विषम निरस्तीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 23: | Line 23: | ||
== प्राथमिक गुण == | == प्राथमिक गुण == | ||
जब आधार अभाज्य होता है, तो दो अंकों का समाधान उपस्तिथ नहीं होता है। यह विरोधाभास द्वारा सिद्ध किया जा सकता है: मान लीजिए कि समाधान उपस्तिथ है। व्यापकता की हानि के बिना, हम कह सकते हैं कि यह समाधान है | जब आधार अभाज्य होता है, तो दो अंकों का समाधान उपस्तिथ नहीं होता है। यह विरोधाभास द्वारा सिद्ध किया जा सकता है: मान लीजिए कि समाधान उपस्तिथ है। व्यापकता की हानि के बिना, हम कह सकते हैं कि यह समाधान है: | ||
:<math>\frac{a||b}{c||a}=\frac{b}{c},\ {\rm base}\ p,</math> | :<math>\frac{a||b}{c||a}=\frac{b}{c},\ {\rm base}\ p,</math> | ||
Line 29: | Line 29: | ||
:<math>\frac{ap+b}{cp+a}=\frac{b}{c}\implies (a-b)cp=b(a-c)</math> | :<math>\frac{ap+b}{cp+a}=\frac{b}{c}\implies (a-b)cp=b(a-c)</math> | ||
किंतु <math>p>a,b,a-c</math>, क्योंकि | किंतु <math>p>a,b,a-c</math>, क्योंकि <math>p</math> आधार में अंक हैं; अभी तक <math>p</math> विभाजित <math>b(a-c)</math>, जिसका अर्थ है कि <math>a=c</math> है, बाईं ओर भी शून्य होना चाहिए, अर्थात, <math>a=b</math>, समस्या की परिभाषा के अनुसार विरोधाभास (यदि <math>a=b</math>, गणना हो जाती है, तो <math>\frac{a||a}{c||a}=\frac{a}{c} \implies \frac{a||a}{a||a}=\frac{a}{a}=1</math>, जो बहिष्कृत साधारण स्थितियों में से है।) | ||
अन्य गुण यह है कि आधार में समाधानों की संख्या <math>n</math> विषम है [[अगर और केवल अगर|यदि केवल]] <math>n</math> सम वर्ग है। यह उपरोक्त के समान ही सिद्ध किया जा सकता है: मान लीजिए कि हमारे पास समाधान है | अन्य गुण यह है कि आधार में समाधानों की संख्या <math>n</math> विषम है [[अगर और केवल अगर|यदि केवल]] <math>n</math> सम वर्ग है। यह उपरोक्त के समान ही सिद्ध किया जा सकता है: मान लीजिए कि हमारे पास समाधान है | ||
Line 37: | Line 37: | ||
:<math>\frac{an+b}{cn+a}=\frac{b}{c}\implies (a-b)cn=b(a-c)</math> | :<math>\frac{an+b}{cn+a}=\frac{b}{c}\implies (a-b)cn=b(a-c)</math> | ||
लगता है कि <math>a>b,c</math> फिर ध्यान दें <math>a,b,c\to a,a-c,a-b</math> समीकरण का समाधान भी है। यह लगभग समाधान के सेट से स्वयं के लिए समावेशन (गणित) स्थापित करता है। किंतु प्राप्त के | लगता है कि <math>a>b,c</math> फिर ध्यान दें <math>a,b,c\to a,a-c,a-b</math> समीकरण का समाधान भी है। यह लगभग समाधान के सेट से स्वयं के लिए समावेशन (गणित) स्थापित करता है। किंतु प्राप्त के लिए<math>(a-b)^2n=b^2</math> की स्थानापन्न भी कर सकते हैं, जिसके पास केवल तब समाधान होता है जब <math>n</math> वर्ग होता है। <math>n=k^2</math> वर्गमूल और उत्पत्ति को पुनर्व्यवस्थित <math>ak=(k+1)b</math> से किया जाता है। चूंकि सबसे बड़ा सामान्य विभाजक <math>k,(k+1)</math> है, <math>a=(k+1)x,b=kx</math> नोट किया गया है कि <math>a,b<k^2</math>, इसका त्रुटिहीन समाधान <math>x=1,2,3,\ldots,k-1</math> है अर्थात, इसमें विषम संख्या में समाधान हैं जब <math>n=k^2</math> सम वर्ग है। कथन का विलोम (तर्क) यह देखते हुए सिद्ध किया जा सकता है कि ये सभी समाधान प्रारंभिक आवश्यकताओं को पूर्ण करते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 46: | Line 46: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Created On 20/06/2023]] | [[Category:Created On 20/06/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:अंकगणित]] |
Latest revision as of 08:08, 16 July 2023
विषम निरस्तीकरण या आकस्मिक निरस्तीकरण विशेष प्रकार की अंकगणितीय प्रक्रियात्मक त्रुटि है जो संख्यात्मक रूप से उत्तम उत्तर देते है। अंश और हर में भिन्न-भिन्न संख्यात्मक अंकों को निरस्त करके अंश (गणित) को कम करने (गणित) का प्रयास किया जाता है। यह वैध संचालन नहीं है, और सामान्यतः उत्तम उत्तर नहीं देता है, किंतु कुछ दुर्लभ स्थितियों में परिणाम संख्यात्मक रूप से वही होता है जैसे कि उत्तम प्रक्रिया प्रारम्भ की गई हो।[1] अनुगामी शून्यों को निरस्त करने या जहाँ सभी अंक समान हैं, और कुछ स्थितियों को उपेक्षा कर दिया जाता है।
असंगत निरस्तीकरण के उदाहरण जो अभी भी उत्तम परिणाम उत्पन्न करते हैं (ये और उनके व्युत्क्रम आधार 10 में 1 से भिन्न-भिन्न और दो अंकों के साथ स्थितियां समान हैं):
बोआस का लेख आधार 10 के अतिरिक्त आधार (घातांक) में दो अंकों की स्थितियों का विश्लेषण करता है, उदाहरण के लिए, 32/13 = 2/1 और इसके व्युत्क्रम आधार 4 में दो अंकों के साथ एकमात्र समाधान हैं।[2]
अनियमित निरस्तीकरण अधिक अंकों के साथ भी होता है, उदा. 165/462 = 15/42 और अंकों की भिन्न संख्या वाले (98/392 = 8/32) है।
प्राथमिक गुण
जब आधार अभाज्य होता है, तो दो अंकों का समाधान उपस्तिथ नहीं होता है। यह विरोधाभास द्वारा सिद्ध किया जा सकता है: मान लीजिए कि समाधान उपस्तिथ है। व्यापकता की हानि के बिना, हम कह सकते हैं कि यह समाधान है:
जहां डबल वर्टिकल लाइन कॉन्टेनेशन (गणित) को प्रदर्शित करती है। इस प्रकार, हमारे पास है:
किंतु , क्योंकि आधार में अंक हैं; अभी तक विभाजित , जिसका अर्थ है कि है, बाईं ओर भी शून्य होना चाहिए, अर्थात, , समस्या की परिभाषा के अनुसार विरोधाभास (यदि , गणना हो जाती है, तो , जो बहिष्कृत साधारण स्थितियों में से है।)
अन्य गुण यह है कि आधार में समाधानों की संख्या विषम है यदि केवल सम वर्ग है। यह उपरोक्त के समान ही सिद्ध किया जा सकता है: मान लीजिए कि हमारे पास समाधान है
फिर, वही परिवर्तन करते हुए, हम प्राप्त करते हैं
लगता है कि फिर ध्यान दें समीकरण का समाधान भी है। यह लगभग समाधान के सेट से स्वयं के लिए समावेशन (गणित) स्थापित करता है। किंतु प्राप्त के लिए की स्थानापन्न भी कर सकते हैं, जिसके पास केवल तब समाधान होता है जब वर्ग होता है। वर्गमूल और उत्पत्ति को पुनर्व्यवस्थित से किया जाता है। चूंकि सबसे बड़ा सामान्य विभाजक है, नोट किया गया है कि , इसका त्रुटिहीन समाधान है अर्थात, इसमें विषम संख्या में समाधान हैं जब सम वर्ग है। कथन का विलोम (तर्क) यह देखते हुए सिद्ध किया जा सकता है कि ये सभी समाधान प्रारंभिक आवश्यकताओं को पूर्ण करते हैं।
यह भी देखें
संदर्भ
- ↑ Weisstein, Eric W. "Anomalous Cancellation". MathWorld.
- ↑ 2.0 2.1 Boas, R. P. "Anomalous Cancellation." Ch. 6 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 113–129, 1979.