पुलबैक: Difference between revisions
No edit summary |
|||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, '''पुलबैक''' दो अलग-अलग, किंतु संबंधित प्रक्रियाओं में से एक है: पूर्वरचना और फाइबर-उत्पाद है इसका दोहरा एक पुशफॉरवर्ड (बहुविकल्पी) है. | |||
गणित में, पुलबैक दो अलग-अलग, | |||
==पूर्वरचना== | ==पूर्वरचना== | ||
किसी | किसी फलन के साथ पूर्वरचना संभवतः पुलबैक की सबसे प्राथमिक धारणा प्रदान करता है: सरल शब्दों में, एक चर y का एक फलन <math>f</math>, जहां <math>y,</math> स्वयं एक अन्य चर <math>x,</math> का एक फलन है, को <math>x,</math> के एक फलन के रूप में लिखा जा सकता है। यह फलन <math>y.</math> द्वारा <math>f</math> का पुलबैक है। | ||
<math display=block>f(y(x)) \equiv g(x)</math> | <math display=block>f(y(x)) \equiv g(x)</math> | ||
यह इतनी मौलिक प्रक्रिया है कि इसे | यह इतनी मौलिक प्रक्रिया है कि इसे अधिकांशतः बिना उल्लेख किए ही अनदेखा कर दिया जाता है। | ||
चूँकि यह केवल ऐसे फलन नहीं हैं जिन्हें इस अर्थ में वापस खींचा जा सकता है। पुलबैक को कई अन्य वस्तुओं पर प्रयुक्त किया जा सकता है जैसे कि अवकल रूप और उनके सह-समरूपता वर्ग; देखना | |||
* [[पुलबैक (विभेदक ज्यामिति)]] | * [[पुलबैक (विभेदक ज्यामिति)|पुलबैक (अवकल ज्यामिति)]] | ||
* [[पुलबैक (कोहोमोलॉजी)]] | * [[पुलबैक (कोहोमोलॉजी)]] | ||
==फाइबर-उत्पाद== | ==फाइबर-उत्पाद== | ||
{{Main| | {{Main|पुलबैक बंडल}} | ||
पुलबैक बंडल एक उदाहरण है जो | पुलबैक बंडल एक उदाहरण है जो पूर्वरचना के रूप में पुलबैक की धारणा और कार्तीय वर्ग के रूप में पुलबैक की धारणा को जोड़ता है। उस उदाहरण में, [[फाइबर बंडल]] के आधार समष्टि को, ऊपर पूर्वरचना के अर्थ में, पीछे खींच लिया गया है। फ़ाइबर तब बेस समष्टि में उन बिंदुओं के साथ यात्रा करते हैं जिन पर वे एंकर डाले हुए हैं: परिणामी नया पुलबैक बंडल समष्टिीय रूप से नए बेस समष्टि और (अपरिवर्तित) फाइबर के कार्टेशियन उत्पाद जैसा दिखता है। पुलबैक बंडल में दो प्रक्षेपण होते हैं: एक आधार समष्टि पर दूसरा फाइबर पर; जब फाइबर उत्पाद के रूप में व्यवहार किया जाता है तो दोनों का उत्पाद सुसंगत हो जाता है। | ||
===सामान्यीकरण और [[श्रेणी सिद्धांत]]=== | ===सामान्यीकरण और [[श्रेणी सिद्धांत]]=== | ||
फाइबर-उत्पाद के रूप में पुलबैक की धारणा अंततः श्रेणी सिद्धांत पुलबैक के बहुत सामान्य विचार की ओर ले जाती है, | फाइबर-उत्पाद के रूप में पुलबैक की धारणा अंततः श्रेणी सिद्धांत पुलबैक के बहुत सामान्य विचार की ओर ले जाती है, किंतु इसमें महत्वपूर्ण विशेष स्थिति हैं: बीजगणितीय ज्यामिति में प्रतिलोम प्रतिबिंब (और पुलबैक) शीव्स, और बीजगणितीय टोपोलॉजी और अंतर ज्यामिति में पुलबैक बंडल है। | ||
यह सभी देखें: | यह सभी देखें: | ||
* | * पुलबैक (श्रेणी सिद्धांत) | ||
* | * फ़िब्रोस श्रेणी | ||
* | * प्रतिलोम प्रतिबिंब शीफ | ||
== | ==फलनात्मक विश्लेषण== | ||
{{See also| | {{See also|एक रेखीय मानचित्र का स्थानांतरण}} | ||
जब पुलबैक का अध्ययन | जब पुलबैक का अध्ययन फलन समष्टि पर फलन करने वाले संचालक के रूप में किया जाता है, तो यह एक रैखिक संचालक बन जाता है, और इसे रैखिक मानचित्र या संरचना संचालक के ट्रांसपोज़ के रूप में जाना जाता है। इसका सहायक पुश-फॉरवर्ड है, या, [[कार्यात्मक विश्लेषण|फलनात्मक विश्लेषण]] के संदर्भ में, समष्टिांतरण संचालक है। | ||
==रिश्ता== | ==रिश्ता== | ||
पुलबैक की दो धारणाओं के बीच संबंध को | पुलबैक की दो धारणाओं के बीच संबंध को संभवतः फाइबर बंडलों के अनुभागों द्वारा सबसे अच्छा चित्रित किया जा सकता है: यदि <math>s</math> <math>N,</math> के ऊपर फाइबर बंडल <math>N,</math> का एक अनुभाग है, और <math>f : M \to N,</math> तो पुलबैक (प्रीकंपोजिशन) <math>f</math> के साथ ''s'' का <math>f^* s = s\circ f</math> पुलबैक (फाइबर-उत्पाद) बंडल का एक खंड है जो की <math>f^*E</math> , <math>M.</math> से अधिक होती है। | ||
==यह भी देखें == | |||
* {{annotated link|व्युत्क्रम छवि कारक }} | |||
* {{annotated link| | |||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 05/07/2023]] | [[Category:Created On 05/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गणितीय विश्लेषण]] |
Latest revision as of 13:03, 6 September 2023
गणित में, पुलबैक दो अलग-अलग, किंतु संबंधित प्रक्रियाओं में से एक है: पूर्वरचना और फाइबर-उत्पाद है इसका दोहरा एक पुशफॉरवर्ड (बहुविकल्पी) है.
पूर्वरचना
किसी फलन के साथ पूर्वरचना संभवतः पुलबैक की सबसे प्राथमिक धारणा प्रदान करता है: सरल शब्दों में, एक चर y का एक फलन , जहां स्वयं एक अन्य चर का एक फलन है, को के एक फलन के रूप में लिखा जा सकता है। यह फलन द्वारा का पुलबैक है।
चूँकि यह केवल ऐसे फलन नहीं हैं जिन्हें इस अर्थ में वापस खींचा जा सकता है। पुलबैक को कई अन्य वस्तुओं पर प्रयुक्त किया जा सकता है जैसे कि अवकल रूप और उनके सह-समरूपता वर्ग; देखना
फाइबर-उत्पाद
पुलबैक बंडल एक उदाहरण है जो पूर्वरचना के रूप में पुलबैक की धारणा और कार्तीय वर्ग के रूप में पुलबैक की धारणा को जोड़ता है। उस उदाहरण में, फाइबर बंडल के आधार समष्टि को, ऊपर पूर्वरचना के अर्थ में, पीछे खींच लिया गया है। फ़ाइबर तब बेस समष्टि में उन बिंदुओं के साथ यात्रा करते हैं जिन पर वे एंकर डाले हुए हैं: परिणामी नया पुलबैक बंडल समष्टिीय रूप से नए बेस समष्टि और (अपरिवर्तित) फाइबर के कार्टेशियन उत्पाद जैसा दिखता है। पुलबैक बंडल में दो प्रक्षेपण होते हैं: एक आधार समष्टि पर दूसरा फाइबर पर; जब फाइबर उत्पाद के रूप में व्यवहार किया जाता है तो दोनों का उत्पाद सुसंगत हो जाता है।
सामान्यीकरण और श्रेणी सिद्धांत
फाइबर-उत्पाद के रूप में पुलबैक की धारणा अंततः श्रेणी सिद्धांत पुलबैक के बहुत सामान्य विचार की ओर ले जाती है, किंतु इसमें महत्वपूर्ण विशेष स्थिति हैं: बीजगणितीय ज्यामिति में प्रतिलोम प्रतिबिंब (और पुलबैक) शीव्स, और बीजगणितीय टोपोलॉजी और अंतर ज्यामिति में पुलबैक बंडल है।
यह सभी देखें:
- पुलबैक (श्रेणी सिद्धांत)
- फ़िब्रोस श्रेणी
- प्रतिलोम प्रतिबिंब शीफ
फलनात्मक विश्लेषण
जब पुलबैक का अध्ययन फलन समष्टि पर फलन करने वाले संचालक के रूप में किया जाता है, तो यह एक रैखिक संचालक बन जाता है, और इसे रैखिक मानचित्र या संरचना संचालक के ट्रांसपोज़ के रूप में जाना जाता है। इसका सहायक पुश-फॉरवर्ड है, या, फलनात्मक विश्लेषण के संदर्भ में, समष्टिांतरण संचालक है।
रिश्ता
पुलबैक की दो धारणाओं के बीच संबंध को संभवतः फाइबर बंडलों के अनुभागों द्वारा सबसे अच्छा चित्रित किया जा सकता है: यदि के ऊपर फाइबर बंडल का एक अनुभाग है, और तो पुलबैक (प्रीकंपोजिशन) के साथ s का पुलबैक (फाइबर-उत्पाद) बंडल का एक खंड है जो की , से अधिक होती है।