वायरलेस सेट नंबर 10: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|World's first microwave relay telephone system}} File:Wireless Set No. 10.jpg|thumb|वायरलेस सेट नंबर 10। बाईं ओ...")
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|World's first microwave relay telephone system}}
{{Short description|World's first microwave relay telephone system}}
[[File:Wireless Set No. 10.jpg|thumb|वायरलेस सेट नंबर 10। बाईं ओर का पैनल पारगमन के दौरान जनरेटर को कवर करता है और ऑपरेशन के दौरान खोला गया था। दो समान जनरेटर का सुझाव है कि यह एक मार्क I मॉडल है, क्योंकि मार्क II के दो अलग-अलग जनरेटर थे।]][[ब्रिटिश सेना]] का वायरलेस सेट, नंबर 10, दुनिया का पहला [[माइक्रोवेव रिले]] [[ टेलीफ़ोन ]] सिस्टम था।{{sfn|Cambrook|2000}} इसने दो स्टेशनों के बीच आठ पूर्ण-द्वैध (दो-तरफ़ा) टेलीफोन चैनल प्रसारित किए, जो केवल [[ दृष्टि रेखा ]] द्वारा सीमित थे। लाइन-ऑफ़-विज़न, अक्सर के आदेश पर {{convert|25|to|50|miles}}. स्टेशनों को अत्यधिक मोबाइल ट्रेलरों में रखा गया था और अगले स्टेशन पर छत पर दो [[परवलयिक एंटीना]] को लक्षित करके बस स्थापित किया गया था।
[[File:Wireless Set No. 10.jpg|thumb|वायरलेस सेट नंबर 10। बाईं ओर का पैनल पारगमन के समय जनरेटर को कवर करता है और ऑपरेशन के समय खोला गया था। दो समान जनरेटर का सुझाव है कि यह मार्क I मॉडल है, क्योंकि मार्क II के दो अलग-अलग जनरेटर थे।]][[ब्रिटिश सेना]] का '''वायरलेस सेट नंबर 10''', विश्व का पहला [[माइक्रोवेव रिले]] [[ टेलीफ़ोन |टेलीफ़ोन]] सिस्टम था।{{sfn|Cambrook|2000}} इसने दो स्टेशनों के बीच आठ पूर्ण-द्वैध (दो-तरफ़ा) टेलीफोन चैनल प्रसारित किए, जो केवल [[ दृष्टि रेखा |दृष्टि रेखा]] द्वारा सीमित थे। लाइन-ऑफ़-विज़न, प्रायः के आदेश पर {{convert|25|to|50|miles}}. स्टेशनों को अत्यधिक मोबाइल ट्रेलरों में रखा गया था और अगले स्टेशन पर छत पर दो [[परवलयिक एंटीना]] को लक्षित करके बस स्थापित किया गया था।


1940 में दो प्रमुख तकनीकों की शुरुआत के साथ मूल अवधारणा संभव हो गई: [[ गुहा मैग्नेट्रॉन ]], जिसने उचित दक्षता के साथ [[माइक्रोवेव]] सिग्नल का उत्पादन किया; और [[ पल्स कोड मॉडुलेशन ]] (पीसीएम), जिसने मैग्नेट्रॉन पर सिग्नल को एन्कोड करने का एक आसान तरीका पेश किया। चूंकि उपलब्ध [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] अधिक था, आठ चैनलों को [[ समय विभाजन बहुसंकेतन ]] का उपयोग करके एक लिंक में जोड़ा गया था।
1940 में दो प्रमुख तकनीकों की प्रारंभ के साथ मूल अवधारणा संभव हो गई थी: [[ गुहा मैग्नेट्रॉन |गुहा मैग्नेट्रॉन]] , जिसने उचित दक्षता के साथ [[माइक्रोवेव]] सिग्नल का उत्पादन किया था; और [[ पल्स कोड मॉडुलेशन |पल्स कोड मॉडुलेशन]] (पीसीएम), जिसने मैग्नेट्रॉन पर सिग्नल को एन्कोड करने का सरल विधि प्रस्तुत किया था। चूंकि उपलब्ध [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] अधिक था, आठ चैनलों को [[ समय विभाजन बहुसंकेतन |समय विभाजन बहुसंकेतन]] का उपयोग करके लिंक में जोड़ा गया था।


1941 और 1942 में सिंगल-डुप्लेक्स (वन-वे) सिस्टम के साथ शुरुआती प्रयोग किए गए, जिन्होंने बुनियादी अवधारणा का प्रदर्शन किया। उस समय तक, एक पूर्ण-द्वैध प्रणाली के लिए इलेक्ट्रॉनिक्स में सुधार की अनुमति दी गई थी। लंबी दूरी की प्रणाली का परीक्षण 1942 में शुरू हुआ और इसके बाद पानी के ऊपर परीक्षण किया गया। प्रणाली 1944 में सेवा के लिए तैयार थी, और [[डी-डे]] संचालन के लिए सैन्य-गुणवत्ता वाले सेट उपलब्ध थे। सीमा पर्याप्त थी कि इसका उपयोग डी-डे समुद्र तटों से अंग्रेजी चैनल के पार वापस इंग्लैंड तक सुरक्षित संचार प्रदान करने के लिए किया गया था। सिस्टम को ट्रेलरों को एक साथ जोड़कर या मौजूदा लैंडलाइन के माध्यम से एक रिले में विस्तारित किया जा सकता है, और ऐसा करने में सीमा को अंततः जर्मनी में विस्तारित किया गया था। फील्ड मार्शल [[बर्नार्ड मोंटगोमरी]] बाद में टिप्पणी करेंगे:
1941 और 1942 में सिंगल-डुप्लेक्स (वन-वे) सिस्टम के साथ प्रारंभी प्रयोग किए गए थे, जिन्होंने मूलभूत अवधारणा का प्रदर्शन किया था। उस समय तक, पूर्ण-द्वैध सिस्टम के लिए इलेक्ट्रॉनिक्स में सुधार की अनुमति दी गई थी। लंबी दूरी की सिस्टम का परीक्षण 1942 में प्रारंभ हुआ और इसके बाद पानी के ऊपर परीक्षण किया गया था। सिस्टम 1944 में सेवा के लिए तैयार थी, और [[डी-डे]] संचालन के लिए सैन्य-गुणवत्ता वाले सेट उपलब्ध थे। सीमा पर्याप्त थी कि इसका उपयोग डी-डे समुद्र तटों से अंग्रेजी चैनल के पार वापस इंग्लैंड तक सुरक्षित संचार प्रदान करने के लिए किया गया था। सिस्टम को ट्रेलरों को साथ जोड़कर या वर्तमान लैंडलाइन के माध्यम से रिले में विस्तारित किया जा सकता है, और ऐसा करने में सीमा को अंततः जर्मनी में विस्तारित किया गया था। फील्ड मार्शल [[बर्नार्ड मोंटगोमरी]] बाद में टिप्पणी करेंगे:


{{cquote|By using a chain of No. 10 Set Stations, I was able to maintain my tactical HQ as far forward as I did and still have contact with London. The value of being able to retain personal contact over my Armies in these circumstances cannot be overestimated.{{sfn|SDRE|2002}}}}
{{cquote|नंबर 10 सेट स्टेशनों की श्रृंखला का उपयोग करके, मैं अपने सामरिक मुख्यालय को बहुत आगे तक बनाए रखने में सक्षम था और अभी भी लंदन के साथ संपर्क बनाए हुए हूं। इन परिस्थितियों में मेरी सेनाओं पर व्यक्तिगत संपर्क बनाए रखने में सक्षम होने के मूल्य को कम करके आंका नहीं जा सकता। {{sfn|SDRE|2002}}}}


== विवरण ==
== विवरण                                                       ==


=== रेडियो टेलीफोनी ===
=== रेडियो टेलीफोनी ===
{{main|Radiotelephone}}
{{main|रेडियोटेलीफोन}}
[[द्वितीय विश्व युद्ध]] से पहले रेडियो पर टेलीफोन वार्तालाप प्रसारित करने के लिए कई प्रणालियाँ थीं, लेकिन वे सभी समान समस्याओं की एक श्रृंखला से पीड़ित थीं।{{sfn|Dickieson|1967}}
[[द्वितीय विश्व युद्ध]] से पहले रेडियो पर टेलीफोन वार्तालाप प्रसारित करने के लिए कई प्रणालियाँ थीं, किन्तु वे सभी समान समस्याओं की श्रृंखला से पीड़ित थीं।{{sfn|Dickieson|1967}}


पहला यह था कि लंबी दूरी के संचरण को प्राप्त करने के लिए, इन प्रणालियों को किलोहर्ट्ज़ रेंज में अपेक्षाकृत कम आवृत्तियों या कुछ हद तक लंबी तरंग आवृत्तियों पर काम करना पड़ता था जो कि [[ योण क्षेत्र ]] का लाभ उठाकर उनके संकेतों को [[ skywave ]] कर सकते थे। कुशल होने के लिए एक [[रेडियो एंटीना]] को [[तरंग दैर्ध्य]] के परिमाण के एक क्रम के भीतर होना चाहिए, और व्यवहार में, अक्सर सटीक आकार का होता है {{frac|2}} वेवलेंथ एक [[अर्ध तरंग द्विध्रुव]] बनाने के लिए। इस प्रकार, इन प्रणालियों में बहुत बड़े एंटेना का उपयोग किया गया था।<ref>{{cite web |website=United States Naval Academy |title=एंटीना बुनियादी बातों|url=https://www.usna.edu/ECE/ee434/Handouts/EE302%20Lesson%2013%20Antenna%20Fundamentals.pdf |quote=Low frequencies imply long wavelengths, hence low frequency antennas are very large.}}</ref>
पहला यह था कि लंबी दूरी के संचरण को प्राप्त करने के लिए, इन प्रणालियों को किलोहर्ट्ज़ रेंज में अपेक्षाकृत कम आवृत्तियों या कुछ सीमा तक लंबी तरंग आवृत्तियों पर काम करना पड़ता था जो कि [[ योण क्षेत्र |योण क्षेत्र]] का लाभ उठाकर उनके संकेतों को [[ skywave |आकाश तरंग]] कर सकते थे। कुशल होने के लिए [[रेडियो एंटीना]] को [[तरंग दैर्ध्य]] के परिमाण के क्रम के उत्तम होना चाहिए, और व्यवहार में, प्रायः स्पष्ट आकार का होता है {{frac|2}} वेवलेंथ [[अर्ध तरंग द्विध्रुव]] बनाने के लिए इस प्रकार, इन प्रणालियों में बहुत बड़े एंटेना का उपयोग किया गया था।<ref>{{cite web |website=United States Naval Academy |title=एंटीना बुनियादी बातों|url=https://www.usna.edu/ECE/ee434/Handouts/EE302%20Lesson%2013%20Antenna%20Fundamentals.pdf |quote=Low frequencies imply long wavelengths, hence low frequency antennas are very large.}}</ref>
एक अन्य संबंधित रेडियो भौतिकी प्रभाव ऐन्टेना की प्रत्यक्षता है, इसकी एक बीम में सिग्नल बनाने की क्षमता है। यह [[ऑप्टिकल संकल्प]] से संबंधित है, जो ऐन्टेना के बढ़ते आकार के साथ बेहतर होता है, और बढ़ती तरंग दैर्ध्य के साथ घट जाता है। उपयोग किए जा रहे संकेतों की अपेक्षाकृत लंबी तरंग दैर्ध्य ने ध्यान केंद्रित करना कठिन बना दिया, और कई मामलों में ऐसे संकेतों को ओमनी- या अर्ध-दिशात्मक रूप से प्रसारित किया गया। इसका मतलब यह था कि संकेत जमीनी स्टेशनों द्वारा प्राप्त किए जा सकते थे, कभी-कभी हजारों मील दूर, हस्तक्षेप के लिए अग्रणी। सुरक्षित सैन्य संचार के लिए, ऐसी प्रणाली में स्पष्ट कमियां थीं।{{sfn|Dickieson|1967}}


अंत में, एक रेडियो सिग्नल द्वारा ले जाई जा सकने वाली जानकारी की मात्रा इसकी बैंडविड्थ (सिग्नल प्रोसेसिंग) का एक कार्य है। लंबी दूरी की टेलीफोन बातचीत 4 किलोहर्ट्ज़ बैंडविड्थ के साथ काम कर सकती है, लेकिन 150 किलोहर्ट्ज़ पर यह उपलब्ध सिग्नल की काफी बड़ी मात्रा का प्रतिनिधित्व करता है। ऐन्टेना और रिसीवर डिज़ाइन के आधार पर, आवृत्तियों का प्रसार जो कुशलतापूर्वक प्राप्त किया जा सकता है, लिंक को एक या दो वार्तालापों तक सीमित कर सकता है।<ref>{{cite book |last=Sundararajan |first=D. |title=सिग्नल और सिस्टम के लिए एक व्यावहारिक दृष्टिकोण|url=https://books.google.com/books?id=1Oo55lFE6UoC&pg=PA109|date=4 March 2009|publisher=John Wiley & Sons|isbn=978-0-470-82354-5|page=109}}</ref>
एक अन्य संबंधित रेडियो भौतिकी प्रभाव ऐन्टेना की प्रत्यक्षता है, इसकी बीम में सिग्नल बनाने की क्षमता है। यह [[ऑप्टिकल संकल्प]] से संबंधित है, जो ऐन्टेना के बढ़ते आकार के साथ उत्तम होता है, और बढ़ती तरंग दैर्ध्य के साथ घट जाता है। उपयोग किए जा रहे संकेतों की अपेक्षाकृत लंबी तरंग दैर्ध्य ने ध्यान केंद्रित करना कठिन बना दिया था, और कई स्थितियों में ऐसे संकेतों को ओमनी- या अर्ध-दिशात्मक रूप से प्रसारित किया गया था। इसका कारण यह था कि संकेत जमीनी स्टेशनों द्वारा प्राप्त किए जा सकते थे, कभी-कभी हजारों मील दूर, हस्तक्षेप के लिए अग्रणी सुरक्षित सैन्य संचार के लिए, ऐसी सिस्टम में स्पष्ट कमियां थीं।{{sfn|Dickieson|1967}}
इन सभी समस्याओं को कम तरंग दैर्ध्य में जाने से कम किया जाता है। तत्काल पूर्व-युद्ध युग में नए [[ वेक्यूम - ट्यूब ]]ों के साथ काफी प्रयोग किया गया था जो अति-उच्च आवृत्ति (वीएचएफ) बैंड में काम कर सकते थे। एटीएंडटी ने इनमें से कई प्रयासों का नेतृत्व किया, जिसमें 150 मेगाहर्ट्ज पर चलने वाली प्रणाली भी शामिल है। इसने सिग्नल को अधिक मजबूती से केंद्रित करने की अनुमति दी, और बढ़ी हुई बैंडविड्थ ने मौजूदा लैंडलाइन नेटवर्क में [[मल्टीप्लेक्स संचार]] कॉल के लिए उपयोग किए जाने वाले समान उपकरण का उपयोग करके सिग्नल पर एक दर्जन लाइनों को ले जाने की अनुमति दी। इस शुरुआती समय में भी, [[बेल लैब्स]] ने नोट किया कि सिस्टम सेंटीमीटर तरंग दैर्ध्य में बहुत अधिक प्रभावी होगा, और [[ हॉर्न एंटीना ]] का उपयोग करके एक सिस्टम का एक चित्रण तैयार किया जो सैकड़ों कॉल ले सकता था। युद्ध की शुरुआत से आगे के प्रयोगों पर रोक लगा दी गई।{{sfn|Dickieson|1967}}


===माइक्रोवेव विकास===
अंत में, रेडियो सिग्नल द्वारा ले जाई जा सकने वाली जानकारी की मात्रा इसकी बैंडविड्थ (सिग्नल प्रोसेसिंग) का कार्य है। लंबी दूरी की टेलीफोन बातचीत 4 किलोहर्ट्ज़ बैंडविड्थ के साथ काम कर सकती है, किन्तु 150 किलोहर्ट्ज़ पर यह उपलब्ध सिग्नल की अधिक बड़ी मात्रा का प्रतिनिधित्व करता है। ऐन्टेना और रिसीवर डिज़ाइन के आधार पर, आवृत्तियों का प्रसार जो कुशलतापूर्वक प्राप्त किया जा सकता है, लिंक को या दो वार्तालापों तक सीमित कर सकता है।<ref>{{cite book |last=Sundararajan |first=D. |title=सिग्नल और सिस्टम के लिए एक व्यावहारिक दृष्टिकोण|url=https://books.google.com/books?id=1Oo55lFE6UoC&pg=PA109|date=4 March 2009|publisher=John Wiley & Sons|isbn=978-0-470-82354-5|page=109}}</ref>
{{main|cavity magnetron}}
[[File:Original cavity magnetron, 1940 (9663811280).jpg|thumb|जब एक वोल्टेज लागू किया जाता है, तो एक मजबूत अनुप्रस्थ चुंबकीय क्षेत्र के प्रभाव में इलेक्ट्रॉन कैथोड (दिखाया नहीं गया) से एनोड तक चले जाते हैं और मैग्नेट्रॉन के एनोड ब्लॉक के केंद्र में खुलने से आगे बढ़ते हैं। यह आसपास के गुहाओं में रेडियो ऊर्जा पैदा करता है और आउटपुट की आवृत्ति गुहाओं के आकार और उनके प्लेसमेंट का एक कार्य है, न कि इनपुट वोल्टेज।]][[राडार]] के विकास के हिस्से के रूप में, द्वितीय विश्व युद्ध के शुरुआती वर्षों में माइक्रोवेव-फ्रीक्वेंसी इलेक्ट्रॉनिक्स और तकनीकों का तेजी से विकास हुआ। प्रमुख अग्रिमों में से एक 1940 में कैविटी मैग्नेट्रॉन की शुरूआत थी।{{sfn|Marsh|2018}}


माइक्रोवेव में तीव्र रुचि का एक कारण एंटीना के आकार का मुद्दा था; VHF क्षेत्र में, रडार एंटेना लगभग मीटर लंबे थे, जिससे उन्हें रात के लड़ाकू विमानों पर उपयोग करना मुश्किल हो गया। इसके विपरीत, मैग्नेट्रॉन ने 9 सेंटीमीटर की तरंग दैर्ध्य का उत्पादन किया, जिसमें एंटेना की लंबाई आधी थी। इसका मतलब यह था कि वे एक [[ रात सेनानी ]] के नाक क्षेत्र में आसानी से फिट हो सकते थे। एक साधारण अर्ध-तरंग द्विध्रुव में थोड़ी सी दिशा होती है, लेकिन एक बार फिर लघु तरंग दैर्ध्य ने एक उपयुक्त ध्यान केंद्रित करने की व्यवस्था के रूप में मदद की, जो लगभग एक मीटर चौड़ी [[परवलयिक व्यंजन]] का उपयोग करके बीम की चौड़ाई को लगभग 5 डिग्री तक कम कर देता है। इसने प्रणाली को नाटकीय रूप से अधिक उपयोगी बना दिया; न केवल रेडियो ऊर्जा को एक छोटे से क्षेत्र में केंद्रित किया गया था और इस प्रकार अधिक मजबूत प्रतिबिंब उत्पन्न किए गए थे, बल्कि उन प्रतिबिंबों को लक्ष्य पर इंगित करने के लिए परावर्तक को स्थानांतरित करके अंतरिक्ष में सटीक रूप से स्थित किया जा सकता था।{{sfn|Lovell|1991|p=39}}{{efn|When Lovell found that moving the dipole in front of the reflector aimed the beam without distortion, he concluded: "the antenna problem is 75% solved."{{sfn|Lovell|1991|p=39}}}}
इन सभी समस्याओं को कम तरंग दैर्ध्य में जाने से कम किया जाता है। तत्काल पूर्व-युद्ध युग में नए [[ वेक्यूम - ट्यूब |वेक्यूम - ट्यूब]] के साथ अधिक प्रयोग किया गया था जो अति-उच्च आवृत्ति (वीएचएफ) बैंड में काम कर सकते थे। एटीएंडटी ने इनमें से कई प्रयासों का नेतृत्व किया था, जिसमें 150 मेगाहर्ट्ज पर चलने वाली सिस्टम भी सम्मीलित है। इसने सिग्नल को अधिक सशक्त केंद्रित करने की अनुमति दी थी, और बढ़ी हुई बैंडविड्थ ने वर्तमान लैंडलाइन नेटवर्क में [[मल्टीप्लेक्स संचार]] कॉल के लिए उपयोग किए जाने वाले समान उपकरण का उपयोग करके सिग्नल पर दर्जन लाइनों को ले जाने की अनुमति दी थी। इस प्रारंभी समय में भी, [[बेल लैब्स]] ने नोट किया कि सिस्टम सेंटीमीटर तरंग दैर्ध्य में बहुत अधिक प्रभावी होगा, और [[ हॉर्न एंटीना |हॉर्न एंटीना]] का उपयोग करके सिस्टम का चित्रण तैयार किया जो सैकड़ों कॉल ले सकता था। युद्ध की प्रारंभ से आगे के प्रयोगों पर रोक लगा दी गई थी।{{sfn|Dickieson|1967}}


संचार में मैग्नेट्रॉन की क्षमता को शुरू से ही समझा गया था, लेकिन इस भूमिका में, इसमें एक महत्वपूर्ण समस्या थी। युग के अधिकांश रेडियो सिस्टम में, ऑडियो सिग्नल और रेडियो फ्रीक्वेंसी कैरियर सिग्नल अलग-अलग उत्पन्न होते हैं और फिर एक आयाम संग्राहक सिग्नल उत्पन्न करने के लिए मिश्रित होते हैं जो तब संचरण के लिए प्रवर्धित होता है। इसके लिए एक एम्पलीफायर की आवश्यकता होती है जो कम से कम ऑडियो सिग्नल की बैंडविड्थ जितनी बड़ी आउटपुट आवृत्तियों की एक श्रृंखला का उत्पादन कर सके। मैग्नेट्रॉन इसकी अनुमति नहीं देता है; यह एक एकल आवृत्ति उत्पन्न करता है जो इसके भौतिक निर्माण पर निर्भर होता है, जो इसमें ड्रिल किए गए छेदों की संख्या और आकार द्वारा परिभाषित होता है। एक अलग सिग्नल का उपयोग करके आउटपुट को संशोधित करने का कोई तरीका नहीं है।<ref>{{cite web |website=Radar Tutorial |url=https://www.radartutorial.eu/08.transmitters/Magnetron.en.html |title=मैग्नेट्रान|first=Christian |last=Wolff}}</ref>
===माइक्रोवेव विकास===
{{main|कैविटी मैग्नेट्रोन}}
[[File:Original cavity magnetron, 1940 (9663811280).jpg|thumb|जब वोल्टेज लागू किया जाता है, तो मजबूत अनुप्रस्थ चुंबकीय क्षेत्र के प्रभाव में इलेक्ट्रॉन कैथोड (दिखाया नहीं गया) से एनोड तक चले जाते हैं और मैग्नेट्रॉन के एनोड ब्लॉक के केंद्र में खुलने से आगे बढ़ते हैं। यह आसपास के गुहाओं में रेडियो ऊर्जा पैदा करता है और आउटपुट की आवृत्ति गुहाओं के आकार और उनके प्लेसमेंट का कार्य है, न कि इनपुट वोल्टेज।]][[राडार]] के विकास के भाग के रूप में, द्वितीय विश्व युद्ध के प्रारंभी वर्षों में माइक्रोवेव-आवृत्ति इलेक्ट्रॉनिक्स और तकनीकों का तेजी से विकास हुआ था। प्रमुख अग्रिमों में से 1940 में कैविटी मैग्नेट्रॉन का प्रारंभ था ।{{sfn|Marsh|2018}}


माइक्रोवेव में तीव्र रुचि का कारण एंटीना के आकार का उद्देश्य था; इस प्रकार वीएचएफ क्षेत्र में, रडार एंटेना लगभग मीटर लंबे थे, जिससे उन्हें रात के लड़ाकू विमानों पर उपयोग करना कठिन हो गया था। इसके विपरीत, मैग्नेट्रॉन ने 9 सेंटीमीटर की तरंग दैर्ध्य का उत्पादन किया था, जिसमें एंटेना की लंबाई आधी थी। इसका कारण यह था कि वे [[ रात सेनानी |रात सेनानी]] के नाक क्षेत्र में सरली से फिट हो सकते थे। साधारण अर्ध-तरंग द्विध्रुव में थोड़ी सी दिशा होती है, किन्तु बार फिर लघु तरंग दैर्ध्य ने उपयुक्त ध्यान केंद्रित करने की व्यवस्था के रूप में सहायता की थी, जो लगभग मीटर चौड़ी [[परवलयिक व्यंजन]] का उपयोग करके बीम की चौड़ाई को लगभग 5 डिग्री तक कम कर देता है। इसने सिस्टम को नाटकीय रूप से अधिक उपयोगी बना दिया था; न केवल रेडियो ऊर्जा को छोटे से क्षेत्र में केंद्रित किया गया था और इस प्रकार अधिक मजबूत प्रतिबिंब उत्पन्न किए गए थे, किन्तु उन प्रतिबिंबों को लक्ष्य पर इंगित करने के लिए परावर्तक को स्थानांतरित करके अंतरिक्ष में स्पष्ट रूप से स्थित किया जा सकता था।{{sfn|Lovell|1991|p=39}}{{efn|When Lovell found that moving the dipole in front of the reflector aimed the beam without distortion, he concluded: "the antenna problem is 75% solved."{{sfn|Lovell|1991|p=39}}}}


संचार में मैग्नेट्रॉन की क्षमता को प्रारंभ से ही समझा गया था, किन्तु इस भूमिका में, इसमें महत्वपूर्ण समस्या थी। युग के अधिकांश रेडियो सिस्टम में, ऑडियो सिग्नल और रेडियो आवृत्ति कैरियर सिग्नल अलग-अलग उत्पन्न होते हैं और फिर आयाम संग्राहक सिग्नल उत्पन्न करने के लिए मिश्रित होते हैं जो तब संचरण के लिए प्रवर्धित होता है। इसके लिए एम्पलीफायर की आवश्यकता होती है जो कम से कम ऑडियो सिग्नल की बैंडविड्थ जितनी बड़ी आउटपुट आवृत्तियों की श्रृंखला का उत्पादन कर सकता था। मैग्नेट्रॉन इसकी अनुमति नहीं देता है; यह एकल आवृत्ति उत्पन्न करता है जो इसके भौतिक निर्माण पर निर्भर होता है, जो इसमें ड्रिल किए गए छिद्रों की संख्या और आकार द्वारा परिभाषित होता है। अलग सिग्नल का उपयोग करके आउटपुट को संशोधित करने का कोई विधि नहीं है।<ref>{{cite web |website=Radar Tutorial |url=https://www.radartutorial.eu/08.transmitters/Magnetron.en.html |title=मैग्नेट्रान|first=Christian |last=Wolff}}</ref>
=== पीसीएम ===
=== पीसीएम ===
1937 में, अंग्रेज इंजीनियर [[एलेक रीव्स]] ITT Inc.|IT&T की [[पेरिस]] प्रयोगशालाओं में काम कर रहे थे, जब उन्हें पल्स-कोड मॉड्यूलेशन (PCM) का विचार आया। इस अवधारणा में, एनालॉग वेवफॉर्म को स्पंदों की एक श्रृंखला से पुनर्निर्मित किया जाता है, जिसकी चौड़ाई उस पल में आयाम को परिभाषित करती है। मूल एनालॉग सिग्नल को फिर से बनाने के लिए ऐसी दालों की एक श्रृंखला को फ़िल्टर में भेजा जाता है। जब मई 1940 में जर्मन सेना ने फ्रांस पर आक्रमण किया, तो रीव्स इंग्लैंड लौट आए, और PCM अवधारणा को तुरंत कई भूमिकाओं के लिए चुना गया।<ref>{{cite news |title=कैसे पल्स-कोड मॉड्यूलेशन ने युद्ध जीतने और सीडी बनाने में मदद की|url=https://www.telegraph.co.uk/technology/connecting-britain/pulse-code-modulation/ |newspaper=The Telegraph |date=30 December 2016}}</ref>
1937 में, अंग्रेज इंजीनियर [[एलेक रीव्स]] आईटीटी इंक या आईटी एंड टी की [[पेरिस]] प्रयोगशालाओं में काम कर रहे थे, जब उन्हें पल्स-कोड मॉड्यूलेशन (पीसीएम) का विचार आया था। इस अवधारणा में, एनालॉग वेवफॉर्म को स्पंदों की श्रृंखला से पुनर्निर्मित किया जाता है, जिसकी चौड़ाई उस पल में आयाम को परिभाषित करती है। मूल एनालॉग सिग्नल को फिर से बनाने के लिए ऐसी पल्स की श्रृंखला को फ़िल्टर में भेजा जाता है। जब मई 1940 में जर्मन सेना ने फ्रांस पर आक्रमण किया था, तो रीव्स इंग्लैंड लौट आए, और पीसीएम अवधारणा को तुरंत कई भूमिकाओं के लिए चुना गया था।<ref>{{cite news |title=कैसे पल्स-कोड मॉड्यूलेशन ने युद्ध जीतने और सीडी बनाने में मदद की|url=https://www.telegraph.co.uk/technology/connecting-britain/pulse-code-modulation/ |newspaper=The Telegraph |date=30 December 2016}}</ref>
PCM एक मैग्नेट्रॉन का उपयोग करके ट्रांसमिशन के लिए लगभग पूरी तरह से मेल खाता था और तकनीक इंग्लैंड में उसी तरह पहुंची जैसे पहले उत्पादन मैग्नेट्रोन वितरित किए गए थे। जबकि मैग्नेट्रॉन को आयाम या आवृत्ति में सुचारू रूप से संशोधित नहीं किया जा सकता था, इसे बहुत तेज़ी से चालू और बंद किया जा सकता था; यह वह गुण है जो इसे रडार के लिए उपयोगी बनाता है जहां छोटे स्पंद वांछनीय होते हैं। संचार करने के लिए, मूल ऑडियो सिग्नल को पीसीएम एन्कोडर में भेजा गया था जिसका स्पंदित आउटपुट तब बढ़ाया गया था और मैग्नेट्रॉन को बिजली की आपूर्ति के रूप में उपयोग किया जाता था। नतीजा ऑडियो सिग्नल का प्रतिनिधित्व करने वाले माइक्रोवेव दालों की एक श्रृंखला थी। रिसेप्शन पर, दालों की श्रृंखला को एक सर्किट में भेजा जाता है जो प्राप्त कुल ऊर्जा को औसत करता है, आउटपुट के लिए ऑडियो को पुन: उत्पन्न करता है।{{sfn|Cambrook|2000}}
 
पीसीएम मैग्नेट्रॉन का उपयोग करके ट्रांसमिशन के लिए लगभग पूरी तरह से मेल खाता था और तकनीक इंग्लैंड में उसी तरह पहुंची जैसे पहले उत्पादन मैग्नेट्रोन वितरित किए गए थे। जबकि मैग्नेट्रॉन को आयाम या आवृत्ति में सुचारू रूप से संशोधित नहीं किया जा सकता था, इसे बहुत तेज़ी से चालू और बंद किया जा सकता था; यह वह गुण है जो इसे रडार के लिए उपयोगी बनाता है जहां छोटे स्पंद वांछनीय होते हैं। संचार करने के लिए, मूल ऑडियो सिग्नल को पीसीएम एन्कोडर में भेजा गया था जिसका स्पंदित आउटपुट तब बढ़ाया गया था और मैग्नेट्रॉन को बिजली की आपूर्ति के रूप में उपयोग किया जाता था। परिणाम ऑडियो सिग्नल का प्रतिनिधित्व करने वाले माइक्रोवेव पल्स की श्रृंखला थी। रिसेप्शन पर, पल्स की श्रृंखला को सर्किट में भेजा जाता है जो प्राप्त कुल ऊर्जा को औसत करता है, आउटपुट के लिए ऑडियो को पुन: उत्पन्न करता है।{{sfn|Cambrook|2000}}


चूंकि 9 kHz सैंपलिंग समय की तुलना में पल्स काफी कम थे, इसलिए अधिकांश सिग्नल खाली थे। दूसरे पीसीएम एनकोडर का उपयोग करके और इसके दालों को थोड़ा विलंबित करके इसका आसानी से लाभ उठाया जा सकता है ताकि इसके संकेत पहले के बाद भेजे जा सकें। इसने एक ही कनेक्शन में कई संकेतों को [[बहुसंकेतन]] करने की समस्या को हल किया। पहले, टेलीफोन प्रणालियों ने [[ आवृत्ति विभाजन बहुसंकेतन ]] के साथ इसे पूरा किया, प्रत्येक चैनल को एक अलग वाहक आवृत्ति द्वारा स्थानांतरित किया ताकि वे सभी एक ही समय में उसी तरह प्रसारित किए जा सकें जैसे कि कई रेडियो स्टेशन विभिन्न चैनलों पर एयरवेव साझा कर सकते हैं। चूंकि मैग्नेट्रॉन अपनी आवृत्ति को नहीं बदल सकता था, जो कि इसके भौतिक निर्माण पर आधारित है, यह तकनीक काम नहीं करेगी। पीसीएम के साथ, संकेतों को आवृत्ति के बजाय समय में फैलाया गया था, जिसे मैग्नेट्रॉन द्वारा आसानी से नियंत्रित किया गया था। यह नंबर 10 को दुनिया का पहला टाइम-डिवीजन मल्टीप्लेक्सिंग (TDM) सिस्टम बनाता है।{{sfn|SDRE|2002}}
चूंकि 9 किलोहर्ट्ज़ सैंपलिंग समय की तुलना में पल्स अधिक कम थे, इसलिए अधिकांश सिग्नल खाली थे। दूसरे पीसीएम एनकोडर का उपयोग करके और इसके पल्स को थोड़ा विलंबित करके इसका सरली से लाभ उठाया जा सकता है जिससे इसके संकेत पहले के बाद भेजे जा सकता था। इसने ही कनेक्शन में कई संकेतों को [[बहुसंकेतन]] करने की समस्या को हल किया था। पहले, टेलीफोन प्रणालियों ने [[ आवृत्ति विभाजन बहुसंकेतन |आवृत्ति विभाजन बहुसंकेतन]] के साथ इसे पूरा किया था, प्रत्येक चैनल को अलग वाहक आवृत्ति द्वारा स्थानांतरित किया जिससे वे सभी ही समय में उसी तरह प्रसारित किए जा सकें जैसे कि कई रेडियो स्टेशन विभिन्न चैनलों पर एयरवेव साझा कर सकते हैं। चूंकि मैग्नेट्रॉन अपनी आवृत्ति को नहीं बदल सकता था, जो कि इसके भौतिक निर्माण पर आधारित है, यह तकनीक काम नहीं करेगी। पीसीएम के साथ, संकेतों को आवृत्ति के अतिरिक्त समय में फैलाया गया था, जिसे मैग्नेट्रॉन द्वारा सरली से नियंत्रित किया गया था। यह नंबर 10 को विश्व का पहला टाइम-डिवीजन मल्टीप्लेक्सिंग (टीडीएम) सिस्टम बनाता है।{{sfn|SDRE|2002}}


1941 में पेश किया गया पहला वैचारिक डिजाइन, एक पारंपरिक रेडियो सेट की तरह एकल चैनल [[आधा दुमंजिला घर]] सिस्टम के लिए था, जहां कनेक्शन के दोनों छोर पर उपयोगकर्ताओं को बारी-बारी से बोलना पड़ता है क्योंकि वे एक ही चैनल साझा करते हैं। जैसे-जैसे विकास जारी रहा, दो बारीकी से दूरी वाली माइक्रोवेव आवृत्तियों को साफ-साफ अलग करने में सक्षम सटीक फिल्टर विकसित किए गए। इसने एक नए संस्करण का नेतृत्व किया जो अपस्ट्रीम और डाउनस्ट्रीम दिशाओं के लिए अलग-अलग आवृत्तियों का उपयोग करता था, पूर्ण-द्वैध संचालन की अनुमति देता था, हालांकि छोटे नकारात्मक पक्ष के साथ दो मैग्नेट्रोन और एंटेना की आवश्यकता होती थी। यह कोई कठिन परिवर्तन नहीं था; हाल ही में शुरू की जीएल Mk. III राडार ने ट्रांसमिशन और रिसेप्शन के लिए अलग-अलग व्यंजनों का भी इस्तेमाल किया और इसे आसानी से अनुकूलित किया गया।{{sfn|SDRE|2002}}
1941 में प्रस्तुत किया गया पहला वैचारिक डिजाइन, पारंपरिक रेडियो सेट की तरह एकल चैनल [[आधा दुमंजिला घर]] सिस्टम के लिए था, जहां कनेक्शन के दोनों छोर पर उपयोगकर्ताओं को बारी-बारी से बोलना पड़ता है क्योंकि वे ही चैनल साझा करते हैं। जैसे-जैसे विकास जारी रहा, दो सूक्ष्म से दूरी वाली माइक्रोवेव आवृत्तियों को साफ-साफ अलग करने में सक्षम स्पष्ट फिल्टर विकसित किए गए थे। इसने नए संस्करण का नेतृत्व किया जो अपस्ट्रीम और डाउनस्ट्रीम दिशाओं के लिए अलग-अलग आवृत्तियों का उपयोग करता था, पूर्ण-द्वैध संचालन की अनुमति देता था, चूँकि छोटे नकारात्मक पक्ष के साथ दो मैग्नेट्रोन और एंटेना की आवश्यकता होती थी। यह कोई कठिन परिवर्तन नहीं था; वर्मन में प्रारंभ की जीएल एमके. द्वितीय राडार ने ट्रांसमिशन और रिसेप्शन के लिए अलग-अलग व्यंजनों का भी उपयोग किया और इसे सरली से अनुकूलित किया गया था।{{sfn|SDRE|2002}}


=== सेवा में ===
=== सेवा में ===
पहला प्रायोगिक सेट जुलाई 1942 में आया और लंदन के [[बेकर स्ट्रीट]] पर हॉर्शम और बर्कले कोर्ट के बीच दो-चरणीय लिंक पर इस्तेमाल किया गया। दक्षिण तट पर [[आइसल ऑफ वेट]] और [[बीची हेड]] पर [[वेंटनोर]] के बीच ओवरवाटर परीक्षण किया गया। 1944 की शुरुआत में एक उत्पादन आदेश भेजा गया था।{{sfn|WW|1945b|p=384}}
पहला प्रायोगिक सेट जुलाई 1942 में आया और लंदन के [[बेकर स्ट्रीट]] पर हॉर्शम और बर्कले कोर्ट के बीच दो-चरणीय लिंक पर उपयोग किया गया था। दक्षिण तट पर [[आइसल ऑफ वेट]] और [[बीची हेड]] पर [[वेंटनोर]] के बीच ओवरवाटर परीक्षण किया गया था। 1944 की प्रारंभ में उत्पादन आदेश भेजा गया था।{{sfn|WW|1945b|p=384}}


पहला परिचालन उपयोग डी-डे के तुरंत बाद हुआ जब बीची हेड पर ट्रांसीवर [[ Cherbourg ]] में चला गया। जैसा कि मित्र राष्ट्र यूरोप में आगे बढ़े, दो नंबर 10 ट्रेलरों को पारंपरिक टेलीफोन वायरिंग के साथ एक के बाद एक जोड़कर पुनरावर्तक बनाए गए, जिससे संदेशों को लंबी दूरी तक प्रसारित किया जा सके। जहां लंबी दूरी की लैंडलाइन उपलब्ध थी, इनका इस्तेमाल स्टेशनों के बीच संपर्क बढ़ाने के लिए किया जाता था।{{sfn|WW|1945b|p=384}}
पहला परिचालन उपयोग डी-डे के तुरंत बाद हुआ जब बीची हेड पर ट्रांसीवर [[ Cherbourg |चेरबर्ग]] में चला गया था। जैसा कि मित्र राष्ट्र यूरोप में आगे बढ़े, दो नंबर 10 ट्रेलरों को पारंपरिक टेलीफोन वायरिंग के साथ के बाद जोड़कर पुनरावर्तक बनाए गए, जिससे संदेशों को लंबी दूरी तक प्रसारित किया जा सके। जहां लंबी दूरी की लैंडलाइन उपलब्ध थी, इनका उपयोग स्टेशनों के बीच संपर्क बढ़ाने के लिए किया जाता था।{{sfn|WW|1945b|p=384}}


परिणाम लैंडलाइन और नंबर 10 सेट का एक नेटवर्क था जो अंततः जर्मनी से वापस लंदन तक फैला हुआ था।{{sfn|WW|1945b|p=384}} अप्रैल और मई 1945 में, सात रिपीटर्स के एक नेटवर्क ने 21वें आर्मी ग्रुप को इसके विभिन्न फील्ड मुख्यालयों से जोड़ा।{{sfn|IWM}} सेट बेहद सफल रहे। संपूर्ण युद्ध के दौरान, फील्ड मार्शल बर्नार्ड मोंटगोमरी मुख्यालय ने कुल एक घंटे के लिए लंदन के लिए एक सीधी लाइन खो दी।{{sfn|WW|1945b|p=384}}
परिणाम लैंडलाइन और नंबर 10 सेट का नेटवर्क था जो अंततः जर्मनी से वापस लंदन तक फैला हुआ था।{{sfn|WW|1945b|p=384}} अप्रैल और मई 1945 में, सात रिपीटर्स के नेटवर्क ने 21वें आर्मी ग्रुप को इसके विभिन्न फील्ड मुख्यालयों से जोड़ा था।{{sfn|IWM}} सेट बेसीमा सफल रहे थे। संपूर्ण युद्ध के समय, फील्ड मार्शल बर्नार्ड मोंटगोमरी मुख्यालय ने कुल घंटे के लिए लंदन के लिए सीधी लाइन खो दी थी।{{sfn|WW|1945b|p=384}}


युद्ध के बाद की डीब्रीफिंग में, जर्मन रेडियो इंजीनियरों ने दावा किया कि वे ब्रिटिश संकेतों को आसानी से प्राप्त करने में सक्षम थे। इन दावों की सावधानीपूर्वक जांच से पता चला कि नंबर 10 संचार को न केवल कभी इंटरसेप्ट नहीं किया गया था, बल्कि जर्मन इसके अस्तित्व से पूरी तरह अनजान थे।{{sfn|WW|1945b|p=384}}
युद्ध के बाद की डीब्रीफिंग में, जर्मन रेडियो इंजीनियरों ने प्रमाणित किया कि वे ब्रिटिश संकेतों को सरली से प्राप्त करने में सक्षम थे। इन दावों की सावधानीपूर्वक जांच से पता चला कि नंबर 10 संचार को न केवल कभी इंटरसेप्ट नहीं किया गया था, किन्तु जर्मन इसके अस्तित्व से पूरी तरह अनजान थे।{{sfn|WW|1945b|p=384}}


=== युद्ध के बाद ===
=== युद्ध के बाद ===
युद्ध के बाद की अवधि के दौरान, [[ क्लीस्टरोण ]] ट्यूब में भी सुधार हुआ और यह एक उपयोगी प्रणाली बन गई। मैग्नेट्रॉन के विपरीत, क्लाइस्ट्रॉन एक सच्चा प्रवर्धक है, जो आवृत्तियों की एक श्रृंखला में कम-शक्ति इनपुट सिग्नल को स्वीकार करता है और फिर इसे बहुत अधिक शक्ति पर आउटपुट करता है। इसने फ्रीक्वेंसी डिवीजन मल्टीप्लेक्सिंग का उपयोग करके संचार प्रणालियों का निर्माण करने की अनुमति दी। चूंकि यह पहले से ही समाक्षीय केबल कनेक्शन के साथ उपयोग के लिए टेलीफोनी में व्यापक रूप से उपयोग किया जाता था, इसलिए बेल लैब्स ने अपने [[TD-2]] नेटवर्क के लिए इस समाधान का चयन किया जो 1950 के दशक के प्रारंभ में और बाद के 1950 के दशक के दौरान कई अन्य देशों में संयुक्त राज्य भर में बनाया गया था।{{sfn|Dickieson|1967}}
युद्ध के बाद की अवधि के समय, [[ क्लीस्टरोण |क्लीस्टरोण]] ट्यूब में भी सुधार हुआ और यह उपयोगी सिस्टम बन गई थी। मैग्नेट्रॉन के विपरीत, क्लाइस्ट्रॉन सच्चा प्रवर्धक है, जो आवृत्तियों की श्रृंखला में कम-शक्ति इनपुट सिग्नल को स्वीकार करता है और फिर इसे बहुत अधिक शक्ति पर आउटपुट करता है। इसने आवृत्ति डिवीजन मल्टीप्लेक्सिंग का उपयोग करके संचार प्रणालियों का निर्माण करने की अनुमति दी। चूंकि यह पहले से ही समाक्षीय केबल कनेक्शन के साथ उपयोग के लिए टेलीफोनी में व्यापक रूप से उपयोग किया जाता था, इसलिए बेल लैब्स ने अपने टीडी[[TD-2|-2]] नेटवर्क के लिए इस समाधान का चयन किया था जो 1950 के दशक के प्रारंभ में और बाद के 1950 के दशक के समय कई अन्य देशों में संयुक्त राज्य भर में बनाया गया था।{{sfn|Dickieson|1967}}


इसके विपरीत, नागरिक उपयोगों के लिए चुने जाने से पहले PCM का उपयोग ज्यादातर सैन्य भूमिकाओं में किया जाता था। इसके सबसे उत्साही उपयोगकर्ताओं में [[ सामान्य डाकघर ]] था, जो उस समय यूके में [[लंबी दूरी की कॉलिंग]] सेवाएं चलाता था। उन्होंने पीसीएम-आधारित प्रणालियों की एक श्रृंखला पेश की जो लंबी दूरी के लिंक को और अधिक दूर करने की अनुमति देती थी क्योंकि वे बहुत कम सिग्नल स्तरों के साथ भी दालों की मूल श्रृंखला को साफ-सुथरा बना सकते थे। 1968 में कंपनी ने पहला ऑल-पीसीएम डिजिटल एक्सचेंज शुरू किया, जब तक वे ग्राहक के [[ टेलिफ़ोन एक्सचेंज ]] तक नहीं पहुंचे, तब तक कोई एनालॉग सिग्नल नहीं था।{{sfn|PCM|2016}}
इसके विपरीत, नागरिक उपयोगों के लिए चुने जाने से पहले पीसीएम का उपयोग अधिकतर सैन्य भूमिकाओं में किया जाता था। इसके सबसे उत्साही उपयोगकर्ताओं में [[ सामान्य डाकघर |सामान्य डाकघर]] था, जो उस समय यूके में [[लंबी दूरी की कॉलिंग]] सेवाएं चलाता था। उन्होंने पीसीएम-आधारित प्रणालियों की श्रृंखला प्रस्तुत की जो लंबी दूरी के लिंक को और अधिक दूर करने की अनुमति देती थी क्योंकि वे बहुत कम सिग्नल स्तरों के साथ भी पल्स की मूल श्रृंखला को साफ-सुथरा बना सकते थे। 1968 में कंपनी ने पहला ऑल-पीसीएम डिजिटल एक्सचेंज प्रारंभ किया था, जब तक वे ग्राहक के [[ टेलिफ़ोन एक्सचेंज |टेलिफ़ोन एक्सचेंज]] तक नहीं पहुंचे, तब तक कोई एनालॉग सिग्नल नहीं था।{{sfn|PCM|2016}}


== तकनीकी विवरण ==
== तकनीकी विवरण                                                                                                                                                                                               ==
सिस्टम की जटिलता ज्यादातर पीसीएम एन्कोडिंग से संबंधित थी। सिस्टम 9 kHz पर [[ साइन लहर ]] के रूप में मास्टर क्लॉक सिग्नल पर आधारित था।{{sfn|Butement|1946|p=187}} साइन वेव को एक सॉटूथ वेव उत्पन्न करने के लिए ट्यूबों की एक श्रृंखला में संसाधित किया गया था, जो तब ऑडियो सिग्नल द्वारा [[गेटिंग (दूरसंचार)]] कर रहा था। जब सॉटूथ का वोल्टेज ऑडियो सिग्नल के वोल्टेज से ऊपर होता है, तो एक आउटपुट पल्स उत्पन्न होता है - ऑडियो सिग्नल का वोल्टेज जितना अधिक होता है, उस स्तर के ऊपर सॉटूथ की चौड़ाई उतनी ही कम होती है, और पल्स कम होता है। अंतिम आउटपुट संदर्भ आवृत्ति पर दालों की एक ट्रेन थी, प्रत्येक पल्स की चौड़ाई ऑडियो सिग्नल वोल्टेज के व्युत्क्रमानुपाती होती है।{{sfn|Butement|1946|pp=188-189}}
सिस्टम की जटिलता अधिकतर पीसीएम एन्कोडिंग से संबंधित थी। सिस्टम 9 किलोहर्ट्ज़ पर [[ साइन लहर |साइन तरंग]] के रूप में मास्टर क्लॉक सिग्नल पर आधारित था।{{sfn|Butement|1946|p=187}} साइन वेव को सॉटूथ वेव उत्पन्न करने के लिए ट्यूबों की श्रृंखला में संसाधित किया गया था, जो तब ऑडियो सिग्नल द्वारा [[गेटिंग (दूरसंचार)]] कर रहा था। जब सॉटूथ का वोल्टेज ऑडियो सिग्नल के वोल्टेज से ऊपर होता है, तो आउटपुट पल्स उत्पन्न होता है - ऑडियो सिग्नल का वोल्टेज जितना अधिक होता है, उस स्तर के ऊपर सॉटूथ की चौड़ाई उतनी ही कम होती है, और पल्स कम होता है। अंतिम आउटपुट संदर्भ आवृत्ति पर पल्स की ट्रेन थी, प्रत्येक पल्स की चौड़ाई ऑडियो सिग्नल वोल्टेज के व्युत्क्रमानुपाती होती है।{{sfn|Butement|1946|pp=188-189}}


पूरे सिस्टम में इनमें से आठ नमूने थे, जिन्हें उस समय विभाजक के रूप में संदर्भित किया गया था। प्रत्येक आउटपुट 3.5 µs तक की पल्स देता है। प्रत्येक नमूने में एक निश्चित विलंब जोड़ा गया था, जैसे कि चैनल 2 की पल्स चैनल 1 से एक के बाद लगभग 5 μs आउटपुट थी। इसके परिणामस्वरूप मास्टर घड़ी के एक पूर्ण चक्र में दालों की एक श्रृंखला बन गई। [[ घड़ी की वसूली ]] की अनुमति देने के लिए चैनल 1 के सामने 20 μs का एक अलग सिंक पल्स जोड़ा गया था। एन्कोडर्स से पल्स चेन को बढ़ाया जाता है और ट्रांसमिशन मैग्नेट्रॉन को भेजा जाता है जो चयनित आवृत्ति पर दालों का उत्पादन करता है।{{sfn|Butement|1946|p=189}}
पूरे सिस्टम में इनमें से आठ प्रतिरूप थे, जिन्हें उस समय विभाजक के रूप में संदर्भित किया गया था। प्रत्येक आउटपुट 3.5 µs तक की पल्स देता है। प्रत्येक प्रतिरूप में निश्चित विलंब जोड़ा गया था, जैसे कि चैनल 2 की पल्स चैनल 1 से के बाद लगभग 5 μs आउटपुट थी। इसके परिणामस्वरूप मास्टर घड़ी के पूर्ण चक्र में पल्स की श्रृंखला बन गई। [[ घड़ी की वसूली |घड़ी की वसूली]] की अनुमति देने के लिए चैनल 1 के सामने 20 μs का अलग सिंक पल्स जोड़ा गया था। एन्कोडर्स से पल्स चेन को बढ़ाया जाता है और ट्रांसमिशन मैग्नेट्रॉन को भेजा जाता है जो चयनित आवृत्ति पर पल्स का उत्पादन करता है।{{sfn|Butement|1946|p=189}}


रिसेप्शन ज्यादा आसान है; घड़ी को सिंक सिग्नल से निकाला जाता है और प्रत्येक चैनल को सिंक के सापेक्ष निश्चित समय पर सैंपलिंग द्वारा अलग किया जाता है।{{sfn|Butement|1946|p=190}} स्पंदों को [[ लो पास फिल्टर ]] में फीड किया जाता है जो सीधे मूल श्रव्य संकेत उत्पन्न करते हैं।{{sfn|WW|1945a|p=362}}
रिसेप्शन अधिक सरल है; घड़ी को सिंक सिग्नल से निकाला जाता है और प्रत्येक चैनल को सिंक के सापेक्ष निश्चित समय पर सैंपलिंग द्वारा अलग किया जाता है।{{sfn|Butement|1946|p=190}} स्पंदों को [[ लो पास फिल्टर |लो पास फिल्टर]] में फीड किया जाता है जो सीधे मूल श्रव्य संकेत उत्पन्न करते हैं।{{sfn|WW|1945a|p=362}}


बाकी प्रणाली अपेक्षाकृत सरल है। मैग्नेट्रॉन आउटपुट किसके सामने एक द्विध्रुव एंटीना को भेजा जाता है {{convert|2|m}} व्यास परवलयिक परावर्तक। रिसेप्शन के लिए पहले के बगल में एक दूसरा रिफ्लेक्टर एंटीना लगाया गया था। मूल मार्क I इकाइयों ने 4550 या 4760 मेगाहर्ट्ज पर अपस्ट्रीम सिग्नल भेजे, जबकि रिसीवर 4410 और 4888 मेगाहर्ट्ज के बीच की पूरी रेंज के प्रति संवेदनशील था। मार्क II इकाइयों ने इसे 4480 और 4840 में स्थानांतरित कर दिया। ट्रांसमीटरों का उत्पादन आमतौर पर 100 और 400 mW के बीच था।{{sfn|WW|1945b|p=384}}
अतिरिक्त सिस्टम अपेक्षाकृत सरल है। मैग्नेट्रॉन आउटपुट किसके सामने द्विध्रुव एंटीना को भेजा जाता है {{convert|2|m}} व्यास परवलयिक परावर्तक रिसेप्शन के लिए पहले के बगल में दूसरा रिफ्लेक्टर एंटीना लगाया गया था। मूल मार्क इकाइयों ने 4550 या 4760 मेगाहर्ट्ज पर अपस्ट्रीम सिग्नल भेजे थे, जबकि रिसीवर 4410 और 4888 मेगाहर्ट्ज के बीच की पूरी रेंज के प्रति संवेदनशील था। मार्क II इकाइयों ने इसे 4480 और 4840 में स्थानांतरित कर दिया था। ट्रांसमीटरों का उत्पादन सामान्यतः 100 और 400 mW के बीच था।{{sfn|WW|1945b|p=384}}


रेंज सामान्य रूप से के क्रम में था {{convert|20|miles}}, लेकिन कभी-कभी ठीक हो जाता है {{convert|50|miles}}.{{sfn|WW|1945b|p=383}} आम तौर पर, आठ टेलीफोन चैनलों में से केवल सात का उपयोग किया जाएगा, स्टेशन पर ऑपरेटरों के उपयोग के लिए या बैकअप के रूप में एक मुफ्त छोड़कर।{{sfn|IWM}}
रेंज सामान्य रूप से {{convert|20|miles}} के क्रम में था , किन्तु कभी-कभी {{convert|50|miles}} ठीक हो जाता है .{{sfn|WW|1945b|p=383}} सामान्यतः, आठ टेलीफोन चैनलों में से केवल सात का उपयोग किया जाता था, स्टेशन पर संचालको के उपयोग के लिए या बैकअप के रूप में मुफ्त छोड़ देते थे।{{sfn|IWM}}


सिस्टम को अपेक्षाकृत छोटे चार-पहिया ट्रेलर में शीर्ष पर एक [[टर्नटेबल]] पर एंटेना के साथ रखा गया था।{{sfn|WW|1945b|p=384}} इसे 100 से 250 वोल्ट की किसी भी मुख्य आपूर्ति द्वारा संचालित किया जा सकता है। मार्क I इकाइयां ट्रेलर के एक छोर पर लगे दो ओनान 3 केवीए जनरेटर का उपयोग करके आत्म-शक्ति भी कर सकती हैं, जबकि मार्क II बैकअप के लिए एक अन्य ओनान जनरेटर के साथ एक पीई 95 10 केवीए जनरेटर का उपयोग करता है।
सिस्टम को अपेक्षाकृत छोटे चार-पहिया ट्रेलर में शीर्ष पर [[टर्नटेबल]] पर एंटेना के साथ रखा गया था।{{sfn|WW|1945b|p=384}} इसे 100 से 250 वोल्ट की किसी भी मुख्य आपूर्ति द्वारा संचालित किया जा सकता है। मार्क इकाइयां ट्रेलर के छोर पर लगे दो ओनान 3 केवीए जनरेटर का उपयोग करके आत्म-शक्ति भी कर सकती हैं, जबकि मार्क II बैकअप के लिए अन्य ओनान जनरेटर के साथ पीई 95 10 केवीए जनरेटर का उपयोग करता है।


==टिप्पणियाँ==
==टिप्पणियाँ                                                                                                                                                                                                   ==
{{notelist}}
{{notelist}}
 
==संदर्भ                                                                                                                                                                                                             ==
 
==संदर्भ==
 
 
 
===उद्धरण===
===उद्धरण===
{{reflist|30em}}
{{reflist|30em}}


===ग्रन्थसूची===
===ग्रन्थसूची===
Line 152: Line 147:
  |isbn=0852743173
  |isbn=0852743173
}}
}}
==बाहरी संबंध==
==बाहरी संबंध==
* [https://www.radiomuseum.org/r/mil_gb_wireless_set_no10.html Wireless Set No.10]
* [https://www.radiomuseum.org/r/mil_gb_wireless_set_no10.html Wireless Set No.10]
[[Category: माइक्रोवेव संचरण]] [[Category: द्वितीय विश्व युद्ध ब्रिटिश इलेक्ट्रॉनिक्स]] [[Category: ब्रिटिश सैन्य रेडियो]] [[Category: प्रौद्योगिकी में 1940]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Citation Style 1 templates|M]]
[[Category:Collapse templates]]
[[Category:Created On 19/06/2023]]
[[Category:Created On 19/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite magazine]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite magazine]]
[[Category:Wikipedia metatemplates]]
[[Category:द्वितीय विश्व युद्ध ब्रिटिश इलेक्ट्रॉनिक्स]]
[[Category:प्रौद्योगिकी में 1940]]
[[Category:ब्रिटिश सैन्य रेडियो]]
[[Category:माइक्रोवेव संचरण]]

Latest revision as of 17:17, 16 July 2023

वायरलेस सेट नंबर 10। बाईं ओर का पैनल पारगमन के समय जनरेटर को कवर करता है और ऑपरेशन के समय खोला गया था। दो समान जनरेटर का सुझाव है कि यह मार्क I मॉडल है, क्योंकि मार्क II के दो अलग-अलग जनरेटर थे।

ब्रिटिश सेना का वायरलेस सेट नंबर 10, विश्व का पहला माइक्रोवेव रिले टेलीफ़ोन सिस्टम था।[1] इसने दो स्टेशनों के बीच आठ पूर्ण-द्वैध (दो-तरफ़ा) टेलीफोन चैनल प्रसारित किए, जो केवल दृष्टि रेखा द्वारा सीमित थे। लाइन-ऑफ़-विज़न, प्रायः के आदेश पर 25 to 50 miles (40 to 80 km). स्टेशनों को अत्यधिक मोबाइल ट्रेलरों में रखा गया था और अगले स्टेशन पर छत पर दो परवलयिक एंटीना को लक्षित करके बस स्थापित किया गया था।

1940 में दो प्रमुख तकनीकों की प्रारंभ के साथ मूल अवधारणा संभव हो गई थी: गुहा मैग्नेट्रॉन , जिसने उचित दक्षता के साथ माइक्रोवेव सिग्नल का उत्पादन किया था; और पल्स कोड मॉडुलेशन (पीसीएम), जिसने मैग्नेट्रॉन पर सिग्नल को एन्कोड करने का सरल विधि प्रस्तुत किया था। चूंकि उपलब्ध बैंडविड्थ (सिग्नल प्रोसेसिंग) अधिक था, आठ चैनलों को समय विभाजन बहुसंकेतन का उपयोग करके लिंक में जोड़ा गया था।

1941 और 1942 में सिंगल-डुप्लेक्स (वन-वे) सिस्टम के साथ प्रारंभी प्रयोग किए गए थे, जिन्होंने मूलभूत अवधारणा का प्रदर्शन किया था। उस समय तक, पूर्ण-द्वैध सिस्टम के लिए इलेक्ट्रॉनिक्स में सुधार की अनुमति दी गई थी। लंबी दूरी की सिस्टम का परीक्षण 1942 में प्रारंभ हुआ और इसके बाद पानी के ऊपर परीक्षण किया गया था। सिस्टम 1944 में सेवा के लिए तैयार थी, और डी-डे संचालन के लिए सैन्य-गुणवत्ता वाले सेट उपलब्ध थे। सीमा पर्याप्त थी कि इसका उपयोग डी-डे समुद्र तटों से अंग्रेजी चैनल के पार वापस इंग्लैंड तक सुरक्षित संचार प्रदान करने के लिए किया गया था। सिस्टम को ट्रेलरों को साथ जोड़कर या वर्तमान लैंडलाइन के माध्यम से रिले में विस्तारित किया जा सकता है, और ऐसा करने में सीमा को अंततः जर्मनी में विस्तारित किया गया था। फील्ड मार्शल बर्नार्ड मोंटगोमरी बाद में टिप्पणी करेंगे:

नंबर 10 सेट स्टेशनों की श्रृंखला का उपयोग करके, मैं अपने सामरिक मुख्यालय को बहुत आगे तक बनाए रखने में सक्षम था और अभी भी लंदन के साथ संपर्क बनाए हुए हूं। इन परिस्थितियों में मेरी सेनाओं पर व्यक्तिगत संपर्क बनाए रखने में सक्षम होने के मूल्य को कम करके आंका नहीं जा सकता। [2]

विवरण

रेडियो टेलीफोनी

द्वितीय विश्व युद्ध से पहले रेडियो पर टेलीफोन वार्तालाप प्रसारित करने के लिए कई प्रणालियाँ थीं, किन्तु वे सभी समान समस्याओं की श्रृंखला से पीड़ित थीं।[3]

पहला यह था कि लंबी दूरी के संचरण को प्राप्त करने के लिए, इन प्रणालियों को किलोहर्ट्ज़ रेंज में अपेक्षाकृत कम आवृत्तियों या कुछ सीमा तक लंबी तरंग आवृत्तियों पर काम करना पड़ता था जो कि योण क्षेत्र का लाभ उठाकर उनके संकेतों को आकाश तरंग कर सकते थे। कुशल होने के लिए रेडियो एंटीना को तरंग दैर्ध्य के परिमाण के क्रम के उत्तम होना चाहिए, और व्यवहार में, प्रायः स्पष्ट आकार का होता है 12 वेवलेंथ अर्ध तरंग द्विध्रुव बनाने के लिए इस प्रकार, इन प्रणालियों में बहुत बड़े एंटेना का उपयोग किया गया था।[4]

एक अन्य संबंधित रेडियो भौतिकी प्रभाव ऐन्टेना की प्रत्यक्षता है, इसकी बीम में सिग्नल बनाने की क्षमता है। यह ऑप्टिकल संकल्प से संबंधित है, जो ऐन्टेना के बढ़ते आकार के साथ उत्तम होता है, और बढ़ती तरंग दैर्ध्य के साथ घट जाता है। उपयोग किए जा रहे संकेतों की अपेक्षाकृत लंबी तरंग दैर्ध्य ने ध्यान केंद्रित करना कठिन बना दिया था, और कई स्थितियों में ऐसे संकेतों को ओमनी- या अर्ध-दिशात्मक रूप से प्रसारित किया गया था। इसका कारण यह था कि संकेत जमीनी स्टेशनों द्वारा प्राप्त किए जा सकते थे, कभी-कभी हजारों मील दूर, हस्तक्षेप के लिए अग्रणी सुरक्षित सैन्य संचार के लिए, ऐसी सिस्टम में स्पष्ट कमियां थीं।[3]

अंत में, रेडियो सिग्नल द्वारा ले जाई जा सकने वाली जानकारी की मात्रा इसकी बैंडविड्थ (सिग्नल प्रोसेसिंग) का कार्य है। लंबी दूरी की टेलीफोन बातचीत 4 किलोहर्ट्ज़ बैंडविड्थ के साथ काम कर सकती है, किन्तु 150 किलोहर्ट्ज़ पर यह उपलब्ध सिग्नल की अधिक बड़ी मात्रा का प्रतिनिधित्व करता है। ऐन्टेना और रिसीवर डिज़ाइन के आधार पर, आवृत्तियों का प्रसार जो कुशलतापूर्वक प्राप्त किया जा सकता है, लिंक को या दो वार्तालापों तक सीमित कर सकता है।[5]

इन सभी समस्याओं को कम तरंग दैर्ध्य में जाने से कम किया जाता है। तत्काल पूर्व-युद्ध युग में नए वेक्यूम - ट्यूब के साथ अधिक प्रयोग किया गया था जो अति-उच्च आवृत्ति (वीएचएफ) बैंड में काम कर सकते थे। एटीएंडटी ने इनमें से कई प्रयासों का नेतृत्व किया था, जिसमें 150 मेगाहर्ट्ज पर चलने वाली सिस्टम भी सम्मीलित है। इसने सिग्नल को अधिक सशक्त केंद्रित करने की अनुमति दी थी, और बढ़ी हुई बैंडविड्थ ने वर्तमान लैंडलाइन नेटवर्क में मल्टीप्लेक्स संचार कॉल के लिए उपयोग किए जाने वाले समान उपकरण का उपयोग करके सिग्नल पर दर्जन लाइनों को ले जाने की अनुमति दी थी। इस प्रारंभी समय में भी, बेल लैब्स ने नोट किया कि सिस्टम सेंटीमीटर तरंग दैर्ध्य में बहुत अधिक प्रभावी होगा, और हॉर्न एंटीना का उपयोग करके सिस्टम का चित्रण तैयार किया जो सैकड़ों कॉल ले सकता था। युद्ध की प्रारंभ से आगे के प्रयोगों पर रोक लगा दी गई थी।[3]

माइक्रोवेव विकास

जब वोल्टेज लागू किया जाता है, तो मजबूत अनुप्रस्थ चुंबकीय क्षेत्र के प्रभाव में इलेक्ट्रॉन कैथोड (दिखाया नहीं गया) से एनोड तक चले जाते हैं और मैग्नेट्रॉन के एनोड ब्लॉक के केंद्र में खुलने से आगे बढ़ते हैं। यह आसपास के गुहाओं में रेडियो ऊर्जा पैदा करता है और आउटपुट की आवृत्ति गुहाओं के आकार और उनके प्लेसमेंट का कार्य है, न कि इनपुट वोल्टेज।

राडार के विकास के भाग के रूप में, द्वितीय विश्व युद्ध के प्रारंभी वर्षों में माइक्रोवेव-आवृत्ति इलेक्ट्रॉनिक्स और तकनीकों का तेजी से विकास हुआ था। प्रमुख अग्रिमों में से 1940 में कैविटी मैग्नेट्रॉन का प्रारंभ था ।[6]

माइक्रोवेव में तीव्र रुचि का कारण एंटीना के आकार का उद्देश्य था; इस प्रकार वीएचएफ क्षेत्र में, रडार एंटेना लगभग मीटर लंबे थे, जिससे उन्हें रात के लड़ाकू विमानों पर उपयोग करना कठिन हो गया था। इसके विपरीत, मैग्नेट्रॉन ने 9 सेंटीमीटर की तरंग दैर्ध्य का उत्पादन किया था, जिसमें एंटेना की लंबाई आधी थी। इसका कारण यह था कि वे रात सेनानी के नाक क्षेत्र में सरली से फिट हो सकते थे। साधारण अर्ध-तरंग द्विध्रुव में थोड़ी सी दिशा होती है, किन्तु बार फिर लघु तरंग दैर्ध्य ने उपयुक्त ध्यान केंद्रित करने की व्यवस्था के रूप में सहायता की थी, जो लगभग मीटर चौड़ी परवलयिक व्यंजन का उपयोग करके बीम की चौड़ाई को लगभग 5 डिग्री तक कम कर देता है। इसने सिस्टम को नाटकीय रूप से अधिक उपयोगी बना दिया था; न केवल रेडियो ऊर्जा को छोटे से क्षेत्र में केंद्रित किया गया था और इस प्रकार अधिक मजबूत प्रतिबिंब उत्पन्न किए गए थे, किन्तु उन प्रतिबिंबों को लक्ष्य पर इंगित करने के लिए परावर्तक को स्थानांतरित करके अंतरिक्ष में स्पष्ट रूप से स्थित किया जा सकता था।[7][lower-alpha 1]

संचार में मैग्नेट्रॉन की क्षमता को प्रारंभ से ही समझा गया था, किन्तु इस भूमिका में, इसमें महत्वपूर्ण समस्या थी। युग के अधिकांश रेडियो सिस्टम में, ऑडियो सिग्नल और रेडियो आवृत्ति कैरियर सिग्नल अलग-अलग उत्पन्न होते हैं और फिर आयाम संग्राहक सिग्नल उत्पन्न करने के लिए मिश्रित होते हैं जो तब संचरण के लिए प्रवर्धित होता है। इसके लिए एम्पलीफायर की आवश्यकता होती है जो कम से कम ऑडियो सिग्नल की बैंडविड्थ जितनी बड़ी आउटपुट आवृत्तियों की श्रृंखला का उत्पादन कर सकता था। मैग्नेट्रॉन इसकी अनुमति नहीं देता है; यह एकल आवृत्ति उत्पन्न करता है जो इसके भौतिक निर्माण पर निर्भर होता है, जो इसमें ड्रिल किए गए छिद्रों की संख्या और आकार द्वारा परिभाषित होता है। अलग सिग्नल का उपयोग करके आउटपुट को संशोधित करने का कोई विधि नहीं है।[8]

पीसीएम

1937 में, अंग्रेज इंजीनियर एलेक रीव्स आईटीटी इंक या आईटी एंड टी की पेरिस प्रयोगशालाओं में काम कर रहे थे, जब उन्हें पल्स-कोड मॉड्यूलेशन (पीसीएम) का विचार आया था। इस अवधारणा में, एनालॉग वेवफॉर्म को स्पंदों की श्रृंखला से पुनर्निर्मित किया जाता है, जिसकी चौड़ाई उस पल में आयाम को परिभाषित करती है। मूल एनालॉग सिग्नल को फिर से बनाने के लिए ऐसी पल्स की श्रृंखला को फ़िल्टर में भेजा जाता है। जब मई 1940 में जर्मन सेना ने फ्रांस पर आक्रमण किया था, तो रीव्स इंग्लैंड लौट आए, और पीसीएम अवधारणा को तुरंत कई भूमिकाओं के लिए चुना गया था।[9]

पीसीएम मैग्नेट्रॉन का उपयोग करके ट्रांसमिशन के लिए लगभग पूरी तरह से मेल खाता था और तकनीक इंग्लैंड में उसी तरह पहुंची जैसे पहले उत्पादन मैग्नेट्रोन वितरित किए गए थे। जबकि मैग्नेट्रॉन को आयाम या आवृत्ति में सुचारू रूप से संशोधित नहीं किया जा सकता था, इसे बहुत तेज़ी से चालू और बंद किया जा सकता था; यह वह गुण है जो इसे रडार के लिए उपयोगी बनाता है जहां छोटे स्पंद वांछनीय होते हैं। संचार करने के लिए, मूल ऑडियो सिग्नल को पीसीएम एन्कोडर में भेजा गया था जिसका स्पंदित आउटपुट तब बढ़ाया गया था और मैग्नेट्रॉन को बिजली की आपूर्ति के रूप में उपयोग किया जाता था। परिणाम ऑडियो सिग्नल का प्रतिनिधित्व करने वाले माइक्रोवेव पल्स की श्रृंखला थी। रिसेप्शन पर, पल्स की श्रृंखला को सर्किट में भेजा जाता है जो प्राप्त कुल ऊर्जा को औसत करता है, आउटपुट के लिए ऑडियो को पुन: उत्पन्न करता है।[1]

चूंकि 9 किलोहर्ट्ज़ सैंपलिंग समय की तुलना में पल्स अधिक कम थे, इसलिए अधिकांश सिग्नल खाली थे। दूसरे पीसीएम एनकोडर का उपयोग करके और इसके पल्स को थोड़ा विलंबित करके इसका सरली से लाभ उठाया जा सकता है जिससे इसके संकेत पहले के बाद भेजे जा सकता था। इसने ही कनेक्शन में कई संकेतों को बहुसंकेतन करने की समस्या को हल किया था। पहले, टेलीफोन प्रणालियों ने आवृत्ति विभाजन बहुसंकेतन के साथ इसे पूरा किया था, प्रत्येक चैनल को अलग वाहक आवृत्ति द्वारा स्थानांतरित किया जिससे वे सभी ही समय में उसी तरह प्रसारित किए जा सकें जैसे कि कई रेडियो स्टेशन विभिन्न चैनलों पर एयरवेव साझा कर सकते हैं। चूंकि मैग्नेट्रॉन अपनी आवृत्ति को नहीं बदल सकता था, जो कि इसके भौतिक निर्माण पर आधारित है, यह तकनीक काम नहीं करेगी। पीसीएम के साथ, संकेतों को आवृत्ति के अतिरिक्त समय में फैलाया गया था, जिसे मैग्नेट्रॉन द्वारा सरली से नियंत्रित किया गया था। यह नंबर 10 को विश्व का पहला टाइम-डिवीजन मल्टीप्लेक्सिंग (टीडीएम) सिस्टम बनाता है।[2]

1941 में प्रस्तुत किया गया पहला वैचारिक डिजाइन, पारंपरिक रेडियो सेट की तरह एकल चैनल आधा दुमंजिला घर सिस्टम के लिए था, जहां कनेक्शन के दोनों छोर पर उपयोगकर्ताओं को बारी-बारी से बोलना पड़ता है क्योंकि वे ही चैनल साझा करते हैं। जैसे-जैसे विकास जारी रहा, दो सूक्ष्म से दूरी वाली माइक्रोवेव आवृत्तियों को साफ-साफ अलग करने में सक्षम स्पष्ट फिल्टर विकसित किए गए थे। इसने नए संस्करण का नेतृत्व किया जो अपस्ट्रीम और डाउनस्ट्रीम दिशाओं के लिए अलग-अलग आवृत्तियों का उपयोग करता था, पूर्ण-द्वैध संचालन की अनुमति देता था, चूँकि छोटे नकारात्मक पक्ष के साथ दो मैग्नेट्रोन और एंटेना की आवश्यकता होती थी। यह कोई कठिन परिवर्तन नहीं था; वर्मन में प्रारंभ की जीएल एमके. द्वितीय राडार ने ट्रांसमिशन और रिसेप्शन के लिए अलग-अलग व्यंजनों का भी उपयोग किया और इसे सरली से अनुकूलित किया गया था।[2]

सेवा में

पहला प्रायोगिक सेट जुलाई 1942 में आया और लंदन के बेकर स्ट्रीट पर हॉर्शम और बर्कले कोर्ट के बीच दो-चरणीय लिंक पर उपयोग किया गया था। दक्षिण तट पर आइसल ऑफ वेट और बीची हेड पर वेंटनोर के बीच ओवरवाटर परीक्षण किया गया था। 1944 की प्रारंभ में उत्पादन आदेश भेजा गया था।[10]

पहला परिचालन उपयोग डी-डे के तुरंत बाद हुआ जब बीची हेड पर ट्रांसीवर चेरबर्ग में चला गया था। जैसा कि मित्र राष्ट्र यूरोप में आगे बढ़े, दो नंबर 10 ट्रेलरों को पारंपरिक टेलीफोन वायरिंग के साथ के बाद जोड़कर पुनरावर्तक बनाए गए, जिससे संदेशों को लंबी दूरी तक प्रसारित किया जा सके। जहां लंबी दूरी की लैंडलाइन उपलब्ध थी, इनका उपयोग स्टेशनों के बीच संपर्क बढ़ाने के लिए किया जाता था।[10]

परिणाम लैंडलाइन और नंबर 10 सेट का नेटवर्क था जो अंततः जर्मनी से वापस लंदन तक फैला हुआ था।[10] अप्रैल और मई 1945 में, सात रिपीटर्स के नेटवर्क ने 21वें आर्मी ग्रुप को इसके विभिन्न फील्ड मुख्यालयों से जोड़ा था।[11] सेट बेसीमा सफल रहे थे। संपूर्ण युद्ध के समय, फील्ड मार्शल बर्नार्ड मोंटगोमरी मुख्यालय ने कुल घंटे के लिए लंदन के लिए सीधी लाइन खो दी थी।[10]

युद्ध के बाद की डीब्रीफिंग में, जर्मन रेडियो इंजीनियरों ने प्रमाणित किया कि वे ब्रिटिश संकेतों को सरली से प्राप्त करने में सक्षम थे। इन दावों की सावधानीपूर्वक जांच से पता चला कि नंबर 10 संचार को न केवल कभी इंटरसेप्ट नहीं किया गया था, किन्तु जर्मन इसके अस्तित्व से पूरी तरह अनजान थे।[10]

युद्ध के बाद

युद्ध के बाद की अवधि के समय, क्लीस्टरोण ट्यूब में भी सुधार हुआ और यह उपयोगी सिस्टम बन गई थी। मैग्नेट्रॉन के विपरीत, क्लाइस्ट्रॉन सच्चा प्रवर्धक है, जो आवृत्तियों की श्रृंखला में कम-शक्ति इनपुट सिग्नल को स्वीकार करता है और फिर इसे बहुत अधिक शक्ति पर आउटपुट करता है। इसने आवृत्ति डिवीजन मल्टीप्लेक्सिंग का उपयोग करके संचार प्रणालियों का निर्माण करने की अनुमति दी। चूंकि यह पहले से ही समाक्षीय केबल कनेक्शन के साथ उपयोग के लिए टेलीफोनी में व्यापक रूप से उपयोग किया जाता था, इसलिए बेल लैब्स ने अपने टीडी-2 नेटवर्क के लिए इस समाधान का चयन किया था जो 1950 के दशक के प्रारंभ में और बाद के 1950 के दशक के समय कई अन्य देशों में संयुक्त राज्य भर में बनाया गया था।[3]

इसके विपरीत, नागरिक उपयोगों के लिए चुने जाने से पहले पीसीएम का उपयोग अधिकतर सैन्य भूमिकाओं में किया जाता था। इसके सबसे उत्साही उपयोगकर्ताओं में सामान्य डाकघर था, जो उस समय यूके में लंबी दूरी की कॉलिंग सेवाएं चलाता था। उन्होंने पीसीएम-आधारित प्रणालियों की श्रृंखला प्रस्तुत की जो लंबी दूरी के लिंक को और अधिक दूर करने की अनुमति देती थी क्योंकि वे बहुत कम सिग्नल स्तरों के साथ भी पल्स की मूल श्रृंखला को साफ-सुथरा बना सकते थे। 1968 में कंपनी ने पहला ऑल-पीसीएम डिजिटल एक्सचेंज प्रारंभ किया था, जब तक वे ग्राहक के टेलिफ़ोन एक्सचेंज तक नहीं पहुंचे, तब तक कोई एनालॉग सिग्नल नहीं था।[12]

तकनीकी विवरण

सिस्टम की जटिलता अधिकतर पीसीएम एन्कोडिंग से संबंधित थी। सिस्टम 9 किलोहर्ट्ज़ पर साइन तरंग के रूप में मास्टर क्लॉक सिग्नल पर आधारित था।[13] साइन वेव को सॉटूथ वेव उत्पन्न करने के लिए ट्यूबों की श्रृंखला में संसाधित किया गया था, जो तब ऑडियो सिग्नल द्वारा गेटिंग (दूरसंचार) कर रहा था। जब सॉटूथ का वोल्टेज ऑडियो सिग्नल के वोल्टेज से ऊपर होता है, तो आउटपुट पल्स उत्पन्न होता है - ऑडियो सिग्नल का वोल्टेज जितना अधिक होता है, उस स्तर के ऊपर सॉटूथ की चौड़ाई उतनी ही कम होती है, और पल्स कम होता है। अंतिम आउटपुट संदर्भ आवृत्ति पर पल्स की ट्रेन थी, प्रत्येक पल्स की चौड़ाई ऑडियो सिग्नल वोल्टेज के व्युत्क्रमानुपाती होती है।[14]

पूरे सिस्टम में इनमें से आठ प्रतिरूप थे, जिन्हें उस समय विभाजक के रूप में संदर्भित किया गया था। प्रत्येक आउटपुट 3.5 µs तक की पल्स देता है। प्रत्येक प्रतिरूप में निश्चित विलंब जोड़ा गया था, जैसे कि चैनल 2 की पल्स चैनल 1 से के बाद लगभग 5 μs आउटपुट थी। इसके परिणामस्वरूप मास्टर घड़ी के पूर्ण चक्र में पल्स की श्रृंखला बन गई। घड़ी की वसूली की अनुमति देने के लिए चैनल 1 के सामने 20 μs का अलग सिंक पल्स जोड़ा गया था। एन्कोडर्स से पल्स चेन को बढ़ाया जाता है और ट्रांसमिशन मैग्नेट्रॉन को भेजा जाता है जो चयनित आवृत्ति पर पल्स का उत्पादन करता है।[15]

रिसेप्शन अधिक सरल है; घड़ी को सिंक सिग्नल से निकाला जाता है और प्रत्येक चैनल को सिंक के सापेक्ष निश्चित समय पर सैंपलिंग द्वारा अलग किया जाता है।[16] स्पंदों को लो पास फिल्टर में फीड किया जाता है जो सीधे मूल श्रव्य संकेत उत्पन्न करते हैं।[17]

अतिरिक्त सिस्टम अपेक्षाकृत सरल है। मैग्नेट्रॉन आउटपुट किसके सामने द्विध्रुव एंटीना को भेजा जाता है 2 metres (6 ft 7 in) व्यास परवलयिक परावर्तक रिसेप्शन के लिए पहले के बगल में दूसरा रिफ्लेक्टर एंटीना लगाया गया था। मूल मार्क इकाइयों ने 4550 या 4760 मेगाहर्ट्ज पर अपस्ट्रीम सिग्नल भेजे थे, जबकि रिसीवर 4410 और 4888 मेगाहर्ट्ज के बीच की पूरी रेंज के प्रति संवेदनशील था। मार्क II इकाइयों ने इसे 4480 और 4840 में स्थानांतरित कर दिया था। ट्रांसमीटरों का उत्पादन सामान्यतः 100 और 400 mW के बीच था।[10]

रेंज सामान्य रूप से 20 miles (32 km) के क्रम में था , किन्तु कभी-कभी 50 miles (80 km) ठीक हो जाता है .[18] सामान्यतः, आठ टेलीफोन चैनलों में से केवल सात का उपयोग किया जाता था, स्टेशन पर संचालको के उपयोग के लिए या बैकअप के रूप में मुफ्त छोड़ देते थे।[11]

सिस्टम को अपेक्षाकृत छोटे चार-पहिया ट्रेलर में शीर्ष पर टर्नटेबल पर एंटेना के साथ रखा गया था।[10] इसे 100 से 250 वोल्ट की किसी भी मुख्य आपूर्ति द्वारा संचालित किया जा सकता है। मार्क इकाइयां ट्रेलर के छोर पर लगे दो ओनान 3 केवीए जनरेटर का उपयोग करके आत्म-शक्ति भी कर सकती हैं, जबकि मार्क II बैकअप के लिए अन्य ओनान जनरेटर के साथ पीई 95 10 केवीए जनरेटर का उपयोग करता है।

टिप्पणियाँ

  1. When Lovell found that moving the dipole in front of the reflector aimed the beam without distortion, he concluded: "the antenna problem is 75% solved."[7]

संदर्भ

उद्धरण

  1. 1.0 1.1 Cambrook 2000.
  2. 2.0 2.1 2.2 SDRE 2002.
  3. 3.0 3.1 3.2 3.3 Dickieson 1967.
  4. "एंटीना बुनियादी बातों" (PDF). United States Naval Academy. Low frequencies imply long wavelengths, hence low frequency antennas are very large.
  5. Sundararajan, D. (4 March 2009). सिग्नल और सिस्टम के लिए एक व्यावहारिक दृष्टिकोण. John Wiley & Sons. p. 109. ISBN 978-0-470-82354-5.
  6. Marsh 2018.
  7. 7.0 7.1 Lovell 1991, p. 39.
  8. Wolff, Christian. "मैग्नेट्रान". Radar Tutorial.
  9. "कैसे पल्स-कोड मॉड्यूलेशन ने युद्ध जीतने और सीडी बनाने में मदद की". The Telegraph. 30 December 2016.
  10. 10.0 10.1 10.2 10.3 10.4 10.5 10.6 WW 1945b, p. 384.
  11. 11.0 11.1 IWM.
  12. PCM 2016.
  13. Butement 1946, p. 187.
  14. Butement 1946, pp. 188–189.
  15. Butement 1946, p. 189.
  16. Butement 1946, p. 190.
  17. WW 1945a, p. 362.
  18. WW 1945b, p. 383.

ग्रन्थसूची

बाहरी संबंध