क्रमसूचक सीमा: Difference between revisions

From Vigyanwiki
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Infinite ordinal number class}}[[File:omega-exp-omega-labeled.svg|thumb|250px|तक क्रमिक संख्याओं का प्रतिनिधित्व<sup>ω</sup>. सर्पिल का प्रत्येक मोड़ ω की एक शक्ति का प्रतिनिधित्व करता है। सीमा क्रमसूचक वे हैं जो गैर-शून्य हैं और जिनका कोई पूर्ववर्ती नहीं है, जैसे ω या ω<sup>2</sup>]]समुच्चय सिद्धांत में, एक '''सीमा क्रमसूचक''' एक [[क्रमसूचक संख्या]] होती है जो न तो शून्य होती है और न ही कोई आनुक्रमिक क्रमसूचक होती है। वैकल्पिक रूप से, यदि λ से कम कोई क्रमसूचक है तो एक क्रमसूचक λ एक सीमा क्रमसूचक है, और जब भी β λ से कम एक क्रमसूचक है, तो एक क्रमसूचक γ मौजूद होता है जैसे कि β < γ < λ। प्रत्येक क्रमसूचक संख्या या तो शून्य है, एक आनुक्रमिक क्रमसूचक है, या एक सीमा क्रमसूचक है।
{{Short description|Infinite ordinal number class}}[[File:omega-exp-omega-labeled.svg|thumb|250px|ω<sup>ω</sup> तक क्रमसूचक संख्याओं का निरूपण। सर्पिल का प्रत्येक मोड़ ω की एक घात को दर्शाता है। सीमा क्रमसूचक वे होते हैं जो गैर-शून्य होते हैं और जिनका कोई पूर्ववर्ती नहीं होता है, जैसे ω या ω<sup>2</sup>]]समुच्चय सिद्धांत में, '''सीमा क्रमसूचक''' एक [[क्रमसूचक संख्या]] होती है जो न तो शून्य होती है और न ही कोई आनुक्रमिक क्रमसूचक होती है। वैकल्पिक रूप से, यदि λ से न्यूनतम कोई क्रमसूचक है तो क्रमसूचक λ सीमा क्रमसूचक है, और जब भी β λ से कम क्रमसूचक है, तो एक क्रमसूचक γ उपस्थित होता है जैसे कि β < γ < λ है। प्रत्येक क्रमसूचक संख्या या तो शून्य है, आनुक्रमिक क्रमसूचक है, या सीमा क्रमसूचक है।


उदाहरण के लिए, ω, हर [[प्राकृतिक संख्या]] से बड़ा सबसे छोटा क्रमसूचक एक सीमा क्रमसूचक है क्योंकि किसी भी छोटे क्रमसूचक के लिए (यानी, किसी भी प्राकृतिक संख्या के लिए)  n हम इससे बड़ी कोई अन्य प्राकृत संख्या पा सकते हैं (उदाहरण ''n''+1), लेकिन फिर भी ω से कम है।
उदाहरण के लिए, ω, हर [[प्राकृतिक संख्या]] से बड़ा सबसे अल्प क्रमसूचक एक सीमा क्रमसूचक है क्योंकि किसी भी छोटे क्रमसूचक के लिए (यानी, किसी भी प्राकृतिक संख्या के लिए) n हम इससे बड़ी कोई अन्य प्राकृत संख्या पा सकते हैं (उदाहरण ''n''+1), लेकिन फिर भी ω से न्यूनतम है।


ऑर्डिनल्स की वॉन न्यूमैन परिभाषा का उपयोग करते हुए, प्रत्येक ऑर्डिनल सभी छोटे ऑर्डिनल्स का एक सुक्रमित समुच्चय होता है। ऑर्डिनल्स के एक गैर-रिक्त समुच्चय का संघ जिसमें कोई सबसे बड़ा अवयव नहीं होता है, वह हमेशा एक सीमा ऑर्डिनल होता है। [[वॉन न्यूमैन कार्डिनल असाइनमेंट]] का उपयोग करते हुए, प्रत्येक अनंत कार्डिनल संख्या भी एक सीमा क्रमांक है।
क्रमसूचक की वॉन न्यूमैन परिभाषा का उपयोग करते हुए, प्रत्येक ऑर्डिनल सभी छोटे क्रमसूचक का एक सुक्रमित समुच्चय होता है। क्रमसूचक के एक गैर-रिक्त समुच्चय का संघ जिसमें कोई सबसे बड़ा अवयव नहीं होता है, वह हमेशा एक सीमा ऑर्डिनल होता है। [[वॉन न्यूमैन कार्डिनल असाइनमेंट]] का उपयोग करते हुए, प्रत्येक अपरिमित कार्डिनल संख्या भी एक सीमा क्रमांक है।


==वैकल्पिक परिभाषाएँ==
==वैकल्पिक परिभाषाएँ==
सीमा क्रमसूचकों को परिभाषित करने के विभिन्न अन्य विधियां हैं:
सीमा क्रमसूचकों को परिभाषित करने के विभिन्न अन्य विधियां हैं:
*यह अपने नीचे के सभी क्रमादेशों के सर्वोच्च के बराबर है लेकिन शून्य नहीं है। (उत्तरवर्ती क्रमसूचक के साथ तुलना करें: इसके नीचे के क्रमसूचकों के सेट में एक अधिकतम है, इसलिए सर्वोच्च यह अधिकतम है, पिछला क्रमसूचक।)
*यह अपने नीचे के सभी क्रमादेशों के सर्वोच्च के बराबर है लेकिन शून्य नहीं है। (उत्तरवर्ती क्रमसूचक के साथ तुलना करें: इसके नीचे के क्रमसूचकों के समुच्चय में एक अधिकतम है, इसलिए सर्वोच्च यह अधिकतम है, पिछला क्रमसूचक।)
*यह शून्य नहीं है तथा इसका कोई अधिकतम अवयव नहीं है।
*यह शून्य नहीं है तथा इसका कोई अधिकतम अवयव नहीं है।
*इसे α > 0 के लिए ωα के रूप में लिखा जा सकता है। अर्थात्, कैंटर सामान्य रूप में अंतिम पद के रूप में कोई परिमित संख्या नहीं है, और क्रमवाचक गैरशून्य है।
*इसे α > 0 के लिए ωα के रूप में लिखा जा सकता है। अर्थात्, कैंटर सामान्य रूप में अंतिम पद के रूप में कोई परिमित संख्या नहीं है, और क्रमसूचक गैरशून्य है।
*अनुक्रम सांस्थितिकी के संबंध में, यह क्रमसूचक संख्याओं के वर्ग का एक सीमा बिंदु है। (अन्य क्रमसूचक [[पृथक बिंदु]] हैं।)
*अनुक्रम सांस्थितिकी के संबंध में, यह क्रमसूचक संख्याओं के वर्ग का एक सीमा बिंदु है। (अन्य क्रमसूचक [[पृथक बिंदु]] हैं।)


इस बात पर कुछ विवाद मौजूद है कि क्या 0 को सीमा क्रमसूचक के रूप में वर्गीकृत किया जाना चाहिए या नहीं, क्योंकि इसका कोई तत्काल पूर्ववर्ती नहीं है; कुछ पाठ्यपुस्तकों में सीमा क्रमसूचक की कक्षा में 0 शामिल है<ref>for example, Thomas Jech, ''Set Theory''. Third Millennium edition. Springer.</ref> जबकि अन्य इसे बाहर रखते हैं।<ref>for example, Kenneth Kunen, ''Set Theory. An introduction to independence proofs''. North-Holland.</ref>
इस बात पर कुछ विवाद उपस्थित है कि क्या 0 को सीमा क्रमसूचक के रूप में वर्गीकृत किया जाना चाहिए या नहीं, क्योंकि इसका कोई तत्काल पूर्ववर्ती नहीं है; कुछ पाठ्यपुस्तकों में सीमा क्रमसूचक की कक्षा में 0 सम्मिलित है<ref>for example, Thomas Jech, ''Set Theory''. Third Millennium edition. Springer.</ref> जबकि अन्य इसे बाहर रखते हैं।<ref>for example, Kenneth Kunen, ''Set Theory. An introduction to independence proofs''. North-Holland.</ref>
==उदाहरण==
==उदाहरण==
क्योंकि क्रमसूचक संख्याओं का [[वर्ग (सेट सिद्धांत)|वर्ग (समुच्चय सिद्धांत)]] सुव्यवस्थित है, सबसे छोटी अनंत सीमा क्रमसूचक है; ω (ओमेगा) द्वारा निरूपित। क्रमसूचक ω सबसे छोटा अनंत क्रमसूचक (सीमा की परवाह किए बिना) भी है, क्योंकि यह [[प्राकृतिक संख्या]]ओं की सबसे निचली ऊपरी सीमा है। इसलिए ω प्राकृतिक संख्याओं के क्रम प्रकार को दर्शाता है। पहले से ऊपर की अगली सीमा क्रमसूचक ω + ω = ω·2 है, जो किसी भी प्राकृतिक संख्या n के लिए ω·n का सामान्यीकरण करता है। सभी ω·n का [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] (ऑर्डिनल्स के किसी भी [[सेट (गणित)|समुच्चय (गणित)]] पर सर्वोच्च संचालन) लेते हुए, हमें ω·ω = ω मिलता है<sup>2</sup>, जो ω का सामान्यीकरण करता है<sup>n</sup>किसी भी प्राकृत संख्या के लिए n. उत्पादन के लिए इस प्रक्रिया को आगे निम्नानुसार दोहराया जा सकता है:
चूँकि क्रमसूचक संख्याओं का वर्ग आनुक्रमिक है, इसलिए सबसे छोटी अपरिमित सीमा क्रमसूचक होती है; ω (ओमेगा) द्वारा दर्शाया गया है। क्रमसूचक ω सबसे अल्प अपरिमित क्रमसूचक (अवक्षेपण ''सीमा'') भी है, क्योंकि यह [[प्राकृतिक संख्या|प्राकृतिक संख्याओं]] की सबसे न्यूनतम ऊपरी सीमा है। इसलिए ω प्राकृतिक संख्याओं के क्रम प्रकार का प्रतिनिधित्व करता है। पहले के ऊपर अगली सीमा क्रमसूचक ω + ω = ω·2 है, जो किसी भी प्राकृतिक संख्या n के लिए ω·n को सामान्यीकृत करता है। सभी ω·n का संघ (क्रमसूचक के किसी भी समुच्चय पर सर्वोच्च संक्रिया) लेते हुए, हमें ω·ω = ω<sup>2</sup> मिलता है, जो किसी भी प्राकृतिक संख्या n के लिए ωn को सामान्यीकृत करता है। उत्पादन के लिए इस प्रक्रिया को इस प्रकार दोहराया जा सकता है:


:<math>\omega^3, \omega^4, \ldots, \omega^\omega, \omega^{\omega^\omega}, \ldots, \varepsilon_0 = \omega^{\omega^{\omega^{~\cdot^{~\cdot^{~\cdot}}}}}, \ldots</math>
:<math>\omega^3, \omega^4, \ldots, \omega^\omega, \omega^{\omega^\omega}, \ldots, \varepsilon_0 = \omega^{\omega^{\omega^{~\cdot^{~\cdot^{~\cdot}}}}}, \ldots</math>
सामान्य तौर पर, गुणन, घातांक, बार-बार घातांक आदि के माध्यम से ये सभी पुनरावर्ती परिभाषाएँ सीमा क्रमसूचक उत्पन्न करती हैं। अब तक चर्चा किए गए सभी क्रमादेश अभी भी [[गणनीय]] क्रमादेश हैं। हालाँकि, चर्च-क्लीन ऑर्डिनल से कम के सभी ऑर्डिनल के लिए कोई पुनरावर्ती गणना योग्य योजना नहीं है, जो कि एक गणनीय ऑर्डिनल है।
सामान्य तौर पर, ये सभी पुनरावर्ती परिभाषाएँ गुणन, घातांक, बार-बार घातांक आदि के माध्यम से सीमा क्रमसूचक उत्पन्न करती हैं। अब तक चर्चा किए गए सभी क्रम-क्रम अभी भी [[गणनीय]] क्रम-क्रम हैं। हालाँकि, चर्च-क्लेन क्रमसूचक से कम के सभी क्रमसूचक को व्यवस्थित रूप से नामित करने के लिए कोई पुनरावर्ती गणना योग्य योजना नहीं है, जो कि एक गणनीय क्रमसूचक है।


गणनीय से परे, पहले बेशुमार क्रमसूचक को आमतौर पर ω से दर्शाया जाता है<sub>1</sub>. यह भी एक सीमा क्रमसूचक है.
गणनीय से परे, पहला असंख्य क्रमसूचक सामान्यतः ω<sub>1</sub> दर्शाया जाता है। यह एक सीमा क्रमसूचक भी है।


जारी रखते हुए, कोई निम्नलिखित प्राप्त कर सकता है (जिनमें से सभी अब प्रमुखता में बढ़ रहे हैं):
आगे बढ़ते हुए, कोई निम्नलिखित प्राप्त कर सकता है (जिनमें से सभी अब प्रमुखता में बढ़ रहे हैं):


:<math>\omega_2, \omega_3, \ldots, \omega_\omega, \omega_{\omega + 1}, \ldots, \omega_{\omega_\omega},\ldots</math>
:<math>\omega_2, \omega_3, \ldots, \omega_\omega, \omega_{\omega + 1}, \ldots, \omega_{\omega_\omega},\ldots</math>
सामान्य तौर पर, हमें हमेशा एक सीमा क्रमसूचक मिलता है जब अध्यादेशों के एक गैर-रिक्त समुच्चय का संघ लिया जाता है जिसमें कोई [[अधिकतम]] अवयव नहीं होता है।
सामान्य तौर पर, हमें हमेशा एक सीमा क्रमसूचक मिलता है जब क्रमसूचकों के एक गैर-रिक्त समुच्चय का संघ लिया जाता है जिसमें कोई अधिकतम अवयव नहीं होता है।


α > 0 के लिए फॉर्म ω²α के ऑर्डिनल्स, सीमाओं की सीमाएं आदि हैं।
α > 0 के लिए फॉर्म ω²α के क्रमसूचक, सीमाओं की सीमा आदि हैं।


== गुण ==
== गुण ==
आनुक्रमिक ऑर्डिनल्स और सीमा ऑर्डिनल्स (विभिन्न [[सह-अंतिमता]] के) के साथ-साथ शून्य, ऑर्डिनल्स के पूरे वर्ग को समाप्त कर देते हैं, इसलिए इन मामलों को अक्सर [[अनंत प्रेरण]] या [[ट्रांसफ़िनिट रिकर्सन]] द्वारा परिभाषाओं द्वारा प्रमाण में उपयोग किया जाता है। सीमा अध्यादेश ऐसी प्रक्रियाओं में एक प्रकार के महत्वपूर्ण मोड़ का प्रतिनिधित्व करते हैं, जिसमें किसी को सीमित संचालन का उपयोग करना चाहिए जैसे कि सभी पूर्ववर्ती अध्यादेशों पर संघ को ले जाना। सिद्धांत रूप में, कोई भी लिमिट ऑर्डिनल्स पर कुछ भी कर सकता है, लेकिन ऑर्डर टोपोलॉजी में यूनियन को लेना एक निरंतर कार्य (टोपोलॉजी) है और यह आमतौर पर वांछनीय है।
आनुक्रमिक क्रमसूचक और सीमा क्रमसूचक (विभिन्न सह-अंतिमताओं के) के साथ-साथ शून्य, क्रमसूचक के पूरे वर्ग को समाप्त कर देते हैं, इसलिए इन मामलों को प्रायः परिमितातीत प्रवर्तन या परिमितातीत प्रतिवर्तन द्वारा परिभाषाओं द्वारा प्रमाण में उपयोग किया जाता है। सीमा अध्यादेश ऐसी प्रक्रियाओं में एक प्रकार के "परिवर्तन का बिन्दू" का प्रतिनिधित्व करते हैं, जिसमें किसी को सभी पूर्ववर्ती क्रमसूचकों पर संघ को ले जाने जैसे सीमित संचालन का उपयोग करना चाहिए। सिद्धांत रूप में, कोई भी सीमित क्रमसूचक पर कुछ भी कर सकता है, लेकिन यूनियन को ऑर्डर टोपोलॉजी में निरंतर लेना है और यह सामान्यतः वांछनीय है।


यदि हम वॉन न्यूमैन कार्डिनल असाइनमेंट का उपयोग करते हैं, तो प्रत्येक अनंत कार्डिनल संख्या भी एक सीमा क्रमसूचक है (और यह एक उपयुक्त अवलोकन है, क्योंकि कार्डिनल लैटिन कार्डो से निकला है जिसका अर्थ है काज या मोड़): इस तथ्य का प्रमाण केवल दिखाकर किया जाता है ग्रैंड होटल तर्क के हिल्बर्ट विरोधाभास के माध्यम से प्रत्येक अनंत आनुक्रमिक क्रमसूचक एक सीमा क्रमसूचक के बराबर है।
यदि हम वॉन न्यूमैन कार्डिनल असाइनमेंट का उपयोग करते हैं, तो प्रत्येक अपरिमित कार्डिनल संख्या भी एक सीमा क्रमसूचक है (और यह एक उपयुक्त अवलोकन है, क्योंकि कार्डिनल लैटिन कार्डो से निकला है जिसका अर्थ है काज या वर्तन बिंदु): इस तथ्य का प्रमाण केवल दिखाने से होता है होटल इन्फिनिटी तर्क के माध्यम से प्रत्येक अपरिमित उत्तराधिकारी क्रमसूचक एक सीमा क्रमसूचक के समतुल्य है।


कार्डिनल नंबरों की उत्तराधिकार और सीमा (हर चीज़ को उच्च स्तर पर अपग्रेड किया जाना) की अपनी धारणा होती है।
कार्डिनल संख्याओं की आनुक्रमिक और सीमा (हर चीज़ को उच्च स्तर पर अपग्रेड किया जाना) की अपनी धारणा है।


== अविभाज्य क्रम-वाचक ==
== अविभाज्य क्रमसूचक ==
{{main article|Indecomposable ordinal}}
{{main article|अविभाज्य क्रमसूचक}}


योगात्मक रूप से अविघट्य
'''योगात्मक रूप से अविभाज्य'''


एक सीमा क्रमसूचक α को योगात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से कम β < α अध्यादेशों के योग के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ किसी भी प्रकार के क्रमसूचक हैं <math>\omega^\beta</math> β के लिए एक क्रमसूचक. सबसे छोटा लिखा है <math>\gamma_0</math>, दूसरा लिखा है <math>\gamma_1</math>, वगैरह।<ref name=":0">{{Cite web|title=सीमा क्रमसूचक - कैंटर की अटारी|url=http://cantorsattic.info/Limit_ordinal#Types_of_Limits|access-date=2021-08-10|website=cantorsattic.info}}</ref>
सीमा क्रमसूचक α को योगात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से न्यूनतम β < α क्रमसूचक के योग के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए <math>\omega^\beta</math> रूप में किसी भी प्रकार के क्रमसूचक हैं। सबसे अल्प लिखा जाता है <math>\gamma_0</math> दूसरा लिखा जाता है <math>\gamma_1</math>, इत्यादि।<ref name=":0">{{Cite web|title=सीमा क्रमसूचक - कैंटर की अटारी|url=http://cantorsattic.info/Limit_ordinal#Types_of_Limits|access-date=2021-08-10|website=cantorsattic.info}}</ref>
गुणात्मक रूप से अविभाज्य


एक सीमा क्रमसूचक α को गुणात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से कम β < α अध्यादेशों के उत्पाद के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ किसी भी प्रकार के क्रमसूचक हैं <math>\omega^{\omega^\beta}</math> β के लिए एक क्रमसूचक. सबसे छोटा लिखा है <math>\delta_0</math>, दूसरा लिखा है <math>\delta_1</math>, वगैरह।<ref name=":0" />
'''गुणात्मक रूप से अविभाज्य'''


घातांकीय रूप से अविभाज्य और परे
सीमा क्रमसूचक α को गुणात्मक रूप से अविभाज्य कहा जाता है यदि इसे β < α से न्यूनतम के क्रमसूचकों के उत्पाद के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए <math>\omega^{\omega^\beta}</math>रूप के किसी भी क्रमसूचक हैं। सबसे छोटे को डेल्टा <math>\delta_0</math> लिखा जाता है, दूसरे को <math>\delta_1</math>लिखा जाता है, आदि।<ref name=":0" />
 
घातीय रूप से अविभाज्य शब्द का तात्पर्य उन ऑर्डिनल्स से नहीं है जो β < α के घातीय उत्पाद ''(?)'' के रूप में अभिव्यक्त नहीं होते हैं, बल्कि α से कम के ऑर्डिनल्स हैं, बल्कि [[एप्सिलॉन संख्या (गणित)]], टेट्राशनल रूप से अविभाज्य जीटा संख्याओं को संदर्भित करता है, जो पंचम रूप से अविभाज्य हैं। ईटा संख्या आदि को संदर्भित करता है।<ref name=":0" />


'''घातीय रूप से अविभाज्य और अधिक'''


शब्द "घातीय रूप से अविभाज्य" उन ऑर्डिनल्स को संदर्भित नहीं करता है जो β < α के घातीय उत्पाद (''?'') के रूप में व्यक्त नहीं किए जा सकते हैं, बल्कि α से न्यूनतम के ऑर्डिनल्स को संदर्भित करता है, बल्कि [[एप्सिलॉन संख्या (गणित)|एप्सिलॉन]] संख्याओं को संदर्भित करता है, "टेट्रेशनली अविभाज्य" जीटा संख्याओं को संदर्भित करता है, "पंचात्मक रूप से अविभाज्य" का तात्पर्य ईटा संख्याओं आदि से है।<ref name=":0" />
== यह भी देखें ==
== यह भी देखें ==
*क्रमिक अंकगणित
*क्रमसूचक अंकगणित
*कार्डिनल सीमित करें
*कार्डिनल सीमा
*[[मौलिक अनुक्रम (क्रमांक)]]
*[[मौलिक अनुक्रम (क्रमांक)|मूलभूत अनुक्रम (क्रमांक)]]


==संदर्भ==
==संदर्भ==
<references/>
<references/>
==अग्रिम पठन==
==अग्रिम पठन==
* [[Georg Cantor|Cantor, G.]], (1897), ''Beitrage zur Begrundung der transfiniten Mengenlehre.  II'' (tr.: Contributions to the Founding of the Theory of Transfinite Numbers II), Mathematische Annalen 49, 207-246 [https://archive.org/details/117770262 English translation].
* [[Georg Cantor|Cantor, G.]], (1897), ''Beitrage zur Begrundung der transfiniten Mengenlehre.  II'' (tr.: Contributions to the Founding of the Theory of Transfinite Numbers II), Mathematische Annalen 49, 207-246 [https://archive.org/details/117770262 English translation].
Line 65: Line 62:




{{DEFAULTSORT:Limit Ordinal}}[[Category: क्रमसूचक संख्या]]
{{DEFAULTSORT:Limit Ordinal}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Limit Ordinal]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023|Limit Ordinal]]
[[Category:Lua-based templates|Limit Ordinal]]
[[Category:Machine Translated Page|Limit Ordinal]]
[[Category:Pages with script errors|Limit Ordinal]]
[[Category:Templates Vigyan Ready|Limit Ordinal]]
[[Category:Templates that add a tracking category|Limit Ordinal]]
[[Category:Templates that generate short descriptions|Limit Ordinal]]
[[Category:Templates using TemplateData|Limit Ordinal]]
[[Category:क्रमसूचक संख्या|Limit Ordinal]]

Latest revision as of 18:33, 12 July 2023

ωω तक क्रमसूचक संख्याओं का निरूपण। सर्पिल का प्रत्येक मोड़ ω की एक घात को दर्शाता है। सीमा क्रमसूचक वे होते हैं जो गैर-शून्य होते हैं और जिनका कोई पूर्ववर्ती नहीं होता है, जैसे ω या ω2

समुच्चय सिद्धांत में, सीमा क्रमसूचक एक क्रमसूचक संख्या होती है जो न तो शून्य होती है और न ही कोई आनुक्रमिक क्रमसूचक होती है। वैकल्पिक रूप से, यदि λ से न्यूनतम कोई क्रमसूचक है तो क्रमसूचक λ सीमा क्रमसूचक है, और जब भी β λ से कम क्रमसूचक है, तो एक क्रमसूचक γ उपस्थित होता है जैसे कि β < γ < λ है। प्रत्येक क्रमसूचक संख्या या तो शून्य है, आनुक्रमिक क्रमसूचक है, या सीमा क्रमसूचक है।

उदाहरण के लिए, ω, हर प्राकृतिक संख्या से बड़ा सबसे अल्प क्रमसूचक एक सीमा क्रमसूचक है क्योंकि किसी भी छोटे क्रमसूचक के लिए (यानी, किसी भी प्राकृतिक संख्या के लिए) n हम इससे बड़ी कोई अन्य प्राकृत संख्या पा सकते हैं (उदाहरण n+1), लेकिन फिर भी ω से न्यूनतम है।

क्रमसूचक की वॉन न्यूमैन परिभाषा का उपयोग करते हुए, प्रत्येक ऑर्डिनल सभी छोटे क्रमसूचक का एक सुक्रमित समुच्चय होता है। क्रमसूचक के एक गैर-रिक्त समुच्चय का संघ जिसमें कोई सबसे बड़ा अवयव नहीं होता है, वह हमेशा एक सीमा ऑर्डिनल होता है। वॉन न्यूमैन कार्डिनल असाइनमेंट का उपयोग करते हुए, प्रत्येक अपरिमित कार्डिनल संख्या भी एक सीमा क्रमांक है।

वैकल्पिक परिभाषाएँ

सीमा क्रमसूचकों को परिभाषित करने के विभिन्न अन्य विधियां हैं:

  • यह अपने नीचे के सभी क्रमादेशों के सर्वोच्च के बराबर है लेकिन शून्य नहीं है। (उत्तरवर्ती क्रमसूचक के साथ तुलना करें: इसके नीचे के क्रमसूचकों के समुच्चय में एक अधिकतम है, इसलिए सर्वोच्च यह अधिकतम है, पिछला क्रमसूचक।)
  • यह शून्य नहीं है तथा इसका कोई अधिकतम अवयव नहीं है।
  • इसे α > 0 के लिए ωα के रूप में लिखा जा सकता है। अर्थात्, कैंटर सामान्य रूप में अंतिम पद के रूप में कोई परिमित संख्या नहीं है, और क्रमसूचक गैरशून्य है।
  • अनुक्रम सांस्थितिकी के संबंध में, यह क्रमसूचक संख्याओं के वर्ग का एक सीमा बिंदु है। (अन्य क्रमसूचक पृथक बिंदु हैं।)

इस बात पर कुछ विवाद उपस्थित है कि क्या 0 को सीमा क्रमसूचक के रूप में वर्गीकृत किया जाना चाहिए या नहीं, क्योंकि इसका कोई तत्काल पूर्ववर्ती नहीं है; कुछ पाठ्यपुस्तकों में सीमा क्रमसूचक की कक्षा में 0 सम्मिलित है[1] जबकि अन्य इसे बाहर रखते हैं।[2]

उदाहरण

चूँकि क्रमसूचक संख्याओं का वर्ग आनुक्रमिक है, इसलिए सबसे छोटी अपरिमित सीमा क्रमसूचक होती है; ω (ओमेगा) द्वारा दर्शाया गया है। क्रमसूचक ω सबसे अल्प अपरिमित क्रमसूचक (अवक्षेपण सीमा) भी है, क्योंकि यह प्राकृतिक संख्याओं की सबसे न्यूनतम ऊपरी सीमा है। इसलिए ω प्राकृतिक संख्याओं के क्रम प्रकार का प्रतिनिधित्व करता है। पहले के ऊपर अगली सीमा क्रमसूचक ω + ω = ω·2 है, जो किसी भी प्राकृतिक संख्या n के लिए ω·n को सामान्यीकृत करता है। सभी ω·n का संघ (क्रमसूचक के किसी भी समुच्चय पर सर्वोच्च संक्रिया) लेते हुए, हमें ω·ω = ω2 मिलता है, जो किसी भी प्राकृतिक संख्या n के लिए ωn को सामान्यीकृत करता है। उत्पादन के लिए इस प्रक्रिया को इस प्रकार दोहराया जा सकता है:

सामान्य तौर पर, ये सभी पुनरावर्ती परिभाषाएँ गुणन, घातांक, बार-बार घातांक आदि के माध्यम से सीमा क्रमसूचक उत्पन्न करती हैं। अब तक चर्चा किए गए सभी क्रम-क्रम अभी भी गणनीय क्रम-क्रम हैं। हालाँकि, चर्च-क्लेन क्रमसूचक से कम के सभी क्रमसूचक को व्यवस्थित रूप से नामित करने के लिए कोई पुनरावर्ती गणना योग्य योजना नहीं है, जो कि एक गणनीय क्रमसूचक है।

गणनीय से परे, पहला असंख्य क्रमसूचक सामान्यतः ω1 दर्शाया जाता है। यह एक सीमा क्रमसूचक भी है।

आगे बढ़ते हुए, कोई निम्नलिखित प्राप्त कर सकता है (जिनमें से सभी अब प्रमुखता में बढ़ रहे हैं):

सामान्य तौर पर, हमें हमेशा एक सीमा क्रमसूचक मिलता है जब क्रमसूचकों के एक गैर-रिक्त समुच्चय का संघ लिया जाता है जिसमें कोई अधिकतम अवयव नहीं होता है।

α > 0 के लिए फॉर्म ω²α के क्रमसूचक, सीमाओं की सीमा आदि हैं।

गुण

आनुक्रमिक क्रमसूचक और सीमा क्रमसूचक (विभिन्न सह-अंतिमताओं के) के साथ-साथ शून्य, क्रमसूचक के पूरे वर्ग को समाप्त कर देते हैं, इसलिए इन मामलों को प्रायः परिमितातीत प्रवर्तन या परिमितातीत प्रतिवर्तन द्वारा परिभाषाओं द्वारा प्रमाण में उपयोग किया जाता है। सीमा अध्यादेश ऐसी प्रक्रियाओं में एक प्रकार के "परिवर्तन का बिन्दू" का प्रतिनिधित्व करते हैं, जिसमें किसी को सभी पूर्ववर्ती क्रमसूचकों पर संघ को ले जाने जैसे सीमित संचालन का उपयोग करना चाहिए। सिद्धांत रूप में, कोई भी सीमित क्रमसूचक पर कुछ भी कर सकता है, लेकिन यूनियन को ऑर्डर टोपोलॉजी में निरंतर लेना है और यह सामान्यतः वांछनीय है।

यदि हम वॉन न्यूमैन कार्डिनल असाइनमेंट का उपयोग करते हैं, तो प्रत्येक अपरिमित कार्डिनल संख्या भी एक सीमा क्रमसूचक है (और यह एक उपयुक्त अवलोकन है, क्योंकि कार्डिनल लैटिन कार्डो से निकला है जिसका अर्थ है काज या वर्तन बिंदु): इस तथ्य का प्रमाण केवल दिखाने से होता है होटल इन्फिनिटी तर्क के माध्यम से प्रत्येक अपरिमित उत्तराधिकारी क्रमसूचक एक सीमा क्रमसूचक के समतुल्य है।

कार्डिनल संख्याओं की आनुक्रमिक और सीमा (हर चीज़ को उच्च स्तर पर अपग्रेड किया जाना) की अपनी धारणा है।

अविभाज्य क्रमसूचक

योगात्मक रूप से अविभाज्य

सीमा क्रमसूचक α को योगात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से न्यूनतम β < α क्रमसूचक के योग के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए रूप में किसी भी प्रकार के क्रमसूचक हैं। सबसे अल्प लिखा जाता है दूसरा लिखा जाता है , इत्यादि।[3]

गुणात्मक रूप से अविभाज्य

सीमा क्रमसूचक α को गुणात्मक रूप से अविभाज्य कहा जाता है यदि इसे β < α से न्यूनतम के क्रमसूचकों के उत्पाद के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए रूप के किसी भी क्रमसूचक हैं। सबसे छोटे को डेल्टा लिखा जाता है, दूसरे को लिखा जाता है, आदि।[3]

घातीय रूप से अविभाज्य और अधिक

शब्द "घातीय रूप से अविभाज्य" उन ऑर्डिनल्स को संदर्भित नहीं करता है जो β < α के घातीय उत्पाद (?) के रूप में व्यक्त नहीं किए जा सकते हैं, बल्कि α से न्यूनतम के ऑर्डिनल्स को संदर्भित करता है, बल्कि एप्सिलॉन संख्याओं को संदर्भित करता है, "टेट्रेशनली अविभाज्य" जीटा संख्याओं को संदर्भित करता है, "पंचात्मक रूप से अविभाज्य" का तात्पर्य ईटा संख्याओं आदि से है।[3]

यह भी देखें

संदर्भ

  1. for example, Thomas Jech, Set Theory. Third Millennium edition. Springer.
  2. for example, Kenneth Kunen, Set Theory. An introduction to independence proofs. North-Holland.
  3. 3.0 3.1 3.2 "सीमा क्रमसूचक - कैंटर की अटारी". cantorsattic.info. Retrieved 2021-08-10.

अग्रिम पठन

  • Cantor, G., (1897), Beitrage zur Begrundung der transfiniten Mengenlehre. II (tr.: Contributions to the Founding of the Theory of Transfinite Numbers II), Mathematische Annalen 49, 207-246 English translation.
  • Conway, J. H. and Guy, R. K. "Cantor's Ordinal Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 266–267 and 274, 1996.
  • Sierpiński, W. (1965). Cardinal and Ordinal Numbers (2nd ed.). Warszawa: Państwowe Wydawnictwo Naukowe. Also defines ordinal operations in terms of the Cantor Normal Form.