोपोलॉजी दी गई है)। बेयर समष्टि को अधिकांशतः प्राकृतिक संख्याओं के परिमित अनुक्रमों के ट्री का उपयोग करके दर्शाया जाता है।


बेयर स्पेस को परिभाषित करने के लिए उपयोग की जाने वाली उत्पाद टोपोलॉजी को पेड़ों के संदर्भ में अधिक ठोस रूप से वर्णित किया जा सकता है। उत्पाद टोपोलॉजी का [[आधार (टोपोलॉजी)]] [[सिलेंडर सेट]] हैं, यहां इसकी विशेषता इस प्रकार है:
बेयर समष्टि की तुलना [[कैंटर स्पेस|कैंटर समष्टि]] से की जा सकती है, जो बाइनरी अंकों के अनंत अनुक्रमों का समुच्चय है।


:यदि प्राकृतिक संख्या निर्देशांकों का कोई भी परिमित सेट I={i} चुना जाता है, और प्रत्येक i के लिए एक विशेष प्राकृतिक संख्या मान v<sub>''i''</sub> का चयन किया जाता है, फिर प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का सेट जिनका मान v है<sub>''i''</sub> स्थिति I पर एक बुनियादी खुला सेट है। प्रत्येक खुला सेट इनके संग्रह का एक गणनीय संघ है।
== टोपोलॉजी और ट्री ==
 
{{See also|गणनीय समुच्चय}}
 
बेयर समष्टि को परिभाषित करने के लिए उपयोग की जाने वाली उत्पाद टोपोलॉजी को ट्री के संदर्भ में अधिक ठोस रूप से वर्णित किया जा सकता है। उत्पाद टोपोलॉजी का [[आधार (टोपोलॉजी)]] [[सिलेंडर सेट|सिलेंडर समुच्चय]] हैं, यहां इसकी विशेषता इस प्रकार है:
 
:यदि प्राकृतिक संख्या निर्देशांक I={i} का कोई भी सीमित समुच्चय चुना जाता है, और प्रत्येक i के लिए एक विशेष प्राकृतिक संख्या मान v<sub>''i''</sub> चुना जाता है, तो प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय, जिसका मान स्थिति i पर v<sub>''i''</sub> है, एक मूल विवृत समुच्चय है . प्रत्येक विवृत समुच्चय इनके संग्रह का एक गणनीय संघ है।


अधिक औपचारिक संकेतन का उपयोग करके, कोई भी व्यक्तिगत सिलेंडर को इस प्रकार परिभाषित कर सकता है
अधिक औपचारिक संकेतन का उपयोग करके, कोई भी व्यक्तिगत सिलेंडर को इस प्रकार परिभाषित कर सकता है


:<math>C_n[v]= \{(a_1,a_2,\cdots) \in \omega^\omega : a_n = v \}</math>
:<math>C_n[v]= \{(a_1,a_2,\cdots) \in \omega^\omega : a_n = v \}</math>
एक निश्चित पूर्णांक स्थान n और पूर्णांक मान v के लिए। सिलेंडर तब सिलेंडर सेट के लिए जनरेटर होते हैं: सिलेंडर सेट में सिलेंडर की एक सीमित संख्या के सभी चौराहे शामिल होते हैं। अर्थात्, प्राकृतिक संख्या निर्देशांक का कोई भी सीमित सेट दिया गया है <math>I\subseteq\omega</math> और संगत प्राकृतिक संख्या मान <math>v_i</math> प्रत्येक के लिए <math>i\in I</math>, कोई सिलेंडरों के प्रतिच्छेदन पर विचार करता है
एक निश्चित पूर्णांक स्थान n और पूर्णांक मान v के लिए सिलेंडर तब सिलेंडर समुच्चय के लिए जनरेटर होते हैं: सिलेंडर समुच्चय में सिलेंडर की एक सीमित संख्या के सभी चौराहे सम्मिलित होते हैं। अर्थात्, प्रत्येक <math>i\in I</math> के लिए प्राकृतिक संख्या निर्देशांक <math>I\subseteq\omega</math> और संबंधित प्राकृतिक संख्या मान <math>v_i</math> के किसी भी सीमित समुच्चय को देखते हुए, कोई सिलेंडर के प्रतिच्छेदन पर विचार करता है


:<math>\bigcap_{i\in I} C_i[v_i] </math>
:<math>\bigcap_{i\in I} C_i[v_i] </math>
इस प्रतिच्छेदन को सिलेंडर सेट कहा जाता है, और ऐसे सभी सिलेंडर सेट का सेट उत्पाद टोपोलॉजी के लिए एक आधार प्रदान करता है। प्रत्येक खुला सेट ऐसे सिलेंडर सेटों का एक गणनीय संघ है।
इस प्रतिच्छेदन को सिलेंडर समुच्चय कहा जाता है, और ऐसे सभी सिलेंडर समुच्चय का समुच्चय उत्पाद टोपोलॉजी के लिए एक आधार प्रदान करता है। प्रत्येक विवृत समुच्चय ऐसे सिलेंडर समुच्चयों का एक गणनीय संघ है।


एक ही टोपोलॉजी के लिए एक अलग आधार पर जाकर, खुले सेटों का एक वैकल्पिक लक्षण वर्णन प्राप्त किया जा सकता है:
एक ही टोपोलॉजी के लिए एक अलग आधार पर जाकर, विवृत समुच्चयों का एक वैकल्पिक लक्षण वर्णन प्राप्त किया जा सकता है:
:यदि प्राकृतिक संख्याओं का एक क्रम {w<sub>''i''</sub> : i < n} का चयन किया जाता है, फिर प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का सेट जिनका मान w है<sub>''i''</sub> स्थिति i पर सभी i < n के लिए एक बुनियादी खुला सेट है। प्रत्येक खुला सेट इनके संग्रह का एक गणनीय संघ है।
:यदि प्राकृतिक संख्याओं का एक क्रम {w<sub>''i''</sub>: i < n} का चयन किया जाता है, फिर प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय जिनका मान ''w<sub>i</sub>'' है स्थिति i पर सभी i < n के लिए एक मूलभूत विवृत समुच्चय है। प्रत्येक विवृत समुच्चय इनके संग्रह का एक गणनीय संघ है।


इस प्रकार बेयर स्पेस में एक बुनियादी खुला सेट एक सामान्य परिमित प्रारंभिक खंड τ का विस्तार करने वाली प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का सेट है। इससे पूर्ण वृक्ष ω से गुजरने वाले सभी अनंत पथों के सेट के रूप में बेयर स्पेस का प्रतिनिधित्व होता है<sup><ω</sup> विस्तार द्वारा क्रमित प्राकृतिक संख्याओं के परिमित अनुक्रमों का। प्रत्येक परिमित प्रारंभिक खंड परिमित अनुक्रमों के वृक्ष का एक नोड है। प्रत्येक खुला सेट उस पेड़ के नोड्स के (संभवतः अनंत) संघ द्वारा निर्धारित किया जाता है। बेयर स्पेस में एक बिंदु एक खुले सेट में है यदि और केवल तभी जब इसका पथ इसके निर्धारण संघ में किसी एक नोड से होकर गुजरता है।
इस प्रकार बेयर समष्टि में एक मूलभूत विवृत समुच्चय एक सामान्य परिमित प्रारंभिक खंड τ का विस्तार करने वाली प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय है। इससे पूर्ण वृक्ष ω<sup><ω</sup> से गुजरने वाले सभी अनंत पथों के समुच्चय के रूप में बेयर समष्टि का प्रतिनिधित्व होता है विस्तार द्वारा क्रमित प्राकृतिक संख्याओं के परिमित अनुक्रमों का। प्रत्येक परिमित प्रारंभिक खंड परिमित अनुक्रमों के वृक्ष का एक नोड है। प्रत्येक विवृत समुच्चय उस ट्री के नोड्स के (संभवतः अनंत) संघ द्वारा निर्धारित किया जाता है। बेयर समष्टि में एक बिंदु एक विवृत समुच्चय में है यदि और केवल तभी जब इसका पथ इसके निर्धारण संघ में किसी एक नोड से होकर गुजरता है।


एक पेड़ के माध्यम से पथ के रूप में बेयर स्पेस का प्रतिनिधित्व भी बंद सेटों का एक लक्षण वर्णन देता है। बेयर स्पेस का प्रत्येक बिंदु ω के नोड्स के अनुक्रम से होकर गुजरता है<sup><ω</sup>. बंद सेट खुले सेट के पूरक हैं। प्रत्येक बंद सेट में सभी बेयर अनुक्रम शामिल होते हैं जो किसी भी नोड से नहीं गुजरते हैं जो इसके पूरक खुले सेट को परिभाषित करता है। बेयर स्पेस के किसी भी बंद उपसमुच्चय C के लिए ω का एक उपवृक्ष T है<sup><ω</sup> जैसे कि कोई भी बिंदु x C में है यदि और केवल यदि x T के माध्यम से एक पथ है: उपवृक्ष T में C के तत्वों के सभी प्रारंभिक खंड शामिल हैं। इसके विपरीत, ω के किसी भी उपवृक्ष के माध्यम से पथों का सेट<sup><ω</sup> एक बंद सेट है।
एक ट्री के माध्यम से पथ के रूप में बेयर समष्टि का प्रतिनिधित्व भी बंद समुच्चयों का एक लक्षण वर्णन देता है। बेयर समष्टि का प्रत्येक बिंदु ω<sup><ω</sup> के नोड्स के अनुक्रम से होकर गुजरता है बंद समुच्चय विवृत समुच्चय के पूरक हैं। प्रत्येक बंद समुच्चय में सभी बेयर अनुक्रम सम्मिलित होते हैं जो किसी भी नोड से नहीं गुजरते हैं जो इसके पूरक विवृत समुच्चय को परिभाषित करता है। बेयर समष्टि के किसी भी बंद उपसमुच्चय C के लिए ω<sup><ω</sup> का एक उपवृक्ष T है जैसे कि कोई भी बिंदु x C में है यदि और केवल यदि x T के माध्यम से एक पथ है: उपवृक्ष T में C के तत्वों के सभी प्रारंभिक खंड सम्मिलित हैं। इसके विपरीत, ω<sup><ω</sup> के किसी भी उपवृक्ष के माध्यम से पथों का समुच्चय एक बंद समुच्चय है।


कार्टेशियन उत्पादों में एक वैकल्पिक टोपोलॉजी, [[बॉक्स टोपोलॉजी]] भी होती है। यह टोपोलॉजी उत्पाद टोपोलॉजी की तुलना में बहुत बेहतर है क्योंकि यह संकेतक सेट को सीमित नहीं करती है <math>I=\{i \in \omega \}</math> परिमित होना. परंपरागत रूप से, बेयर स्पेस इस टोपोलॉजी को संदर्भित नहीं करता है; यह केवल उत्पाद टोपोलॉजी को संदर्भित करता है।
कार्टेशियन उत्पादों में एक वैकल्पिक टोपोलॉजी, बॉक्स टोपोलॉजी भी होती है। यह टोपोलॉजी उत्पाद टोपोलॉजी की तुलना में बहुत उत्तम है क्योंकि यह सूचक समुच्चय <math>I=\{i \in \omega \}</math>को सीमित नहीं करता है। परंपरागत रूप से, बेयर समष्टि इस टोपोलॉजी को संदर्भित नहीं करता है; यह केवल उत्पाद टोपोलॉजी को संदर्भित करता है।


== गुण ==
== गुण ==
[[बाहर जगह]] में निम्नलिखित गुण हैं:
[[बाहर जगह]] में निम्नलिखित गुण हैं:


# यह एक पूर्ण सेट [[पोलिश स्थान]] है, जिसका अर्थ है कि यह एक [[पूर्ण मीट्रिक स्थान]] है, [[दूसरा गणनीय]] स्थान है जिसमें कोई [[पृथक बिंदु]] नहीं है। इस प्रकार, इसमें वास्तविक रेखा के समान ही [[प्रमुखता]] है और यह शब्द के टोपोलॉजिकल अर्थ में एक बेयर स्पेस है।
# यह एक पूर्ण समुच्चय [[पोलिश स्थान]] है, जिसका अर्थ है कि यह एक [[पूर्ण मीट्रिक स्थान]] है, [[दूसरा गणनीय]] स्थान है जिसमें कोई [[पृथक बिंदु]] नहीं है। इस प्रकार इसमें वास्तविक रेखा के समान ही [[प्रमुखता]] है और यह शब्द के टोपोलॉजिकल अर्थ में एक बेयर समष्टि है।
# यह शून्य-आयामी है और पूरी तरह से असंबद्ध है।
# यह शून्य-आयामी है और पूरी तरह से असंबद्ध है।
# यह स्थानीय रूप [[स्थानीय रूप से सघन]] नहीं है.
# यह स्थानीय रूप [[स्थानीय रूप से सघन]] नहीं है.
# यह पोलिश स्थानों के लिए इस अर्थ में सार्वभौमिक है कि इसे किसी भी गैर-रिक्त पोलिश स्थान पर निरंतर फ़ंक्शन को मैप किया जा सकता है। इसके अलावा, किसी भी पोलिश स्थान में सघन समुच्चय Gδ समुच्चय|G होता है<sub>δ</sub>जी के लिए सबस्पेस [[होम्योमॉर्फिक]]<sub>δ</sub> बेयर स्पेस का उपस्थान।
#यह पोलिश स्थानों के लिए इस अर्थ में सार्वभौमिक है कि इसे किसी भी गैर-रिक्त पोलिश स्थान पर निरंतर मैप किया जा सकता है। इसके अतिरिक्त, किसी भी पोलिश स्थान में बेयर समष्टि के G<sub>δ</sub> उपस्थान के लिए एक घना G<sub>δ</sub> उपस्थान होमोमोर्फिक होता है।
# बेयर स्पेस स्वयं की किसी भी सीमित या गणनीय संख्या की प्रतियों के उत्पाद के लिए समरूप है।
# बेयर समष्टि स्वयं की किसी भी सीमित या गणनीय संख्या की प्रतियों के उत्पाद के लिए समरूप है।
# यह एक अनगिनत अनंत संतृप्त मॉडल का [[ऑटोमोर्फिज्म समूह]] है <math>M</math> कुछ संपूर्ण सिद्धांत का <math>T</math>.
#यह कुछ पूर्ण सिद्धांत <math>T</math> के गणनीय अनंत संतृप्त मॉडल <math>M</math> का ऑटोमोर्फिज्म समूह है।


== वास्तविक रेखा से संबंध ==
== वास्तविक रेखा से संबंध ==
जब उन्हें वास्तविक रेखा से विरासत में मिली उप-स्थान टोपोलॉजी दी जाती है, तो बेयर स्पेस [[अपरिमेय संख्या]]ओं के सेट के लिए समरूप होता है। निरंतर भिन्नों का उपयोग करके बेयर स्पेस और अपरिमेयता के बीच एक समरूपता का निर्माण किया जा सकता है। यानी एक क्रम दिया गया है <math>(a_0,a_1,a_2, \cdots)\in \omega^\omega</math>, हम 1 से बड़ी संगत अपरिमेय संख्या निर्दिष्ट कर सकते हैं
जब उन्हें वास्तविक रेखा से विरासत में मिली उप-स्थान टोपोलॉजी दी जाती है, तो बेयर समष्टि [[अपरिमेय संख्या]]ओं के समुच्चय के लिए समरूप होता है। निरंतर भिन्नों का उपयोग करके बेयर समष्टि और अपरिमेयता के बीच एक समरूपता का निर्माण किया जा सकता है। यानी एक क्रम दिया गया है <math>(a_0,a_1,a_2, \cdots)\in \omega^\omega</math>, हम 1 से बड़ी संगत अपरिमेय संख्या निर्दिष्ट कर सकते हैं


:<math>x = [a_0+1;a_1+1,a_2+1,\cdots] = (a_0+1)+\frac{1}{(a_1+1)+\frac{1}{(a_2+1)+\cdots}}</math>
:<math>x = [a_0+1;a_1+1,a_2+1,\cdots] = (a_0+1)+\frac{1}{(a_1+1)+\frac{1}{(a_2+1)+\cdots}}</math>
का उपयोग करते हुए <math> x \mapsto \frac{1}{x} </math> हमें एक और होमोमोर्फिज्म मिलता है  <math>\omega^\omega</math> खुले इकाई अंतराल में अपरिमेयता के लिए <math> (0,1) </math> और हम नकारात्मक अपरिमेयता के लिए भी ऐसा ही कर सकते हैं। हम देखते हैं कि अपरिमेय चार स्थानों का टोपोलॉजिकल योग है जो बेयर स्पेस के लिए होमियोमॉर्फिक है और इसलिए बेयर स्पेस के लिए होमियोमॉर्फिक भी है।
<math> x \mapsto \frac{1}{x} </math> का उपयोग करके हमें विवृत इकाई अंतराल <math> (0,1) </math> में अपरिमेय तक <math>\omega^\omega</math> से एक और समरूपता प्राप्त होती है और हम नकारात्मक अपरिमेयता के लिए भी ऐसा ही कर सकते हैं। हम देखते हैं कि अपरिमेय चार स्थानों का टोपोलॉजिकल योग है जो बेयर समष्टि के लिए होमियोमॉर्फिक है और इसलिए बेयर समष्टि के लिए होमियोमॉर्फिक भी है।


वर्णनात्मक सेट सिद्धांत के दृष्टिकोण से, यह तथ्य कि वास्तविक रेखा जुड़ी हुई है, तकनीकी कठिनाइयों का कारण बनती है। इस कारण से, बेयर स्पेस का अध्ययन करना अधिक आम है। क्योंकि प्रत्येक पोलिश स्थान बेयर स्पेस की निरंतर छवि है, यह दिखाकर मनमाने ढंग से पोलिश रिक्त स्थान के बारे में परिणाम साबित करना अक्सर संभव होता है कि ये गुण बेयर स्पेस के लिए मान्य हैं और [[निरंतर कार्य]]ों द्वारा संरक्षित हैं।
वर्णनात्मक समुच्चय सिद्धांत के दृष्टिकोण से यह तथ्य कि वास्तविक रेखा जुड़ी हुई है, तकनीकी कठिनाइयों का कारण बनती है। इस कारण से, बेयर समष्टि का अध्ययन करना अधिक समान्य है। क्योंकि प्रत्येक पोलिश स्थान बेयर समष्टि की निरंतर छवि है, यह दिखाकर इच्छानुसार से पोलिश रिक्त स्थान के बारे में परिणाम सिद्ध करना अधिकांशतः संभव होता है कि ये गुण बेयर समष्टि के लिए मान्य हैं और [[निरंतर कार्य]] द्वारा संरक्षित हैं।


ω<sup>ω</sup>[[वास्तविक विश्लेषण]] में स्वतंत्र, लेकिन मामूली रुचि का भी है, जहां इसे एक समान स्थान माना जाता है। ω की समान संरचनाएँ<sup>हालाँकि, ω</sup> और Ir (तर्कसंगत) भिन्न हैं: ω<sup>ω</sup> अपनी सामान्य मीट्रिक में पूर्ण स्थान है जबकि Ir नहीं है (हालाँकि ये स्थान होमियोमोर्फिक हैं)।
ω<sup>ω</sup> [[वास्तविक विश्लेषण]] में स्वतंत्र, किंतु सामान्य रुचि का भी है, जहां इसे एक समान स्थान माना जाता है। ω<sup>ω</sup> और Ir (तर्कसंगत) की समान संरचनाएं अलग-अलग हैं,चूँकि ω<sup>ω</sup> अपनी सामान्य मीट्रिक में पूर्ण स्थान है जबकि Ir नहीं है (चूँकि ये स्थान होमियोमोर्फिक हैं)।


==[[शिफ्ट ऑपरेटर]]==
==[[शिफ्ट ऑपरेटर]]==
बेयर स्पेस पर शिफ्ट ऑपरेटर, जब [[वास्तविक संख्या]]ओं के [[इकाई अंतराल]] पर मैप किया जाता है, तो गॉस-कुज़मिन-विर्सिंग ऑपरेटर बन जाता है <math>h(x) = 1/x - \lfloor 1/x \rfloor</math>. यानी एक क्रम दिया गया है <math>(a_1, a_2, \cdots)</math>, शिफ्ट ऑपरेटर टी रिटर्न <math>T(a_1, a_2, \cdots)=(a_2, \cdots)</math>. इसी प्रकार, निरंतर अंश दिया गया है <math>x=[a_1, a_2, \cdots]</math>, गॉस मानचित्र वापस आता है <math>h(x)=[a_2, \cdots]</math>. बेयर स्पेस से जटिल विमान तक के कार्यों के लिए संबंधित ऑपरेटर गॉस-कुज़मिन-विर्सिंग ऑपरेटर है; यह गॉस मानचित्र का [[स्थानांतरण ऑपरेटर]] है।<ref>Linas Vepstas, "[http://linas.org/math/gkw.pdf The Gauss-Kuzmin-Wirsing operator]" (2004)</ref> अर्थात् मानचित्रों पर विचार करता है <math>\omega^\omega \to \Complex</math> बेयर अंतरिक्ष से जटिल तल तक <math>\Complex</math>. मानचित्रों का यह स्थान बेयर स्पेस पर उत्पाद टोपोलॉजी से एक टोपोलॉजी प्राप्त करता है; उदाहरण के लिए, कोई एक समान अभिसरण वाले कार्यों पर विचार कर सकता है। फ़ंक्शंस के इस स्थान पर कार्य करने वाला शिफ्ट मैप, तब GKW ऑपरेटर होता है।
बेयर समष्टि पर शिफ्ट ऑपरेटर, जब वास्तविक के इकाई अंतराल पर मैप किया जाता है, तो गॉस-कुज़मिन-विर्सिंग ऑपरेटर <math>h(x) = 1/x - \lfloor 1/x \rfloor</math>बन जाता है। अर्थात्, अनुक्रम <math>(a_1, a_2, \cdots)</math> दिया गया है, शिफ्ट ऑपरेटर टी रिटर्न <math>T(a_1, a_2, \cdots)=(a_2, \cdots)</math> देता है। इसी तरह, निरंतर भिन्न <math>x=[a_1, a_2, \cdots]</math> को देखते हुए, गॉस मानचित्र <math>h(x)=[a_2, \cdots]</math> लौटाता है। बेयर समष्टि से जटिल विमान तक के कार्यों के लिए संबंधित ऑपरेटर गॉस-कुज़मिन-विर्सिंग ऑपरेटर है; यह गॉस मानचित्र का स्थानांतरण ऑपरेटर है।[1] अर्थात्, कोई बेयर समष्टि से जटिल समतल <math>\Complex</math> तक के मानचित्रों <math>\omega^\omega \to \Complex</math> पर विचार करता है। मानचित्रों का यह स्थान बेयर समष्टि पर उत्पाद टोपोलॉजी से एक टोपोलॉजी प्राप्त करता है<ref>Linas Vepstas, "[http://linas.org/math/gkw.pdf The Gauss-Kuzmin-Wirsing operator]" (2004)</ref>; उदाहरण के लिए, कोई एक समान अभिसरण वाले कार्यों पर विचार कर सकता है। फ़ंक्शंस के इस स्थान पर कार्य करने वाला शिफ्ट मैप, तब जीकेडब्ल्यू ऑपरेटर होता है।


शिफ्ट ऑपरेटर का हार माप, यानी एक फ़ंक्शन जो शिफ्ट के तहत अपरिवर्तनीय है, मिन्कोव्स्की के प्रश्न चिह्न फ़ंक्शन द्वारा दिया गया है <math>(...)'</math>. अर्थात्, किसी के पास वह है <math>(TE)' = E'</math>, जहां T शिफ्ट है <ref>Linas Vepstas, "[https://arxiv.org/abs/0810.1265 On the Minkowski Measure]", (2008) arXiv:0810.1265</ref> और E ω का कोई भी [[मापने योग्य सेट]]<sup>ओह</sup>
शिफ्ट ऑपरेटर का हार माप, यानी, एक कार्य जो शिफ्ट के तहत अपरिवर्तनीय है, मिन्कोव्स्की माप <math>(...)'</math> द्वारा दिया जाता है। यानी, किसी के पास वह <math>(TE)' = E'</math> है, जहां T बदलाव है<ref>Linas Vepstas, "[https://arxiv.org/abs/0810.1265 On the Minkowski Measure]", (2008) arXiv:0810.1265</ref> और E, ω<sup>ω</sup> का कोई मापने योग्य उपसमुच्चय है।


==यह भी देखें==
==यह भी देखें==


* {{annotated link|Baire space}}
* बेयर समष्टि
* {{annotated link|List of topologies}}
* टोपोलॉजी की सूची


== संदर्भ ==
== संदर्भ ==
Line 67: Line 70:
* {{cite book |authorlink=Alexander S. Kechris| author=Kechris, Alexander S. | title=Classical Descriptive Set Theory |url=https://archive.org/details/classicaldescrip0000kech|url-access=registration| publisher=Springer-Verlag | year=1994 | isbn=0-387-94374-9}}
* {{cite book |authorlink=Alexander S. Kechris| author=Kechris, Alexander S. | title=Classical Descriptive Set Theory |url=https://archive.org/details/classicaldescrip0000kech|url-access=registration| publisher=Springer-Verlag | year=1994 | isbn=0-387-94374-9}}
* {{cite book |authorlink=Yiannis N. Moschovakis| author=Moschovakis, Yiannis N. | title=Descriptive Set Theory |url=https://archive.org/details/descriptivesetth0000mosc|url-access=registration| publisher=North Holland | year=1980 |isbn=0-444-70199-0}}
* {{cite book |authorlink=Yiannis N. Moschovakis| author=Moschovakis, Yiannis N. | title=Descriptive Set Theory |url=https://archive.org/details/descriptivesetth0000mosc|url-access=registration| publisher=North Holland | year=1980 |isbn=0-444-70199-0}}
[[Category: वर्णनात्मक समुच्चय सिद्धांत]] [[Category: टोपोलॉजिकल रिक्त स्थान]] [[Category: पूर्णांक क्रम]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 02/07/2023]]
[[Category:Created On 02/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:टोपोलॉजिकल रिक्त स्थान]]
[[Category:पूर्णांक क्रम]]
[[Category:वर्णनात्मक समुच्चय सिद्धांत]]

Latest revision as of 15:34, 24 August 2023


समुच्चय सिद्धांत में, बेयर समष्टि एक निश्चित टोपोलॉजी के साथ प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय है। यह स्थान सामान्यतः वर्णनात्मक समुच्चय सिद्धांत में उपयोग किया जाता है, इस हद तक कि इसके तत्वों को अधिकांशतः "वास्तविक" कहा जाता है। इसे NN, ωω, प्रतीक या ωω द्वारा दर्शाया जाता है, इसे क्रमसूचक घातांक द्वारा प्राप्त गणनीय क्रमसूचक के साथ अस्पष्ट न करें।

बेयर समष्टि को प्राकृतिक संख्याओं के समुच्चय की अनगिनत प्रतियों के कार्टेशियन उत्पाद के रूप में परिभाषित किया गया है, और इसे उत्पाद टोपोलॉजी दी गई है (जहां प्राकृतिक संख्याओं के समुच्चय की प्रत्येक प्रतिलिपि को असतत टोपोलॉजी दी गई है)। बेयर समष्टि को अधिकांशतः प्राकृतिक संख्याओं के परिमित अनुक्रमों के ट्री का उपयोग करके दर्शाया जाता है।

बेयर समष्टि की तुलना कैंटर समष्टि से की जा सकती है, जो बाइनरी अंकों के अनंत अनुक्रमों का समुच्चय है।

टोपोलॉजी और ट्री

बेयर समष्टि को परिभाषित करने के लिए उपयोग की जाने वाली उत्पाद टोपोलॉजी को ट्री के संदर्भ में अधिक ठोस रूप से वर्णित किया जा सकता है। उत्पाद टोपोलॉजी का आधार (टोपोलॉजी) सिलेंडर समुच्चय हैं, यहां इसकी विशेषता इस प्रकार है:

यदि प्राकृतिक संख्या निर्देशांक I={i} का कोई भी सीमित समुच्चय चुना जाता है, और प्रत्येक i के लिए एक विशेष प्राकृतिक संख्या मान vi चुना जाता है, तो प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय, जिसका मान स्थिति i पर vi है, एक मूल विवृत समुच्चय है . प्रत्येक विवृत समुच्चय इनके संग्रह का एक गणनीय संघ है।

अधिक औपचारिक संकेतन का उपयोग करके, कोई भी व्यक्तिगत सिलेंडर को इस प्रकार परिभाषित कर सकता है

एक निश्चित पूर्णांक स्थान n और पूर्णांक मान v के लिए सिलेंडर तब सिलेंडर समुच्चय के लिए जनरेटर होते हैं: सिलेंडर समुच्चय में सिलेंडर की एक सीमित संख्या के सभी चौराहे सम्मिलित होते हैं। अर्थात्, प्रत्येक के लिए प्राकृतिक संख्या निर्देशांक और संबंधित प्राकृतिक संख्या मान के किसी भी सीमित समुच्चय को देखते हुए, कोई सिलेंडर के प्रतिच्छेदन पर विचार करता है

इस प्रतिच्छेदन को सिलेंडर समुच्चय कहा जाता है, और ऐसे सभी सिलेंडर समुच्चय का समुच्चय उत्पाद टोपोलॉजी के लिए एक आधार प्रदान करता है। प्रत्येक विवृत समुच्चय ऐसे सिलेंडर समुच्चयों का एक गणनीय संघ है।

एक ही टोपोलॉजी के लिए एक अलग आधार पर जाकर, विवृत समुच्चयों का एक वैकल्पिक लक्षण वर्णन प्राप्त किया जा सकता है:

यदि प्राकृतिक संख्याओं का एक क्रम {wi: i < n} का चयन किया जाता है, फिर प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय जिनका मान wi है स्थिति i पर सभी i < n के लिए एक मूलभूत विवृत समुच्चय है। प्रत्येक विवृत समुच्चय इनके संग्रह का एक गणनीय संघ है।

इस प्रकार बेयर समष्टि में एक मूलभूत विवृत समुच्चय एक सामान्य परिमित प्रारंभिक खंड τ का विस्तार करने वाली प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का समुच्चय है। इससे पूर्ण वृक्ष ω से गुजरने वाले सभी अनंत पथों के समुच्चय के रूप में बेयर समष्टि का प्रतिनिधित्व होता है विस्तार द्वारा क्रमित प्राकृतिक संख्याओं के परिमित अनुक्रमों का। प्रत्येक परिमित प्रारंभिक खंड परिमित अनुक्रमों के वृक्ष का एक नोड है। प्रत्येक विवृत समुच्चय उस ट्री के नोड्स के (संभवतः अनंत) संघ द्वारा निर्धारित किया जाता है। बेयर समष्टि में एक बिंदु एक विवृत समुच्चय में है यदि और केवल तभी जब इसका पथ इसके निर्धारण संघ में किसी एक नोड से होकर गुजरता है।

एक ट्री के माध्यम से पथ के रूप में बेयर समष्टि का प्रतिनिधित्व भी बंद समुच्चयों का एक लक्षण वर्णन देता है। बेयर समष्टि का प्रत्येक बिंदु ω के नोड्स के अनुक्रम से होकर गुजरता है बंद समुच्चय विवृत समुच्चय के पूरक हैं। प्रत्येक बंद समुच्चय में सभी बेयर अनुक्रम सम्मिलित होते हैं जो किसी भी नोड से नहीं गुजरते हैं जो इसके पूरक विवृत समुच्चय को परिभाषित करता है। बेयर समष्टि के किसी भी बंद उपसमुच्चय C के लिए ω का एक उपवृक्ष T है जैसे कि कोई भी बिंदु x C में है यदि और केवल यदि x T के माध्यम से एक पथ है: उपवृक्ष T में C के तत्वों के सभी प्रारंभिक खंड सम्मिलित हैं। इसके विपरीत, ω के किसी भी उपवृक्ष के माध्यम से पथों का समुच्चय एक बंद समुच्चय है।

कार्टेशियन उत्पादों में एक वैकल्पिक टोपोलॉजी, बॉक्स टोपोलॉजी भी होती है। यह टोपोलॉजी उत्पाद टोपोलॉजी की तुलना में बहुत उत्तम है क्योंकि यह सूचक समुच्चय को सीमित नहीं करता है। परंपरागत रूप से, बेयर समष्टि इस टोपोलॉजी को संदर्भित नहीं करता है; यह केवल उत्पाद टोपोलॉजी को संदर्भित करता है।

गुण

बाहर जगह में निम्नलिखित गुण हैं:

  1. यह एक पूर्ण समुच्चय पोलिश स्थान है, जिसका अर्थ है कि यह एक पूर्ण मीट्रिक स्थान है, दूसरा गणनीय स्थान है जिसमें कोई पृथक बिंदु नहीं है। इस प्रकार इसमें वास्तविक रेखा के समान ही प्रमुखता है और यह शब्द के टोपोलॉजिकल अर्थ में एक बेयर समष्टि है।
  2. यह शून्य-आयामी है और पूरी तरह से असंबद्ध है।
  3. यह स्थानीय रूप स्थानीय रूप से सघन नहीं है.
  4. यह पोलिश स्थानों के लिए इस अर्थ में सार्वभौमिक है कि इसे किसी भी गैर-रिक्त पोलिश स्थान पर निरंतर मैप किया जा सकता है। इसके अतिरिक्त, किसी भी पोलिश स्थान में बेयर समष्टि के Gδ उपस्थान के लिए एक घना Gδ उपस्थान होमोमोर्फिक होता है।
  5. बेयर समष्टि स्वयं की किसी भी सीमित या गणनीय संख्या की प्रतियों के उत्पाद के लिए समरूप है।
  6. यह कुछ पूर्ण सिद्धांत के गणनीय अनंत संतृप्त मॉडल का ऑटोमोर्फिज्म समूह है।

वास्तविक रेखा से संबंध

जब उन्हें वास्तविक रेखा से विरासत में मिली उप-स्थान टोपोलॉजी दी जाती है, तो बेयर समष्टि अपरिमेय संख्याओं के समुच्चय के लिए समरूप होता है। निरंतर भिन्नों का उपयोग करके बेयर समष्टि और अपरिमेयता के बीच एक समरूपता का निर्माण किया जा सकता है। यानी एक क्रम दिया गया है , हम 1 से बड़ी संगत अपरिमेय संख्या निर्दिष्ट कर सकते हैं

का उपयोग करके हमें विवृत इकाई अंतराल में अपरिमेय तक से एक और समरूपता प्राप्त होती है और हम नकारात्मक अपरिमेयता के लिए भी ऐसा ही कर सकते हैं। हम देखते हैं कि अपरिमेय चार स्थानों का टोपोलॉजिकल योग है जो बेयर समष्टि के लिए होमियोमॉर्फिक है और इसलिए बेयर समष्टि के लिए होमियोमॉर्फिक भी है।

वर्णनात्मक समुच्चय सिद्धांत के दृष्टिकोण से यह तथ्य कि वास्तविक रेखा जुड़ी हुई है, तकनीकी कठिनाइयों का कारण बनती है। इस कारण से, बेयर समष्टि का अध्ययन करना अधिक समान्य है। क्योंकि प्रत्येक पोलिश स्थान बेयर समष्टि की निरंतर छवि है, यह दिखाकर इच्छानुसार से पोलिश रिक्त स्थान के बारे में परिणाम सिद्ध करना अधिकांशतः संभव होता है कि ये गुण बेयर समष्टि के लिए मान्य हैं और निरंतर कार्य द्वारा संरक्षित हैं।

ωω वास्तविक विश्लेषण में स्वतंत्र, किंतु सामान्य रुचि का भी है, जहां इसे एक समान स्थान माना जाता है। ωω और Ir (तर्कसंगत) की समान संरचनाएं अलग-अलग हैं,चूँकि ωω अपनी सामान्य मीट्रिक में पूर्ण स्थान है जबकि Ir नहीं है (चूँकि ये स्थान होमियोमोर्फिक हैं)।

शिफ्ट ऑपरेटर

बेयर समष्टि पर शिफ्ट ऑपरेटर, जब वास्तविक के इकाई अंतराल पर मैप किया जाता है, तो गॉस-कुज़मिन-विर्सिंग ऑपरेटर बन जाता है। अर्थात्, अनुक्रम दिया गया है, शिफ्ट ऑपरेटर टी रिटर्न देता है। इसी तरह, निरंतर भिन्न को देखते हुए, गॉस मानचित्र लौटाता है। बेयर समष्टि से जटिल विमान तक के कार्यों के लिए संबंधित ऑपरेटर गॉस-कुज़मिन-विर्सिंग ऑपरेटर है; यह गॉस मानचित्र का स्थानांतरण ऑपरेटर है।[1] अर्थात्, कोई बेयर समष्टि से जटिल समतल तक के मानचित्रों पर विचार करता है। मानचित्रों का यह स्थान बेयर समष्टि पर उत्पाद टोपोलॉजी से एक टोपोलॉजी प्राप्त करता है[1]; उदाहरण के लिए, कोई एक समान अभिसरण वाले कार्यों पर विचार कर सकता है। फ़ंक्शंस के इस स्थान पर कार्य करने वाला शिफ्ट मैप, तब जीकेडब्ल्यू ऑपरेटर होता है।

शिफ्ट ऑपरेटर का हार माप, यानी, एक कार्य जो शिफ्ट के तहत अपरिवर्तनीय है, मिन्कोव्स्की माप द्वारा दिया जाता है। यानी, किसी के पास वह है, जहां T बदलाव है[2] और E, ωω का कोई मापने योग्य उपसमुच्चय है।

यह भी देखें

  • बेयर समष्टि
  • टोपोलॉजी की सूची

संदर्भ

  1. Linas Vepstas, "The Gauss-Kuzmin-Wirsing operator" (2004)
  2. Linas Vepstas, "On the Minkowski Measure", (2008) arXiv:0810.1265
  • Kechris, Alexander S. (1994). Classical Descriptive Set Theory. Springer-Verlag. ISBN 0-387-94374-9.
  • Moschovakis, Yiannis N. (1980). Descriptive Set Theory. North Holland. ISBN 0-444-70199-0.