लूप स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 41: Line 41:
*{{Citation | last1=Adams | first1=John Frank |authorlink=Frank Adams| title=Infinite loop spaces | url=https://books.google.com/books?id=e2rYkg9lGnsC | publisher=[[Princeton University Press]] | series=Annals of Mathematics Studies | isbn=978-0-691-08207-3| mr=505692 | year=1978 | volume=90}}
*{{Citation | last1=Adams | first1=John Frank |authorlink=Frank Adams| title=Infinite loop spaces | url=https://books.google.com/books?id=e2rYkg9lGnsC | publisher=[[Princeton University Press]] | series=Annals of Mathematics Studies | isbn=978-0-691-08207-3| mr=505692 | year=1978 | volume=90}}
*{{Citation | last1=May | first1=J. Peter | author1-link=J. Peter May | title=The Geometry of Iterated Loop Spaces | series=Lecture Notes in Mathematics | url=http://www.math.uchicago.edu/~may/BOOKSMaster.html | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-05904-2 | doi=10.1007/BFb0067491 | mr=0420610 | year=1972| volume=271 }}
*{{Citation | last1=May | first1=J. Peter | author1-link=J. Peter May | title=The Geometry of Iterated Loop Spaces | series=Lecture Notes in Mathematics | url=http://www.math.uchicago.edu/~may/BOOKSMaster.html | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-05904-2 | doi=10.1007/BFb0067491 | mr=0420610 | year=1972| volume=271 }}
[[Category: टोपोलॉजी]] [[Category: समरूपता सिद्धांत]] [[Category: टोपोलॉजिकल रिक्त स्थान]]


[[Category: Machine Translated Page]]
[[Category:Created On 02/07/2023]]
[[Category:Created On 02/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:टोपोलॉजिकल रिक्त स्थान]]
[[Category:टोपोलॉजी]]
[[Category:समरूपता सिद्धांत]]

Latest revision as of 07:50, 15 July 2023

टोपोलॉजी में, गणित की शाखा, लूप स्पेस टोपोलॉजिकल स्पेस X का लूप स्पेस ΩX X में (आधारित) लूप्स का स्पेस है, अर्थात निरंतर फलन (टोपोलॉजी) पॉइंटेड लूप वृत्त S1 से मानचित्र से X, कॉम्पैक्ट-ओपन टोपोलॉजी से सुसज्जित दो लूपों को पथ (टोपोलॉजी) पथ रचना द्वारा गुणा किया जा सकता है। इस ऑपरेशन के साथ, लूप स्पेस ए-इनफिनिटी ऑपरेड ए स्पेस है अर्थात्, गुणन होमोटॉपी-सुसंगत साहचर्य गुण है।


ΩX के पथ घटक का समुच्चय (गणित) अर्थात एक्स में आधारित लूप के आधारित-होमोटॉपी तुल्यता वर्ग का समुच्चय एक मौलिक समूह है,

X के 'पुनरावृत्त लूप स्पेस' Ω को कई बार लगाने से बनते हैं।

बेसपॉइंट के बिना टोपोलॉजिकल रिक्त स्पेस के लिए समान निर्माण होता है। टोपोलॉजिकल स्पेस X का 'फ्री लूप स्पेस' सर्कल S से मानचित्रों का स्पेस है कॉम्पैक्ट-ओपन टोपोलॉजी के साथ 1 से X तक X के मुक्त लूप स्पेस को अधिकांशतः द्वारा दर्शाया जाता है .

एक ऑपरेटर के रूप में, फ्री लूप स्पेस निर्माण सर्कल के साथ कार्टेशियन उत्पाद के ठीक निकट में है, जबकि लूप स्पेस निर्माण कम किए गए सस्पेंशन के ठीक निकट में है। यह संयोजन स्थिर समरूपता सिद्धांत में लूप स्पेस के बहुत अधिक महत्व को दर्शाता है। (कंप्यूटर विज्ञान में संबंधित घटना करीइंग है, जहां कार्टेशियन उत्पाद होम फ़ैक्टर से जुड़ा हुआ है।) अनौपचारिक रूप से इसे एकमैन-हिल्टन द्वैत के रूप में जाना जाता है।

एकमैन-हिल्टन द्वैत

लूप स्पेस ही स्पेस के निलंबन (टोपोलॉजी) से दोगुना है; इस द्वैत को कभी-कभी एकमैन-हिल्टन द्वैत भी कहा जाता है। मूल अवलोकन यही है

जहाँ मानचित्रों के समरूप वर्गों का समुच्चय है ,और ए का निलंबन है, और प्राकृतिक परिवर्तन समरूपता को दर्शाता है। यह होमियोमोर्फिज्म अनिवार्य रूप से उत्पादों को कम उत्पादों में परिवर्तित करने के लिए आवश्यक भागफल को संशोधित करने की है।

सामान्य रूप में, सही स्पेस के लिए कोई समूह संरचना और . नहीं है चूँकि, यह और दिखाया जा सकता है जब प्राकृतिक समूह संरचनाएँ हों और इंगित स्पेस हैं, और उपरोक्त समरूपता उन समूहों की है।[1] इस प्रकार, ( क्षेत्र) समुच्चय करने से संबंध मिलता है

.

यह इस प्रकार है क्योंकि समरूप समूह को इस प्रकार परिभाषित किया गया है कि और गोले एक-दूसरे के निलंबन के माध्यम से प्राप्त किए जा सकते हैं, अर्थात .[2]

यह भी देखें

संदर्भ

  1. May, J. P. (1999), A Concise Course in Algebraic Topology (PDF), U. Chicago Press, Chicago, retrieved 2016-08-27 (See chapter 8, section 2)
  2. Topospaces wiki – Loop space of a based topological space