प्राकृतिक घनत्व: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 101: | Line 101: | ||
{{PlanetMath attribution|id=2861|title=Asymptotic density}} | {{PlanetMath attribution|id=2861|title=Asymptotic density}} | ||
[[Category:Created On 05/07/2023]] | [[Category:Created On 05/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles incorporating text from PlanetMath|प्राकृतिक घनत्व]] | |||
[[Category:संख्या सिद्धांत]] | |||
[[Category:साहचर्य]] |
Latest revision as of 17:43, 16 July 2023
संख्या सिद्धांत में, प्राकृतिक घनत्व (जिसे एसिम्प्टोटिक घनत्व या अंकगणितीय घनत्व भी कहा जाता है) यह मापने की विधि होती है जो कि प्राकृतिक संख्याओं के उपसमुच्चय (गणित) का उपसमूह कितना ''उच्च'' है। और यह मुख्य रूप से n अंतराल (गणित) [1, n] के माध्यम से खोजते समय वांछित उपसमूह के सदस्यों का सामना करने की संभावना पर निर्भर करता है।
इस प्रकार से सहज रूप से, यह माना जाता है कि वर्ग संख्याओं की तुलना में अधिक सकारात्मक पूर्णांक होते हैं, क्योंकि प्रत्येक पूर्ण वर्ग पहले से ही सकारात्मक होता है, और इसके अतिरिक्त कई अन्य सकारात्मक पूर्णांक उपस्तिथ होते हैं। चूंकि , धनात्मक पूर्णांकों का समुच्चय वास्तव में पूर्ण वर्गों के समुच्चय से उच्च नहीं होते है: और दोनों समुच्चय अनंत समुच्चय और गणनीय होती हैं और इसलिए उन्हें एक-से-एक पत्राचार में रखा जा सकता है। इसके अतिरिक्त यदि कोई भी प्राकृतिक संख्याओं पर गौर करता है, तो वर्ग तीव्र से दुर्लभ हो जाते हैं। प्राकृतिक घनत्व की धारणा इस अंतर्ज्ञान को कई लोगों के लिए स्पष्ट बनाती है, जिससे सभी के लिए नहीं, प्राकृतिक के उपसमुच्चय (श्निरेलमैन घनत्व देखें, जो प्राकृतिक घनत्व के समान है जिससे सभी उपसमूहों के लिए परिभाषित है.)
यदि एक पूर्णांक को अंतराल[1, n] से यादृच्छिक रूप से चुना जाता है, तो संभावना है कि यह A से संबंधित है [1, n] में A के तत्वों की संख्या का अनुपात [1, n] में तत्वों की कुल संख्या से है यदि यह संभाव्यता किसी सीमा की ओर प्रवृत्त होती है जैसे n अनंत की ओर प्रवृत्त होती है, तो इस सीमा को A. का स्पर्शोन्मुख घनत्व कहा जाता है। इस धारणा को समुच्चय A. से एक संख्या चुनने की एक प्रकार की संभाव्य संख्या सिद्धांत में समझा जा सकता है। वास्तव में, स्पर्शोन्मुख घनत्व (साथ ही कुछ अन्य प्रकार के घनत्वों) का अध्ययन संभाव्य संख्या सिद्धांत में किया जाता है।
परिभाषा
इस प्रकार से धनात्मक पूर्णांकों के उपसमुच्चय A का प्राकृतिक घनत्व α होता है यदि 1 से n तक की सभी प्राकृतिक संख्याओं में A के तत्वों का अनुपात α में परिवर्तित हो जाता है क्योंकि n अनंत की ओर प्रवृत्त होता है।
अधिक स्पष्ट रूप से, यदि कोई किसी प्राकृतिक संख्या n के लिए गणना फलन a(n) को n, से कम या उसके समान A के तत्वों की संख्या के रूप में परिभाषित करता है, तो A का प्राकृतिक घनत्व α होने की सही विधि इस प्रकार से है[1]
अतः परिभाषा से यह निष्कर्ष निकलता है कि यदि कोई समुच्चय है A प्राकृतिक घनत्व है α तब 0 ≤ α ≤ 1.
ऊपरी और निचला स्पर्शोन्मुख घनत्व
मान लीजिए प्राकृतिक संख्याओं के समुच्चय का एक उपसमुच्चय है किसी भी के लिए को प्रतिच्छेदन के रूप में परिभाषित करें और मान लीजिए कि के तत्वों की संख्या . से कम या उसके समान होती है
के ऊपरी स्पर्शोन्मुख द्वारा घनत्व का (ऊपरी घनत्व भी कहा जाता है) को इस प्रकार से परिभाषित किया जाता है
इसी प्रकार , के निम्न स्पर्शोन्मुख घनत्व को (जिसे निम्न घनत्व भी कहा जाता है) को परिभाषित किया जा सकता है:
जहां लिम इन्फ़ सीमा हीन है। कोई कह सकता है कि में स्पर्शोन्मुख घनत्व है यदि , है तो उस स्थिति में इस सामान्य मान के समान मानी जाती है.
इस परिभाषा को निम्नलिखित विधि से पुनः प्रस्तुत किया जा सकता है:
इन परिभाषाओं को निम्नलिखित प्रकार से समान रूप से व्यक्त किया जा सकता है। एक उपसमुच्चय दिया गया है , का एक उपसमुच्चय दिया गया है, इसे प्राकृतिक संख्याओं द्वारा अनुक्रमित बढ़ते अनुक्रम के रूप में लिखें:
इस प्रकार से घनत्व की कुछ सीमा तक दुर्बल धारणा एक समुच्चय के ऊपरी बानाच घनत्व को इस रूप में परिभाषित किया गया है
गुण और उदाहरण
- धनात्मक पूर्णांकों के किसी भी परिमित समुच्चय F के लिए, d(F) = 0.
- यदि d(A) किसी समुच्चय A के लिए मौजूद है और Ac, N के संबंध में इसके पूरक (समुच्चय सिद्धांत)को दर्शाता है, तो d(Ac) = 1 − d(A) है.
- परिणाम: यदि परिमित है (स्तिथियों में ), सहित)
- यदि और अस्तित्व में है, तो
- यदि सभी वर्गों का समुच्चय है, तो d(A) = 0.
- यदि सभी सम संख्याओं का समुच्चय है, तो d(A) = 0.5. इसी प्रकार, किसी भी अंकगणितीय प्रगति के लिए हमें प्राप्त होता हैं
- सभी अभाज्य संख्याओं के समुच्चय P के लिए हमें अभाज्य संख्या प्रमेय से पता चलता है कि d(P) = 0.
- सभी ववर्ग-मुक्त पूर्णांक के समुच्चय का घनत्व है। अधिक सामान्यतः, किसी भी प्राकृतिक n के लिए सभी nth पावर-मुक्त संख्याओं के समुच्चय का घनत्व है, जहाँ रीमैन ज़ेटा फलन है।
- प्रचुर संख्याओं के समुच्चय का घनत्व शून्येतर होता है।[3] मार्क डेलेग्लिज़ ने 1998 में दिखाया कि प्रचुर संख्याओं के समुच्चय का घनत्व 0.2474 और 0.2480 के मध्य है।[4]
- समुच्चय
-
- ऐसी संख्याएँ जिनके द्विआधारी विस्तार में विषम संख्या में अंक होते हैं, ऐसे समुच्चय का उदाहरण है जिसमें स्पर्शोन्मुख घनत्व नहीं है, क्योंकि इस समुच्चय का ऊपरी घनत्व है
-
- जबकि इसका घनत्व कम है
- संख्याओं का समूह जिसका दशमलव विस्तार अंक 1 से प्रारम्भ होता है, उसमें कोई प्राकृतिक घनत्व नहीं होता है: निचला घनत्व 1/9 है और ऊपरी घनत्व 5/9 है।[1] (बेनफोर्ड का नियम देखें।)
- एक समान वितरित अनुक्रम पर विचार करें में और मोनोटोन वर्ग को परिभाषित करें समुच्चय की:
- फिर, परिभाषा के अनुसार, सभी के लिए .
- यदि S सकारात्मक ऊपरी घनत्व का समुच्चय है तो स्ज़ेमेरीडी के प्रमेय में कहा गया है कि S में मनमाने ढंग से उच्च परिमित अंकगणितीय प्रगति होती है, और फर्स्टनबर्ग-सारकोजी प्रमेय में कहा गया है कि S के कुछ दो सदस्य वर्ग संख्या से भिन्न होते हैं।
अन्य घनत्व कार्य
प्राकृतिक संख्याओं के उपसमुच्चय पर अन्य घनत्व कार्यों को अनुरूप रूप से परिभाषित किया जा सकता है। उदाहरण के लिए, समुच्चय A के लघुगणकीय घनत्व को सीमा के रूप में परिभाषित किया गया है (यदि यह उपस्तिथ है)
ऊपरी और निचले लघुगणकीय घनत्व को भी समान रूप से परिभाषित किया गया है।
पूर्णांक अनुक्रम के गुणकों के समुच्चय के लिए, डेवनपोर्ट-एर्डोस प्रमेय बताता है कि प्राकृतिक घनत्व, जब यह उपस्तिथ होता है, लघुगणक घनत्व के समान होता है।[5]
यह भी देखें
- डिरिचलेट घनत्व
- अंकगणितीय प्रगति पर एर्दो का अनुमान
टिप्पणियाँ
- ↑ 1.0 1.1 Tenenbaum (1995) p.261
- ↑ Nathanson (2000) pp.256–257
- ↑ Hall, Richard R.; Tenenbaum, Gérald (1988). विभाजक. Cambridge Tracts in Mathematics. Vol. 90. Cambridge: Cambridge University Press. p. 95. ISBN 978-0-521-34056-4. Zbl 0653.10001.
- ↑ Deléglise, Marc (1998). "प्रचुर पूर्णांकों के घनत्व के लिए सीमाएँ". Experimental Mathematics. 7 (2): 137–143. CiteSeerX 10.1.1.36.8272. doi:10.1080/10586458.1998.10504363. ISSN 1058-6458. MR 1677091. Zbl 0923.11127.
- ↑ Hall, Richard R. (1996), Sets of multiples, Cambridge Tracts in Mathematics, vol. 118, Cambridge University Press, Cambridge, Theorem 0.2, p. 5, doi:10.1017/CBO9780511566011, ISBN 978-0-521-40424-2, MR 1414678
संदर्भ
- Nathanson, Melvyn B. (2000). Elementary Methods in Number Theory. Graduate Texts in Mathematics. Vol. 195. Springer-Verlag. ISBN 978-0387989129. Zbl 0953.11002.
- Niven, Ivan (1951). "The asymptotic density of sequences". Bulletin of the American Mathematical Society. 57 (6): 420–434. doi:10.1090/s0002-9904-1951-09543-9. MR 0044561. Zbl 0044.03603.
- Steuding, Jörn (2002). "Probabilistic number theory" (PDF). Archived from the original (PDF) on December 22, 2011. Retrieved 2014-11-16.
- Tenenbaum, Gérald (1995). Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics. Vol. 46. Cambridge University Press. Zbl 0831.11001.
This article incorporates material from Asymptotic density on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.