उपश्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Category whose objects and morphisms are inside a bigger category}}
{{Short description|Category whose objects and morphisms are inside a bigger category}}गणित में, विशेष रूप से [[श्रेणी सिद्धांत]], [[श्रेणी (गणित)]] की उपश्रेणी C श्रेणी S है जिसका ऑब्जेक्ट (श्रेणी सिद्धांत) C में ऑब्जेक्ट है और जिसका रूपवाद <nowiki>''</nowiki> ''C'' समान पहचान और आकारिकी की संरचना के साथ ''में रूपवाद है'' । सरल रूप से, C की उपश्रेणी C से उसकी कुछ ऑब्जेक्ट और एर्रो को "हटाकर" प्राप्त की गई श्रेणी है।
{{For|subcategories on Wikipedia|Wikipedia:Subcategories}}
 
गणित में, विशेष रूप से [[श्रेणी सिद्धांत]], [[श्रेणी (गणित)]] की उपश्रेणी C श्रेणी S है जिसका पिण्ड (श्रेणी सिद्धांत) C में पिण्ड हैं और जिसका रूपवाद <nowiki>''</nowiki> ''C'' समान पहचान और आकारिकी की संरचना के साथ ''में रूपवाद है'' । सरल रूप से, C की उपश्रेणी C से उसकी कुछ पिण्ड और तीरों को हटाकर प्राप्त की गई श्रेणी है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
Line 29: Line 26:
C की उपश्रेणी S को देखते हुए, समावेशन फ़ैक्टर I: S → C ऑब्जेक्ट पर विश्वसनीय प्रकार्यक और अंतः क्षेपक दोनों है। यह पूर्ण प्रकार्यक है यदि S पूर्ण उपश्रेणी है।
C की उपश्रेणी S को देखते हुए, समावेशन फ़ैक्टर I: S → C ऑब्जेक्ट पर विश्वसनीय प्रकार्यक और अंतः क्षेपक दोनों है। यह पूर्ण प्रकार्यक है यदि S पूर्ण उपश्रेणी है।


कुछ लेखक 'एम्बेडिंग' को [[पूर्ण और वफादार फ़नकार|पूर्ण और विश्वसनीय प्रकार्यक]] के रूप में परिभाषित करते हैं। ऐसा प्रकार्यक आवश्यक रूप से समरूपता तक की ऑब्जेक्ट पर अंतः क्षेपक होता है। उदाहरण के लिए, [[योनेडा एम्बेडिंग]] इस अर्थ में एम्बेडिंग है।
कुछ लेखक '''<nowiki/>'अंतःस्थापित'''' को [[पूर्ण और वफादार फ़नकार|पूर्ण और विश्वसनीय प्रकार्यक]] के रूप में परिभाषित करते हैं। ऐसा प्रकार्यक आवश्यक रूप से समरूपता तक की ऑब्जेक्ट पर अंतः क्षेपक होता है। उदाहरण के लिए, [[योनेडा एम्बेडिंग]] इस अर्थ में एम्बेडिंग है।


कुछ लेखक 'एम्बेडिंग' को पूर्ण और [[पूर्ण और वफादार फ़नकार|विश्वसनीय प्रकार्यक]] के रूप में परिभाषित करते हैं जो ऑब्जेक्ट पर अंतः क्षेपक होता है।<ref>{{cite web|author=Jaap van Oosten|title=मूल श्रेणी सिद्धांत|url=http://www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf}}</ref> अन्य लेखक प्रकार्यक को एम्बेडिंग के रूप में परिभाषित करते हैं यदि वह है | विश्वसनीय ऑब्जेक्ट पर अंतः क्षेपक समान रूप से, F एम्बेडिंग है यदि यह आकारिकी पर अंतः क्षेपक है। प्रकार्यक A को तब पूर्ण एम्बेडिंग कहा जाता है यदि यह पूर्ण प्रकार्यक और एम्बेडिंग है।
कुछ लेखक '''<nowiki/>'अंतःस्थापित'''' को पूर्ण और [[पूर्ण और वफादार फ़नकार|विश्वसनीय प्रकार्यक]] के रूप में परिभाषित करते हैं जो ऑब्जेक्ट पर अंतः क्षेपक होता है।<ref>{{cite web|author=Jaap van Oosten|title=मूल श्रेणी सिद्धांत|url=http://www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf}}</ref> अन्य लेखक प्रकार्यक को '''अंतःस्थापित''' के रूप में परिभाषित करते हैं यदि वह है | विश्वसनीय ऑब्जेक्ट पर अंतः क्षेपक समान रूप से, F अंतःस्थापित है यदि यह आकारिकी पर अंतः क्षेपक है। प्रकार्यक A को तब पूर्ण अंतःस्थापित कहा जाता है यदि यह पूर्ण प्रकार्यक और अंतःस्थापित है।


पिछले पैराग्राफ की परिभाषाओं के साथ, किसी भी (पूर्ण) एम्बेडिंग F के लिए: B → C F की [[छवि (गणित)|चित्र (गणित)]] पूर्ण उपश्रेणी ''है  | C का S, और  F  B और  S के बीच श्रेणियों की समरूपता उत्पन्न करता है। यदि  F ऑब्जेक्ट्स पर अंतः क्षेपक नहीं है तो  F की चित्र  B की श्रेणियों के समतुल्य है।''
पिछले पैराग्राफ की परिभाषाओं के साथ, किसी भी (पूर्ण) अंतःस्थापित F के लिए: B → C F की [[छवि (गणित)|चित्र (गणित)]] पूर्ण उपश्रेणी ''है  | C का S, और  F  B और  S के बीच श्रेणियों की समरूपता उत्पन्न करता है। यदि  F ऑब्जेक्ट्स पर अंतः क्षेपक नहीं है तो  F की चित्र  B की श्रेणियों के समतुल्य है।''


कुछ श्रेणियों में, श्रेणी के आकारिकी के बारे में भी बात की जा सकती है, जो श्रेणी सिद्धांत को एम्बेड कर रहा है।
कुछ श्रेणियों में, श्रेणी के आकारिकी के बारे में भी बात की जा सकती है, जो श्रेणी सिद्धांत को अंतःस्थापित कर रहा है।


== उपश्रेणियों के प्रकार ==
== उपश्रेणियों के प्रकार ==
C की उपश्रेणी S को 'आइसोमोर्फिज्म-बंद उपश्रेणी | आइसोमोर्फिज्म-बंद' या 'पूर्ण' कहा जाता है यदि सी में प्रत्येक आइसोमोर्फिज्म के: एक्स → वाई इस तरह है कि एस में वाई भी एस से संबंधित है। एक आइसोमोर्फिज्म-बंद पूर्ण उपश्रेणी 'सख्ती से पूर्ण' कहा जाता है।
C की उपश्रेणी S को '''<nowiki/>'समरूप-बंद उपश्रेणी'<nowiki/>''' या '''<nowiki/>'परिपूर्ण'<nowiki/>''' कहा जाता है यदि C में प्रत्येक समरूप K: X→ Y इस प्रकार है कि S में Y भी S से संबंधित है। बंद-समरूप पूर्ण उपश्रेणी ' '''जटिलता से पूर्ण'''' कहा जाता है।


C की एक उपश्रेणी 'वाइड' या 'lluf' है (यह शब्द सबसे पहले [[पीटर फ्रायड]] द्वारा प्रस्तुत किया गया था)।<ref>{{cite book |last= Freyd|first= Peter|authorlink=Peter J. Freyd  |year= 1991|pages=95–104 |chapter= Algebraically complete categories|series=Lecture Notes in Mathematics |volume= 1488|publisher=Springer|title=Proceedings of the International Conference on Category Theory, Como, Italy (CT 1990)|doi=10.1007/BFb0084215|isbn= 978-3-540-54706-8}}</ref>) यदि इसमें C की सभी वस्तुएँ शामिल हैं।<ref>{{nlab|id=wide+subcategory|title=Wide subcategory}}</ref> एक विस्तृत उपश्रेणी आम तौर पर पूर्ण नहीं होती है: किसी श्रेणी की एकमात्र विस्तृत पूर्ण उपश्रेणी वह श्रेणी ही होती है।
C की उपश्रेणी '<nowiki/>'''वाइड'''<nowiki/>' या '<nowiki/>'''लुफ़'''' है (यह शब्द सबसे पहले [[पीटर फ्रायड]] द्वारा प्रस्तुत किया गया था)।<ref>{{cite book |last= Freyd|first= Peter|authorlink=Peter J. Freyd  |year= 1991|pages=95–104 |chapter= Algebraically complete categories|series=Lecture Notes in Mathematics |volume= 1488|publisher=Springer|title=Proceedings of the International Conference on Category Theory, Como, Italy (CT 1990)|doi=10.1007/BFb0084215|isbn= 978-3-540-54706-8}}</ref>) यदि इसमें C की सभी ऑब्जेक्ट्स सम्मिलित हैं।<ref>{{nlab|id=wide+subcategory|title=Wide subcategory}}</ref> विस्तृत उपश्रेणी सामान्यतौर पर पूर्ण नहीं होती है: किसी श्रेणी की एकमात्र विस्तृत पूर्ण उपश्रेणी वह श्रेणी ही होती है।


सेरे उपश्रेणी [[एबेलियन श्रेणी]] ''सी'' की एक गैर-रिक्त पूर्ण उपश्रेणी ''एस'' है, जैसे कि सभी छोटे सटीक अनुक्रमों के लिए
सेरे उपश्रेणी [[एबेलियन श्रेणी]] C की अरिक्त पूर्ण उपश्रेणी S है, जैसे कि सभी छोटे सटीक अनुक्रमों के लिए होता है।


:<math>0\to M'\to M\to M''\to 0</math>
:<math>0\to M'\to M\to M''\to 0</math>
C में, M, S से संबंधित है यदि और केवल यदि दोनों <math>M'</math> और  <math>M''</math> करना। यह धारणा एक श्रेणी के स्थानीयकरण से उत्पन्न होती है#सेरे का सी-सिद्धांत|सेरे का सी-सिद्धांत।
C में, M, S से संबंधित है, यदि दोनों <math>M'</math> और  <math>M''</math> करना है। यह धारणा श्रेणी के सेरे का सी-सिद्धांत स्थानीयकरण से उत्पन्न होती है।


== यह भी देखें ==
== यह भी देखें ==
{{Wiktionary}}
* [[चिंतनशील उपश्रेणी|परवर्तनीय  उपश्रेणी]]
*[[चिंतनशील उपश्रेणी]]
*[[सटीक श्रेणी]], वृद्धि के अंतर्गत बंद पूर्ण उपश्रेणी।
*[[सटीक श्रेणी]], एक्सटेंशन के अंतर्गत बंद एक पूर्ण उपश्रेणी।


== संदर्भ ==
== संदर्भ ==
<references />
<references />


{{Category theory}}
[[Category: श्रेणी सिद्धांत]] [[Category: पदानुक्रम]]
[[Category: Machine Translated Page]]
[[Category:Created On 30/06/2023]]
[[Category:Created On 30/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:पदानुक्रम]]
[[Category:श्रेणी सिद्धांत]]

Latest revision as of 10:53, 13 July 2023

गणित में, विशेष रूप से श्रेणी सिद्धांत, श्रेणी (गणित) की उपश्रेणी C श्रेणी S है जिसका ऑब्जेक्ट (श्रेणी सिद्धांत) C में ऑब्जेक्ट है और जिसका रूपवाद '' C समान पहचान और आकारिकी की संरचना के साथ में रूपवाद है । सरल रूप से, C की उपश्रेणी C से उसकी कुछ ऑब्जेक्ट और एर्रो को "हटाकर" प्राप्त की गई श्रेणी है।

औपचारिक परिभाषा

मान लीजिए C श्रेणी है। C की 'उपश्रेणी' S द्वारा दी गई है

  • C की पिण्ड का उपसंग्रह, जिसे ob(S) कहा जाता है,
  • C के आकारिकी का उपसंग्रह, होम (S) दर्शाया गया है।

ऐसा है कि

  • ob(S) में प्रत्येक X के लिए, पहचान रूपवाद idX होम (S) में है |
  • होम (S) में प्रत्येक रूपवाद f: X → Y के लिए, स्रोत X और लक्ष्य Y दोनों ob(S) में हैं|
  • होम (S) में रूपवाद f और g की प्रत्येक जोड़ी के लिए समग्र f o g होम (S) में होता है जब भी इसे परिभाषित किया जाता है।

ये स्थितियाँ सुनिश्चित करती हैं कि S अपने आप में श्रेणी है: इसकी वस्तुओं का संग्रह ob(S) है, इसके आकारिकी का संग्रह होम (S) है, और इसकी पहचान और संरचना C के समान है। स्पष्ट पूर्ण और विश्वसनीय प्रकार्यक I: S → C है, जिसे 'समावेशन प्रकार्यक' कहा जाता है जो ऑब्जेक्ट और आकारिकी को अपने पास ले जाता है।

मान लीजिए कि S, श्रेणी C की उपश्रेणी है। हम कहते हैं कि S, C की 'पूर्ण उपश्रेणी' है, यदि S की ऑब्जेक्ट X और Y के प्रत्येक जोड़े के लिए है।

एक पूर्ण उपश्रेणी वह है जिसमें S की ऑब्जेक्ट के बीच C में सभी रूपवाद सम्मिलित हैं। C में ऑब्जेक्ट A के किसी भी संग्रह के लिए, C की अद्वितीय पूर्ण उपश्रेणी है जिसकी ऑब्जेक्ट A में हैं।

उदाहरण

  • परिमित समुच्चय की श्रेणी समुच्चयों की श्रेणी की पूर्ण उपश्रेणी बनाती है।
  • वह श्रेणी जिसकी ऑब्जेक्ट समुच्चय हैं और जिसकी आकृतियाँ द्विभाजन हैं, समुच्चयों की श्रेणी की अपूर्ण उपश्रेणी बनाती हैं।
  • एबेलियन समूहों की श्रेणी समूहों की श्रेणी की पूर्ण उपश्रेणी बनाती है।
  • रिंग (गणित) की श्रेणी (जिसकी आकृतियाँ यूनिट (रिंग सिद्धांत) वलय समरूपता को संरक्षित करती हैं) Rng_(बीजगणित) की श्रेणी की अपूर्ण उपश्रेणी बनाती हैं।
  • क्षेत्र (गणित) K के लिए, K-वेक्टर रिक्त स्थान की श्रेणी (बाएँ या दाएँ) K-मॉड्यूल (गणित) की श्रेणी की पूर्ण उपश्रेणी बनाती है।

एंबेडिंग

C की उपश्रेणी S को देखते हुए, समावेशन फ़ैक्टर I: S → C ऑब्जेक्ट पर विश्वसनीय प्रकार्यक और अंतः क्षेपक दोनों है। यह पूर्ण प्रकार्यक है यदि S पूर्ण उपश्रेणी है।

कुछ लेखक 'अंतःस्थापित' को पूर्ण और विश्वसनीय प्रकार्यक के रूप में परिभाषित करते हैं। ऐसा प्रकार्यक आवश्यक रूप से समरूपता तक की ऑब्जेक्ट पर अंतः क्षेपक होता है। उदाहरण के लिए, योनेडा एम्बेडिंग इस अर्थ में एम्बेडिंग है।

कुछ लेखक 'अंतःस्थापित' को पूर्ण और विश्वसनीय प्रकार्यक के रूप में परिभाषित करते हैं जो ऑब्जेक्ट पर अंतः क्षेपक होता है।[1] अन्य लेखक प्रकार्यक को अंतःस्थापित के रूप में परिभाषित करते हैं यदि वह है | विश्वसनीय ऑब्जेक्ट पर अंतः क्षेपक समान रूप से, F अंतःस्थापित है यदि यह आकारिकी पर अंतः क्षेपक है। प्रकार्यक A को तब पूर्ण अंतःस्थापित कहा जाता है यदि यह पूर्ण प्रकार्यक और अंतःस्थापित है।

पिछले पैराग्राफ की परिभाषाओं के साथ, किसी भी (पूर्ण) अंतःस्थापित F के लिए: B → C F की चित्र (गणित) पूर्ण उपश्रेणी है | C का S, और F B और S के बीच श्रेणियों की समरूपता उत्पन्न करता है। यदि F ऑब्जेक्ट्स पर अंतः क्षेपक नहीं है तो F की चित्र B की श्रेणियों के समतुल्य है।

कुछ श्रेणियों में, श्रेणी के आकारिकी के बारे में भी बात की जा सकती है, जो श्रेणी सिद्धांत को अंतःस्थापित कर रहा है।

उपश्रेणियों के प्रकार

C की उपश्रेणी S को 'समरूप-बंद उपश्रेणी' या 'परिपूर्ण' कहा जाता है यदि C में प्रत्येक समरूप K: X→ Y इस प्रकार है कि S में Y भी S से संबंधित है। बंद-समरूप पूर्ण उपश्रेणी ' जटिलता से पूर्ण' कहा जाता है।

C की उपश्रेणी 'वाइड' या 'लुफ़' है (यह शब्द सबसे पहले पीटर फ्रायड द्वारा प्रस्तुत किया गया था)।[2]) यदि इसमें C की सभी ऑब्जेक्ट्स सम्मिलित हैं।[3] विस्तृत उपश्रेणी सामान्यतौर पर पूर्ण नहीं होती है: किसी श्रेणी की एकमात्र विस्तृत पूर्ण उपश्रेणी वह श्रेणी ही होती है।

सेरे उपश्रेणी एबेलियन श्रेणी C की अरिक्त पूर्ण उपश्रेणी S है, जैसे कि सभी छोटे सटीक अनुक्रमों के लिए होता है।

C में, M, S से संबंधित है, यदि दोनों और करना है। यह धारणा श्रेणी के सेरे का सी-सिद्धांत स्थानीयकरण से उत्पन्न होती है।

यह भी देखें

संदर्भ

  1. Jaap van Oosten. "मूल श्रेणी सिद्धांत" (PDF).
  2. Freyd, Peter (1991). "Algebraically complete categories". Proceedings of the International Conference on Category Theory, Como, Italy (CT 1990). Lecture Notes in Mathematics. Vol. 1488. Springer. pp. 95–104. doi:10.1007/BFb0084215. ISBN 978-3-540-54706-8.
  3. Wide subcategory at the nLab