स्कॉट डोमेन: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 54: | Line 54: | ||
श्रेणी:आदेश सिद्धांत | श्रेणी:आदेश सिद्धांत | ||
[[Category: Machine Translated Page]] | [[Category:Created On 01/07/2023|Scott Domain]] | ||
[[Category: | [[Category:Machine Translated Page|Scott Domain]] | ||
[[Category:Templates Vigyan Ready|Scott Domain]] |
Latest revision as of 10:31, 13 July 2023
ऑर्डर सिद्धांत और डोमेन सिद्धांत के गणितीय क्षेत्रों में, स्कॉट डोमेन बीजगणितीय, परिबद्ध-पूर्ण सीपीओ है। इनका नाम डाना एस. स्कॉट के सम्मान में रखा गया है, जो डोमेन सिद्धांत के आगमन पर इन संरचनाओं का अध्ययन करने वाले पहले व्यक्ति थे। इस प्रकार स्कॉट डोमेन बीजगणितीय अक्षांशों से अधिक निकटता से संबंधित होते हैं, अतः केवल संभवतः सबसे बड़े तत्व की कमी के कारण भिन्न होते हैं। वह स्कॉट सूचना प्रणालियों से भी निकटता से संबंधित होता हैं, जो स्कॉट डोमेन का वाक्यात्मक प्रतिनिधित्व बनाते हैं।
जबकि उपरोक्त परिभाषा के साथ स्कॉट डोमेन शब्द का व्यापक रूप से उपयोग किया जाता है, अतः "डोमेन" शब्द का ऐसा कोई सामान्यतः स्वीकृत अर्थ नहीं होता है और विभिन्न लेखक भिन्न-भिन्न परिभाषाओं का उपयोग करते है। इस प्रकार स्कॉट ने स्वयं उन संरचनाओं के लिए "डोमेन" का उपयोग किया, जिन्हें अब "स्कॉट डोमेन" कहा जाता है। इसके अतिरिक्त, स्कॉट डोमेन कुछ प्रकाशनों में "बीजगणितीय सेमीलैटिस" जैसे अन्य नामों के साथ दिखाई देते हैं।
मूल रूप से, दाना स्कॉट ने पूर्ण जाली की मांग की थी और रूसी गणितज्ञ यूरी येर्शोव ने पूर्ण आंशिक क्रम की आइसोमोर्फिक संरचना का निर्माण किया था। किन्तु लौह पर्दा के गिरने के पश्चात् वैज्ञानिक संचार में सुधार होने तक इसे मान्यता नहीं दी गई थी। इस प्रकार उनके कार्य के सम्मान में, अनेक गणितीय दस्तावेज़ अब इस मौलिक निर्माण को "स्कॉट-एर्शोव" डोमेन कहते हैं।
परिभाषा
औपचारिक रूप से, गैर-रिक्त आंशिक रूप से ऑर्डर किया गया समूह यदि निम्नलिखित होल्ड होता है, तब इसे स्कॉट डोमेन कहा जाता है।
- D पूर्ण आंशिक क्रम होता है, अर्थात् D के सभी निर्देशित उपसमुच्चय में सर्वोच्च होता है।
- D पूर्ण रूप से परिबद्ध होता है, अर्थात् D के सभी उपसमुच्चय जिनकी कुछ ऊपरी सीमा होती है, उनका सर्वोच्च होता है।
- D बीजगणितीय स्थिति होती है, अर्थात् D प्रत्येक तत्व को D के कॉम्पैक्ट तत्वों के निर्देशित समूह के सर्वोच्च के रूप में प्राप्त किया जा सकता है।
गुण
चूँकि रिक्त समूह में निश्चित रूप से कुछ ऊपरी सीमा होती है, अतः हम कम से कम तत्व के अस्तित्व का (रिक्त समुच्चय का सर्वोच्च) परिबद्ध पूर्णता से निष्कर्ष निकाल सकते हैं।
पूर्ण रूप से परिबद्ध होने की संपत्ति D के सभी गैर-रिक्त उपसमुच्चयों के इन्फिमा के अस्तित्व के समान्तर होता है। सामान्यतः यह सर्वविदित होता है कि सभी इन्फिमा का अस्तित्व सभी सुप्रीमा के अस्तित्व को दर्शाता है और इस प्रकार आंशिक रूप से व्यवस्थित समूह को पूर्ण जाली में परिवर्तित कर देता है। इस प्रकार, जब शीर्ष तत्व (रिक्त समूह का अधिकतम) स्कॉट डोमेन से जुड़ा होता है, तब कोई यह निष्कर्ष निकाल सकता है।
- नया शीर्ष तत्व कॉम्पैक्ट होता है (चूंकि, ऑर्डर पहले पूर्ण निर्देशित किया गया था) और
- परिणामी स्थिति बीजगणितीय जाली होती है (अर्थात् पूर्ण जाली जो बीजगणितीय है)।
परिणाम स्वरुप, स्कॉट डोमेन अर्थ में "लगभग" बीजगणितीय अक्षांश होता हैं। चूँकि, पूर्ण जाली से शीर्ष तत्व को हटाने से सदैव स्कॉट डोमेन उत्पन्न नहीं होता है। (पूर्ण जाली पर विचार करते है, इसके परिमित उपसमुच्चय निर्देशित समूह बनाते है, किन्तु इसमें कोई ऊपरी सीमा नहीं है)
स्कॉट निरंतरता का परिचय देकर स्कॉट डोमेन टोपोलॉजिकल स्पेस बन जाते हैं।
स्पष्टीकरण
स्कॉट डोमेन का उद्देश्य सूचना सामग्री द्वारा क्रमबद्ध आंशिक बीजगणितीय डेटा का प्रतिनिधित्व करना है। इस प्रकार तत्व डेटा का भाग होता है जिसे पूर्ण प्रकार से परिभाषित नहीं किया जा सकता है। अतः कथन का अर्थ होता है और में वह सारी जानकारी सम्मिलित होती है, जो करता है।
इस व्याख्या से हम देख सकते हैं कि सर्वोच्च उपसमुच्चय का वह तत्व होता है जिसमें किसी भी तत्व की सारी जानकारी समाहित होती है अतः जो में सम्मिलित होता है, किन्तु इससे अधिक नहीं होता है। इस प्रकार स्पष्ट रूप से ऐसा सर्वोच्च केवल अस्तित्व में होता है (अर्थात्, समझ में आता है)। सामान्यतः में असंगत जानकारी सम्मिलित नहीं होती है, इसलिए डोमेन पूर्ण रूप से निर्देशित और परिबद्ध होता है, किन्तु आवश्यक नहीं कि सभी सर्वोच्च अस्तित्व में होते है। इस प्रकार बीजगणितीय सिद्धांत अनिवार्य रूप से यह सुनिश्चित करता है कि सभी तत्वों को उनकी सभी जानकारी (गैर-कड़ाई से) क्रम में नीचे से प्राप्त होती है। विशेष रूप से, सघन या परिमित से गैर-संक्षिप्त या अनंत तत्वों की ओर छलांग किसी भी अतिरिक्त जानकारी को गुप्त रूप से प्रस्तुत नहीं करती है जिससे किसी सीमित स्तर पर नहीं पहुँचा जा सकता है। अतः निचला तत्व रिक्त समूह का सर्वोच्च होता है, अर्थात् वह तत्व जिसमें कोई जानकारी नहीं होती है। इसका अस्तित्व सीमित पूर्णता से निहित होता है, जिससे कि, रिक्त रूप से, रिक्त समूह की किसी भी गैर-रिक्त स्थिति में ऊपरी सीमा होती है।
दूसरी ओर, अनंत वह तत्व होता है जिसमें सभी जानकारी सम्मिलित होती है जो सभी तत्वों द्वारा साझा की जाती है और कम नहीं यदि इसमें कोई सुसंगत जानकारी नहीं होती है, तब इसके तत्वों में कोई सामान्य जानकारी नहीं होती है और इसलिए यह न्यूनतम है। इस प्रकार सभी गैर-रिक्त इन्फिमा उपस्तिथ होते हैं, किन्तु सभी इन्फिमा आवश्यक रूप से रोचक नहीं होते हैं।
आंशिक डेटा के संदर्भ में यह परिभाषा बीजगणित को तेजी से अधिक परिभाषित आंशिक बीजगणित के अनुक्रम की सीमा के रूप में परिभाषित करने की अनुमति देती है - दूसरे शब्दों में ऑपरेटर का निश्चित बिंदु जो बीजगणित में उत्तरोत्तर अधिक जानकारी जोड़ता है। इस प्रकार अधिक जानकारी के लिए डोमेन सिद्धांत देख सकते है।
उदाहरण
- प्रत्येक परिमित स्थिति पूर्ण और बीजगणितीय रूप से निर्देशित होती है। इस प्रकार कोई भी परिबद्ध-पूर्ण परिमित स्थिति तुच्छ रूप से स्कॉट डोमेन होते है।
- अतिरिक्त शीर्ष तत्व ω के साथ प्राकृतिक संख्याएँ बीजगणितीय जाली का निर्माण करती हैं, इसलिए स्कॉट डोमेन इस दिशा में अधिक उदाहरणों के लिए, बीजगणितीय जालकों पर लेख देख सकते है।
- शब्दों पर उपसर्ग क्रम के अनुसार वर्णमाला {0,1} पर सभी परिमित और अनंत शब्दों के समुच्चय पर विचार करते है। इस प्रकार, शब्द w किसी शब्द से छोटा होता है, यदि w, v का उपसर्ग होता है, अर्थात् यदि कोई (सीमित या अनंत) शब्द v' है, जैसे कि . उदाहरण के लिए, . रिक्त शब्द इस क्रम का निचला तत्व होता है और प्रत्येक निर्देशित समूह (जो सदैव कुल क्रम होता है) को सरलता से सर्वोच्च माना जाता है। इसी प्रकार, व्यक्ति तुरंत बंधी हुई पूर्णता की पुष्टि करता है। चूँकि, परिणामी उपसमूह में निश्चित रूप से अनेक अधिकतम तत्वों वाले शीर्ष का अभाव होता है (जैसे 111... या 000...)। यह बीजगणितीय भी होता है, जिससे कि प्रत्येक परिमित शब्द सघन होता है और हम निश्चित रूप से परिमित शब्दों की श्रृंखला द्वारा अनंत शब्दों का अनुमान लगा सकते हैं। इस प्रकार यह स्कॉट डोमेन होता है, जो बीजगणितीय जालक नहीं होता है।
- ऋणात्मक उदाहरण के लिए, इकाई अंतराल [0,1] में वास्तविक संख्याओं पर विचार करते है, जो उनके प्राकृतिक क्रम के अनुसार क्रमबद्ध हैं। यह परिबद्ध-पूर्ण सीपीओ बीजगणितीय नहीं होता है। इस प्रकार वास्तव में इसका एकमात्र सघन तत्व 0 होता है।
संदर्भ
साहित्य
डोमेन सिद्धांत के लिए दिया गया साहित्य देख सकते है।
श्रेणी:डोमेन सिद्धांत
श्रेणी:आदेश सिद्धांत