सिम्प्लेक्टोमोर्फिज्म: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Isomorphism of symplectic manifolds}}
{{Short description|Isomorphism of symplectic manifolds}}
गणित में, सिम्प्लेक्टोमोर्फिज्म या सिम्प्लेक्टिक मैप [[ सिंपलेक्टिक मैनिफोल्ड ]] की [[ श्रेणी (गणित) ]] में [[ समाकृतिकता ]] है। [[ शास्त्रीय यांत्रिकी ]] में, सिम्प्लेक्टोमोर्फिज्म [[ चरण स्थान ]] के परिवर्तन का प्रतिनिधित्व करता है जो [[ मात्रा-संरक्षण ]] है और चरण स्थान की [[ सहानुभूतिपूर्ण संरचना ]] को संरक्षित करता है, और इसे [[ विहित परिवर्तन ]] कहा जाता है।
गणित में, '''सिम्प्लेक्टोमोर्फिज्म''' या सिम्प्लेक्टिक मानचित्र सिंपलेक्टिक मैनिफोल्ड की [[ श्रेणी (गणित) |श्रेणी (गणित)]] में समाकृतिकता है। शास्त्रीय यांत्रिकी में, सिम्प्लेक्टोमोर्फिज्म चरण समष्टि के परिवर्तन का प्रतिनिधित्व करता है जो आयतन-संरक्षण करता है और चरण समष्टि की सहानुभूतिपूर्ण संरचना को संरक्षित करता है, और इसे विहित परिवर्तन कहा जाता है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==


दो सिम्प्लेक्टिक मैनिफोल्ड के बीच अंतर <math>f: (M,\omega) \rightarrow (N,\omega')</math> यदि सिम्प्लेक्टोमोर्फिज्म कहा जाता है
दो सिम्प्लेक्टिक मैनिफोल्ड के मध्य अंतर <math>f: (M,\omega) \rightarrow (N,\omega')</math> को सिम्प्लेक्टोमोर्फिज्म कहा जाता है जो इस प्रकार है:
:<math>f^*\omega'=\omega,</math>
:<math>f^*\omega'=\omega,</math>
कहां <math>f^*</math> का [[ पुलबैक (अंतर ज्यामिति) ]] है <math>f</math>. से सहानुभूतिपूर्ण भिन्नता <math>M</math> को <math>M</math> (छद्म-) समूह हैं, जिसे सिम्प्लेक्टोमोर्फिज्म समूह कहा जाता है (नीचे देखें)।
जहां <math>f^*</math> [[ पुलबैक (अंतर ज्यामिति) |पुलबैक (अंतर ज्यामिति)]] है <math>f</math> से सहानुभूतिपूर्ण भिन्नता <math>M</math> से <math>M</math> (छद्म-) समूह हैं, जिसे सिम्प्लेक्टोमोर्फिज्म समूह कहा जाता है (नीचे देखें)।


सिम्प्लेक्टोमोर्फिज्म का अतिसूक्ष्म संस्करण सिम्प्लेक्टिक वेक्टर फ़ील्ड देता है। वेक्टर क्षेत्र <math>X \in \Gamma^{\infty}(TM)</math> symplectic अगर कहा जाता है
सिम्प्लेक्टोमोर्फिज्म का अतिसूक्ष्म संस्करण सिम्प्लेक्टिक सदिश क्षेत्र देता है। सदिश क्षेत्र <math>X \in \Gamma^{\infty}(TM)</math> को सिंपलेक्टिक कहा जाता है यदि
:<math>\mathcal{L}_X\omega=0.</math>
:<math>\mathcal{L}_X\omega=0.</math>
भी, <math>X</math> प्रवाह अगर सहानुभूतिपूर्ण है <math>\phi_t: M\rightarrow M</math> का <math>X</math> प्रत्येक के लिए सिम्पेक्टोमोर्फिज्म है <math>t</math>.
यदि प्रवाह हो तो <math>X</math> सिंपलेक्टिक है <math>\phi_t: M\rightarrow M</math> का <math>X</math> प्रत्येक के लिए लक्षणात्मकता है <math>t</math> ये सदिश क्षेत्र लाइ उपबीजगणित का निर्माण करते हैं <math>\Gamma^{\infty}(TM)</math> यहां, <math>\Gamma^{\infty}(TM)</math> [[ चिकना समारोह |स्मूथ]][[ वेक्टर क्षेत्र | सदिश क्षेत्रों]] का समुच्चय है <math>M</math>, और <math>\mathcal{L}_X</math> सदिश क्षेत्र के अनुदिश [[ झूठ व्युत्पन्न |लाई व्युत्पन्न <math>X.</math>]] है।
ये सदिश क्षेत्र लाइ सबलजेब्रा का निर्माण करते हैं <math>\Gamma^{\infty}(TM)</math>.
 
यहां, <math>\Gamma^{\infty}(TM)</math> [[ चिकना समारोह ]] [[ वेक्टर क्षेत्र ]] ऑन का सेट है <math>M</math>, और <math>\mathcal{L}_X</math> सदिश क्षेत्र के साथ [[ झूठ व्युत्पन्न ]] है <math>X.</math>
सिम्पेक्टोमोर्फिज्म के उदाहरणों में शास्त्रीय यांत्रिकी और [[ सैद्धांतिक भौतिकी |सैद्धांतिक भौतिकी]] के विहित परिवर्तन, किसी भी हैमिल्टनियन फलन से जुड़ा प्रवाह, मैनिफोल्ड्स के किसी भी भिन्नता से प्रेरित [[ स्पर्शरेखा बंडल |कोटैंजेंट बंडल]] पर मानचित्र और सहसंयुक्त कक्षा पर लाइ समूह के तत्व की सहसंयोजक क्रिया सम्मिलित है।
सिम्पेक्टोमोर्फिज्म के उदाहरणों में शास्त्रीय यांत्रिकी और [[ सैद्धांतिक भौतिकी ]] के कैनोनिकल ट्रांसफॉर्मेशन, किसी भी हैमिल्टनियन फ़ंक्शन से जुड़े प्रवाह, मैनिफोल्ड्स के किसी भी डिफियोमोर्फिज्म से प्रेरित [[ स्पर्शरेखा बंडल ]] पर नक्शा, और सहसंयोजक कक्षा पर लाइ समूह के तत्व की सहसंयोजक क्रिया शामिल है।


== प्रवाह ==  
== प्रवाह ==  
सिम्पलेक्टिक मैनिफोल्ड पर कोई भी सुचारू कार्य, परिभाषा के अनुसार, हैमिल्टनियन वेक्टर फ़ील्ड को जन्म देता है और ऐसे सभी वेक्टर फ़ील्ड्स का सेट [[ सहानुभूति वेक्टर क्षेत्र ]] के लाई बीजगणित का सबलजेब्रा बनाता है। सिम्पलेक्टिक वेक्टर क्षेत्र के प्रवाह का एकीकरण सिम्पेक्टोमोर्फिज्म है। चूंकि सिम्प्लेक्टोमॉर्फिज्म [[ सहानुभूतिपूर्ण रूप ]]|सिम्पलेक्टिक 2-फॉर्म को संरक्षित करता है और इसलिए सिम्प्लेक्टिक फॉर्म#वॉल्यूम फॉर्म, लिउविल की प्रमेय (हैमिल्टनियन)|[[ हैमिल्टनियन यांत्रिकी ]] में लिउविल की प्रमेय इस प्रकार है। [[ हैमिल्टनियन वेक्टर क्षेत्र ]]ों से उत्पन्न होने वाले सिम्प्लेक्टोमोर्फिज्म को हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के रूप में जाना जाता है।
सिम्पलेक्टिक मैनिफोल्ड पर कोई भी सुचारू कार्य, परिभाषा के अनुसार, हैमिल्टनियन सदिश क्षेत्र को उत्पन्न करता है और ऐसे सभी सदिश क्षेत्र का समुच्चय[[ सहानुभूति वेक्टर क्षेत्र | सिम्प्लेक्टिक सदिश क्षेत्र]] के लाई बीजगणित का उप-बीजगणित बनाता है। सिम्पलेक्टिक सदिश क्षेत्र के प्रवाह का एकीकरण सिम्पेक्टोमोर्फिज्म है। चूंकि सिम्प्लेक्टोमॉर्फिज्म सिंपलेक्टिक रूप 2-फॉर्म को संरक्षित करता है और इसलिए सिम्प्लेक्टिक आयतन फॉर्म, [[ हैमिल्टनियन यांत्रिकी |हैमिल्टनियन यांत्रिकी]] में लिउविले के प्रमेय का पालन करता है।[[ हैमिल्टनियन वेक्टर क्षेत्र | हैमिल्टनियन सदिश क्षेत्रों]] से उत्पन्न होने वाले सिम्प्लेक्टोमोर्फिज्म को हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के रूप में जाना जाता है।


तब से {{math|1={''H'', ''H''} = ''X''<sub>''H''</sub>(''H'') = 0,}} हैमिल्टनियन वेक्टर क्षेत्र का प्रवाह भी संरक्षित करता है {{math|''H''}}. भौतिकी में इसकी व्याख्या [[ ऊर्जा ]] के संरक्षण के नियम के रूप में की जाती है।
तब से {{math|1={''H'', ''H''} = ''X''<sub>''H''</sub>(''H'') = 0,}} हैमिल्टनियन सदिश क्षेत्र का प्रवाह भी {{math|''H''}} को संरक्षित करता है। भौतिकी में इसे [[ ऊर्जा |ऊर्जा]] के संरक्षण के नियम के रूप में व्याख्या की जाती है।


यदि किसी कनेक्टेड सिम्पलेक्टिक मैनिफोल्ड की पहली बेट्टी संख्या शून्य है, सिम्पलेक्टिक और हैमिल्टनियन वेक्टर फ़ील्ड मेल खाते हैं, तो [[ हैमिल्टनियन आइसोटोप ]] और सिम्प्लेक्टोमोर्फिज्म के सिम्प्लेक्टिक आइसोटोप की धारणाएँ मेल खाती हैं।
यदि किसी कनेक्टेड सिम्पलेक्टिक मैनिफोल्ड की प्रथम बेट्टी संख्या शून्य है, सिम्पलेक्टिक और हैमिल्टनियन सदिश क्षेत्र युग्मित होते हैं, इसलिए हैमिल्टनियन आइसोटोप और सिम्प्लेक्टोमोर्फिज्म की सिंपलेक्टिक आइसोटोपी की धारणाएं संगुमित होती हैं।


यह दिखाया जा सकता है कि जियोडेसिक के समीकरणों को हैमिल्टनियन प्रवाह के रूप में तैयार किया जा सकता है, [[ हैमिल्टनियन प्रवाह के रूप में जियोडेसिक्स ]] के रूप में देखें।
यह दिखाया जा सकता है कि जियोडेसिक के समीकरणों को हैमिल्टनियन प्रवाह के रूप में तैयार किया जा सकता है, जियोडेसिक्स को हैमिल्टनियन प्रवाह के रूप में देखें।


== (हैमिल्टनियन) सिम्प्लेक्टोमोर्फिज्म का समूह ==
== (हैमिल्टनियन) सिम्प्लेक्टोमोर्फिज्म का समूह ==
कई गुना पीछे से खुद पर अनंत-आयामी छद्म समूह बनाते हैं। संबंधित लाई बीजगणित में सहानुभूति सदिश क्षेत्र होते हैं।
कई गुना से लक्षणात्मकताएं अपने आप में अनंत-आयामी छद्म समूह बनाते हैं। संबंधित लाई बीजगणित में सिम्प्लेक्टिक सदिश क्षेत्र होते हैं। हैमिल्टनियन सिम्प्लेक्टोमोर्फिम्स ऐसा उपसमूह बनाते हैं, जिसे लाई बीजगणित हैमिल्टनियन सदिश क्षेत्रों द्वारा दिया जाता है। उत्तरार्द्ध[[ पॉइसन ब्रैकेट | पॉइसन ब्रैकेट,]] मॉड्यूलो स्थिरांक के संबंध में मैनिफोल्ड पर स्मूथ कार्यों के लाई बीजगणित के लिए आइसोमोर्फिक है।
हैमिल्टनियन सिम्प्लेक्टोमोर्फिम्स उपसमूह बनाते हैं, जिसका झूठा बीजगणित हैमिल्टनियन वेक्टर क्षेत्रों द्वारा दिया जाता है।
उत्तरार्द्ध चिकने के ले बीजगणित के लिए आइसोमोर्फिक है
[[ पॉइसन ब्रैकेट ]] के संबंध में मैनिफोल्ड पर कार्य करता है, स्थिरांक मॉड्यूल।


के हैमिल्टनियन सिम्पेक्टोमोर्फिज्म का समूह <math>(M,\omega)</math> आमतौर पर के रूप में दर्शाया गया है <math>\operatorname{Ham}(M,\omega)</math>.
हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म का समूह <math>(M,\omega)</math> को सामान्यतः इस रूप में <math>\operatorname{Ham}(M,\omega)</math> दर्शाया जाता है।


[[ ऑगस्टिन विदेशी ]] के प्रमेय द्वारा हैमिल्टनियन भिन्नताओं के समूह [[ सरल झूठ समूह ]] हैं। उनके पास [[ हॉफर मानदंड ]] द्वारा दी गई प्राकृतिक ज्यामिति है। कुछ सरल सिम्प्लेक्टिक [[ चार गुना ]] के लिए समरूपता समूह का [[ होमोटॉपी प्रकार ]], जैसे कि गोले के उत्पाद, मिखाइल ग्रोमोव (गणितज्ञ) के [[ स्यूडोहोलोमॉर्फिक वक्र ]] के सिद्धांत का उपयोग करके गणना की जा सकती है।
बान्यागा के प्रमेय के अनुसार, हैमिल्टनियन भिन्नता के [[ सरल झूठ समूह |समूह सरल]] हैं। उनके पास हॉफर पैरामीटर द्वारा दी गई प्राकृतिक ज्यामिति है। कुछ सरल सिम्प्लेक्टिक [[ चार गुना |चार]]-मैनिफोल्ड्स के लिए सिम्प्लेक्टोमोर्फिज्म समूह के [[ होमोटॉपी प्रकार |होमोटॉपी प्रकार]], जैसे कि गोले के उत्पाद की गणना ग्रोमोव के [[ स्यूडोहोलोमॉर्फिक वक्र |स्यूडोहोलोमॉर्फिक वक्रों]] के सिद्धांत का उपयोग करके की जा सकती है।


== रीमानियन ज्यामिति के साथ तुलना ==
== रीमानियन ज्यामिति के साथ तुलना ==
[[ रीमैनियन कई गुना ]]्स के विपरीत, सिम्प्लेक्टिक मैनिफोल्ड्स बहुत कठोर नहीं हैं: डार्बौक्स के प्रमेय से पता चलता है कि समान आयाम के सभी सिम्प्लेक्टिक मैनिफोल्ड स्थानीय रूप से आइसोमोर्फिक हैं। इसके विपरीत, रिमेंनियन ज्योमेट्री में आइसोमेट्री को रिमेंन वक्रता टेन्सर को संरक्षित करना चाहिए, जो इस प्रकार रीमैनियन मैनिफोल्ड का स्थानीय अपरिवर्तनीय है।
[[ रीमैनियन कई गुना | रीमैनियन मैनिफोल्ड्स]] के विपरीत, सिम्प्लेक्टिक मैनिफोल्ड्स अधिक कठोर नहीं हैं: डार्बौक्स के प्रमेय से ज्ञात होता है कि समान आयाम के सभी सिम्प्लेक्टिक मैनिफोल्ड समष्टिीय रूप से आइसोमोर्फिक हैं। इसके विपरीत, रिमेंनियन ज्योमेट्री में आइसोमेट्री को रिमेंन वक्रता टेन्सर को संरक्षित करना चाहिए, जो इस प्रकार रीमैनियन मैनिफोल्ड का समष्टिीय अपरिवर्तनीय है। इसके अतिरिक्त, सिम्प्लेक्टिक मैनिफोल्ड पर प्रत्येक फलन H हैमिल्टनियन सदिश क्षेत्र X<sub>''H''</sub> को परिभाषित करता है, जो हैमिल्टनियन डिफ़ेओमोर्फिज़्म के [[ एक-पैरामीटर समूह |पैरामीटर समूह]] को प्रतिपादित करता है। इससे यह ज्ञात होता है कि लक्षणात्मकताओं का समूह सदैव अधिक बड़ा होता है, और विशेष रूप से, अनंत-आयामी होता है। दूसरी ओर, रिमेंनियन मैनिफोल्ड की [[ आइसोमेट्री |आइसोमेट्री]] का समूह सदैव (परिमित-आयामी) लाई समूह होता है। इसके अतिरिक्त, बड़े समरूपता समूहों के साथ रीमैनियन मैनिफोल्ड्स अधिक विशेष हैं, और सामान्य रीमैनियन मैनिफोल्ड में कोई असमरूपता नहीं है।
इसके अलावा, सहानुभूतिपूर्ण मैनिफोल्ड पर प्रत्येक फ़ंक्शन एच हैमिल्टनियन वेक्टर फ़ील्ड एक्स को परिभाषित करता है<sub>''H''</sub>, जो हैमिल्टनियन भिन्नता के [[ एक-पैरामीटर समूह ]] को प्रतिपादित करता है। यह इस प्रकार है कि सहानुभूति का समूह हमेशा बहुत बड़ा होता है, और विशेष रूप से, अनंत-आयामी। दूसरी ओर, रिमेंनियन मैनिफोल्ड के [[ आइसोमेट्री ]] का समूह हमेशा (परिमित-आयामी) झूठ समूह होता है। इसके अलावा, बड़े समरूपता समूहों के साथ रीमैनियन मैनिफोल्ड्स बहुत खास हैं, और सामान्य रीमैनियन मैनिफोल्ड में कोई गैर-समरूपता नहीं है।


== परिमाणीकरण ==
== परिमाणीकरण ==
हिल्बर्ट रिक्त स्थान पर सिम्प्लेक्टोमोर्फिज्म के समूह के परिमित-आयामी उपसमूहों के प्रतिनिधित्व (सामान्य रूप से ħ-विरूपण के बाद) को परिमाणीकरण कहा जाता है।
हिल्बर्ट रिक्त समष्टि पर सिम्प्लेक्टोमोर्फिज्म (सामान्य रूप से ħ-विरूपण के पश्चात) के समूह के परिमित-आयामी उपसमूहों के प्रतिनिधित्व को परिमाणीकरण कहा जाता है। जब लाइ समूह हैमिल्टनियन द्वारा परिभाषित किया जाता है, तो इसे ऊर्जा द्वारा परिमाणीकरण कहा जाता है। निरंतर रेखीय संचालकों के लाई बीजगणित से लाई बीजगणित तक संबंधित ऑपरेटर को कभी-कभी परिमाणीकरण भी कहा जाता है; इसे भौतिकी में देखने का अधिक सामान्य विधि है।
जब लाइ समूह हैमिल्टनियन द्वारा परिभाषित किया जाता है, तो इसे ऊर्जा द्वारा परिमाणीकरण कहा जाता है।
निरंतर रेखीय संचालकों के लाई बीजगणित से लाई बीजगणित के संगत संकारक को कभी-कभी परिमाणीकरण भी कहा जाता है; यह भौतिकी में इसे देखने का अधिक सामान्य तरीका है।


{{see also| phase space formulation| geometric quantization|non-commutative geometry}}
{{see also|चरण स्थान सूत्रीकरण|ज्यामितीय परिमाणीकरण|अविनिमेय ज्यामिति}}
 
== अर्नोल्ड अनुमान ==
{{main|अर्नोल्ड अनुमान}}
[[ व्लादिमीर अर्नोल्ड ]]का प्रसिद्ध अनुमान हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के लिए [[ निश्चित बिंदु (गणित) |निश्चित बिंदु (गणित)]] की न्यूनतम संख्या से संबंधित है <math>\varphi: M \to M</math>, इस स्तिथि में [[ मोर्स सिद्धांत |मोर्स सिद्धांत]] के अनुसार <math>M</math> कॉम्पैक्ट सिंपलेक्टिक मैनिफोल्ड है (देखें <ref>{{cite book |last1=Arnolʹd |first1=Vladimir |title=Mathematical methods of classical mechanics |series=Graduate Texts in Mathematics |date=1978 |volume=60 |publisher=Springer-Verlag |location=New York |doi=10.1007/978-1-4757-1693-1 |isbn=978-1-4757-1693-1 |url=https://link.springer.com/book/10.1007/978-1-4757-1693-1}}</ref>)। अधिक त्रुटिहीन रूप से, अनुमान बताता है कि <math>\varphi</math> कम से कम उतने निश्चित बिंदु होते हैं, जितने [[ महत्वपूर्ण बिंदु (गणित) |महत्वपूर्ण बिंदुओं (गणित)]] पर सुचारू कार्य होता है, <math>M</math> अवश्य होना चाहिए। इस अनुमान के कुछ संस्करण सिद्ध हुए हैं: जब <math>\varphi</math> अविक्षिप्त है, निश्चित बिंदुओं की संख्या नीचे से बेट्टी संख्याओं के योग से <math>M</math> सीमित है (देखो,<ref>{{cite journal |last1=Fukaya |first1=Kenji |last2=Ono |first2=Kaoru |title=Arnold conjecture and Gromov-Witten invariants |journal=Topology |date=September 1999 |volume=38 |issue=5 |pages=933–1048 |doi=10.1016/S0040-9383(98)00042-1 |url=https://www.sciencedirect.com/science/article/pii/S0040938398000421}}</ref><ref>{{cite journal |last1=Liu |first1=Gang |last2=Tian |first2=Gang |title=Floer homology and Arnold conjecture |journal=Journal of Differential Geometry |date=1998 |volume=49 |issue=1 |pages=1–74 |doi=10.4310/jdg/1214460936 |url=https://projecteuclid.org/journals/journal-of-differential-geometry/volume-49/issue-1/Floer-homology-and-Arnold-conjecture/10.4310/jdg/1214460936.full}}</ref>)। इस प्रसिद्ध अनुमान से प्रेरित सहानुभूति ज्यामिति में सबसे महत्वपूर्ण विकास [[ फ्लोर होमोलॉजी |फ्लोर होमोलॉजी]] का उत्पन्न है (देखें <ref>{{cite journal |last1=Floer |first1=Andreas |title=Symplectic fixed points and holomorphic spheres |journal=Communications in Mathematical Physics |date=1989 |volume=120 |issue=4 |pages=575–611 |doi=10.1007/BF01260388 |s2cid=123345003 |url=https://link.springer.com/article/10.1007/BF01260388}}</ref>), जिसका नाम [[ एंड्रियास फ्लोर |एंड्रियास फ्लोर]] के नाम पर रखा गया है।




== अर्नोल्ड अनुमान ==
{{main|Arnold conjecture}}
[[ व्लादिमीर अर्नोल्ड ]] का प्रसिद्ध अनुमान हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के लिए [[ निश्चित बिंदु (गणित) ]] की न्यूनतम संख्या से संबंधित है <math>\varphi: M \to M</math>, यदि <math>M</math> [[ मोर्स सिद्धांत ]] के लिए कॉम्पैक्ट सिम्प्लेक्टिक मैनिफोल्ड है (देखें <ref>{{cite book |last1=Arnolʹd |first1=Vladimir |title=Mathematical methods of classical mechanics |series=Graduate Texts in Mathematics |date=1978 |volume=60 |publisher=Springer-Verlag |location=New York |doi=10.1007/978-1-4757-1693-1 |isbn=978-1-4757-1693-1 |url=https://link.springer.com/book/10.1007/978-1-4757-1693-1}}</ref>). अधिक सटीक रूप से, अनुमान बताता है कि <math>\varphi</math> कम से कम उतने निश्चित बिंदु होते हैं, जितने [[ महत्वपूर्ण बिंदु (गणित) ]] होते हैं, जिन पर सुचारू कार्य होता है <math>M</math> होना आवश्यक है। इस अनुमान के कुछ कमजोर संस्करण सिद्ध हुए हैं: कब <math>\varphi</math> nondegenerate है, निश्चित बिंदुओं की संख्या नीचे से बेट्टी संख्याओं के योग से बंधी है <math>M</math> (देखो,<ref>{{cite journal |last1=Fukaya |first1=Kenji |last2=Ono |first2=Kaoru |title=Arnold conjecture and Gromov-Witten invariants |journal=Topology |date=September 1999 |volume=38 |issue=5 |pages=933–1048 |doi=10.1016/S0040-9383(98)00042-1 |url=https://www.sciencedirect.com/science/article/pii/S0040938398000421}}</ref><ref>{{cite journal |last1=Liu |first1=Gang |last2=Tian |first2=Gang |title=Floer homology and Arnold conjecture |journal=Journal of Differential Geometry |date=1998 |volume=49 |issue=1 |pages=1–74 |doi=10.4310/jdg/1214460936 |url=https://projecteuclid.org/journals/journal-of-differential-geometry/volume-49/issue-1/Floer-homology-and-Arnold-conjecture/10.4310/jdg/1214460936.full}}</ref>). इस प्रसिद्ध अनुमान से प्रेरित सहानुभूति ज्यामिति में सबसे महत्वपूर्ण विकास [[ फ्लोर होमोलॉजी ]] का जन्म है (देखें <ref>{{cite journal |last1=Floer |first1=Andreas |title=Symplectic fixed points and holomorphic spheres |journal=Communications in Mathematical Physics |date=1989 |volume=120 |issue=4 |pages=575–611 |doi=10.1007/BF01260388 |s2cid=123345003 |url=https://link.springer.com/article/10.1007/BF01260388}}</ref>), [[ एंड्रियास फ्लोर ]] के नाम पर।


== यह भी देखें ==
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 05/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सहानुभूतिपूर्ण टोपोलॉजी]]


== {{Portal|Mathematics}}संदर्भ ==
== {{Portal|Mathematics}}संदर्भ ==
Line 61: Line 67:
*{{Citation |last=Gromov |first=M. |author-link=Mikhail Leonidovich Gromov |title=Pseudoholomorphic curves in symplectic manifolds |journal=Inventiones Mathematicae |volume=82 |year=1985 |issue=2 |pages=307–347 |doi=10.1007/BF01388806 |bibcode = 1985InMat..82..307G |s2cid=4983969 }}.
*{{Citation |last=Gromov |first=M. |author-link=Mikhail Leonidovich Gromov |title=Pseudoholomorphic curves in symplectic manifolds |journal=Inventiones Mathematicae |volume=82 |year=1985 |issue=2 |pages=307–347 |doi=10.1007/BF01388806 |bibcode = 1985InMat..82..307G |s2cid=4983969 }}.
*{{Citation |last=Polterovich |first=Leonid |title=The geometry of the group of symplectic diffeomorphism |location=Basel; Boston |publisher=Birkhauser Verlag |year=2001 |isbn=3-7643-6432-7 }}.
*{{Citation |last=Polterovich |first=Leonid |title=The geometry of the group of symplectic diffeomorphism |location=Basel; Boston |publisher=Birkhauser Verlag |year=2001 |isbn=3-7643-6432-7 }}.
[[Category:सहानुभूतिपूर्ण टोपोलॉजी]][[श्रेणी: हैमिल्टनियन यांत्रिकी]]




[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 05/01/2023]]
[[Category:Created On 05/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सहानुभूतिपूर्ण टोपोलॉजी]]

Latest revision as of 12:02, 8 September 2023

गणित में, सिम्प्लेक्टोमोर्फिज्म या सिम्प्लेक्टिक मानचित्र सिंपलेक्टिक मैनिफोल्ड की श्रेणी (गणित) में समाकृतिकता है। शास्त्रीय यांत्रिकी में, सिम्प्लेक्टोमोर्फिज्म चरण समष्टि के परिवर्तन का प्रतिनिधित्व करता है जो आयतन-संरक्षण करता है और चरण समष्टि की सहानुभूतिपूर्ण संरचना को संरक्षित करता है, और इसे विहित परिवर्तन कहा जाता है।

औपचारिक परिभाषा

दो सिम्प्लेक्टिक मैनिफोल्ड के मध्य अंतर को सिम्प्लेक्टोमोर्फिज्म कहा जाता है जो इस प्रकार है:

जहां पुलबैक (अंतर ज्यामिति) है से सहानुभूतिपूर्ण भिन्नता से (छद्म-) समूह हैं, जिसे सिम्प्लेक्टोमोर्फिज्म समूह कहा जाता है (नीचे देखें)।

सिम्प्लेक्टोमोर्फिज्म का अतिसूक्ष्म संस्करण सिम्प्लेक्टिक सदिश क्षेत्र देता है। सदिश क्षेत्र को सिंपलेक्टिक कहा जाता है यदि

यदि प्रवाह हो तो सिंपलेक्टिक है का प्रत्येक के लिए लक्षणात्मकता है ये सदिश क्षेत्र लाइ उपबीजगणित का निर्माण करते हैं यहां, स्मूथ सदिश क्षेत्रों का समुच्चय है , और सदिश क्षेत्र के अनुदिश लाई व्युत्पन्न है।

सिम्पेक्टोमोर्फिज्म के उदाहरणों में शास्त्रीय यांत्रिकी और सैद्धांतिक भौतिकी के विहित परिवर्तन, किसी भी हैमिल्टनियन फलन से जुड़ा प्रवाह, मैनिफोल्ड्स के किसी भी भिन्नता से प्रेरित कोटैंजेंट बंडल पर मानचित्र और सहसंयुक्त कक्षा पर लाइ समूह के तत्व की सहसंयोजक क्रिया सम्मिलित है।

प्रवाह

सिम्पलेक्टिक मैनिफोल्ड पर कोई भी सुचारू कार्य, परिभाषा के अनुसार, हैमिल्टनियन सदिश क्षेत्र को उत्पन्न करता है और ऐसे सभी सदिश क्षेत्र का समुच्चय सिम्प्लेक्टिक सदिश क्षेत्र के लाई बीजगणित का उप-बीजगणित बनाता है। सिम्पलेक्टिक सदिश क्षेत्र के प्रवाह का एकीकरण सिम्पेक्टोमोर्फिज्म है। चूंकि सिम्प्लेक्टोमॉर्फिज्म सिंपलेक्टिक रूप 2-फॉर्म को संरक्षित करता है और इसलिए सिम्प्लेक्टिक आयतन फॉर्म, हैमिल्टनियन यांत्रिकी में लिउविले के प्रमेय का पालन करता है। हैमिल्टनियन सदिश क्षेत्रों से उत्पन्न होने वाले सिम्प्लेक्टोमोर्फिज्म को हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के रूप में जाना जाता है।

तब से {H, H} = XH(H) = 0, हैमिल्टनियन सदिश क्षेत्र का प्रवाह भी H को संरक्षित करता है। भौतिकी में इसे ऊर्जा के संरक्षण के नियम के रूप में व्याख्या की जाती है।

यदि किसी कनेक्टेड सिम्पलेक्टिक मैनिफोल्ड की प्रथम बेट्टी संख्या शून्य है, सिम्पलेक्टिक और हैमिल्टनियन सदिश क्षेत्र युग्मित होते हैं, इसलिए हैमिल्टनियन आइसोटोप और सिम्प्लेक्टोमोर्फिज्म की सिंपलेक्टिक आइसोटोपी की धारणाएं संगुमित होती हैं।

यह दिखाया जा सकता है कि जियोडेसिक के समीकरणों को हैमिल्टनियन प्रवाह के रूप में तैयार किया जा सकता है, जियोडेसिक्स को हैमिल्टनियन प्रवाह के रूप में देखें।

(हैमिल्टनियन) सिम्प्लेक्टोमोर्फिज्म का समूह

कई गुना से लक्षणात्मकताएं अपने आप में अनंत-आयामी छद्म समूह बनाते हैं। संबंधित लाई बीजगणित में सिम्प्लेक्टिक सदिश क्षेत्र होते हैं। हैमिल्टनियन सिम्प्लेक्टोमोर्फिम्स ऐसा उपसमूह बनाते हैं, जिसे लाई बीजगणित हैमिल्टनियन सदिश क्षेत्रों द्वारा दिया जाता है। उत्तरार्द्ध पॉइसन ब्रैकेट, मॉड्यूलो स्थिरांक के संबंध में मैनिफोल्ड पर स्मूथ कार्यों के लाई बीजगणित के लिए आइसोमोर्फिक है।

हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म का समूह को सामान्यतः इस रूप में दर्शाया जाता है।

बान्यागा के प्रमेय के अनुसार, हैमिल्टनियन भिन्नता के समूह सरल हैं। उनके पास हॉफर पैरामीटर द्वारा दी गई प्राकृतिक ज्यामिति है। कुछ सरल सिम्प्लेक्टिक चार-मैनिफोल्ड्स के लिए सिम्प्लेक्टोमोर्फिज्म समूह के होमोटॉपी प्रकार, जैसे कि गोले के उत्पाद की गणना ग्रोमोव के स्यूडोहोलोमॉर्फिक वक्रों के सिद्धांत का उपयोग करके की जा सकती है।

रीमानियन ज्यामिति के साथ तुलना

रीमैनियन मैनिफोल्ड्स के विपरीत, सिम्प्लेक्टिक मैनिफोल्ड्स अधिक कठोर नहीं हैं: डार्बौक्स के प्रमेय से ज्ञात होता है कि समान आयाम के सभी सिम्प्लेक्टिक मैनिफोल्ड समष्टिीय रूप से आइसोमोर्फिक हैं। इसके विपरीत, रिमेंनियन ज्योमेट्री में आइसोमेट्री को रिमेंन वक्रता टेन्सर को संरक्षित करना चाहिए, जो इस प्रकार रीमैनियन मैनिफोल्ड का समष्टिीय अपरिवर्तनीय है। इसके अतिरिक्त, सिम्प्लेक्टिक मैनिफोल्ड पर प्रत्येक फलन H हैमिल्टनियन सदिश क्षेत्र XH को परिभाषित करता है, जो हैमिल्टनियन डिफ़ेओमोर्फिज़्म के पैरामीटर समूह को प्रतिपादित करता है। इससे यह ज्ञात होता है कि लक्षणात्मकताओं का समूह सदैव अधिक बड़ा होता है, और विशेष रूप से, अनंत-आयामी होता है। दूसरी ओर, रिमेंनियन मैनिफोल्ड की आइसोमेट्री का समूह सदैव (परिमित-आयामी) लाई समूह होता है। इसके अतिरिक्त, बड़े समरूपता समूहों के साथ रीमैनियन मैनिफोल्ड्स अधिक विशेष हैं, और सामान्य रीमैनियन मैनिफोल्ड में कोई असमरूपता नहीं है।

परिमाणीकरण

हिल्बर्ट रिक्त समष्टि पर सिम्प्लेक्टोमोर्फिज्म (सामान्य रूप से ħ-विरूपण के पश्चात) के समूह के परिमित-आयामी उपसमूहों के प्रतिनिधित्व को परिमाणीकरण कहा जाता है। जब लाइ समूह हैमिल्टनियन द्वारा परिभाषित किया जाता है, तो इसे ऊर्जा द्वारा परिमाणीकरण कहा जाता है। निरंतर रेखीय संचालकों के लाई बीजगणित से लाई बीजगणित तक संबंधित ऑपरेटर को कभी-कभी परिमाणीकरण भी कहा जाता है; इसे भौतिकी में देखने का अधिक सामान्य विधि है।

अर्नोल्ड अनुमान

व्लादिमीर अर्नोल्ड का प्रसिद्ध अनुमान हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के लिए निश्चित बिंदु (गणित) की न्यूनतम संख्या से संबंधित है , इस स्तिथि में मोर्स सिद्धांत के अनुसार कॉम्पैक्ट सिंपलेक्टिक मैनिफोल्ड है (देखें [1])। अधिक त्रुटिहीन रूप से, अनुमान बताता है कि कम से कम उतने निश्चित बिंदु होते हैं, जितने महत्वपूर्ण बिंदुओं (गणित) पर सुचारू कार्य होता है, अवश्य होना चाहिए। इस अनुमान के कुछ संस्करण सिद्ध हुए हैं: जब अविक्षिप्त है, निश्चित बिंदुओं की संख्या नीचे से बेट्टी संख्याओं के योग से सीमित है (देखो,[2][3])। इस प्रसिद्ध अनुमान से प्रेरित सहानुभूति ज्यामिति में सबसे महत्वपूर्ण विकास फ्लोर होमोलॉजी का उत्पन्न है (देखें [4]), जिसका नाम एंड्रियास फ्लोर के नाम पर रखा गया है।

संदर्भ

  1. Arnolʹd, Vladimir (1978). Mathematical methods of classical mechanics. Graduate Texts in Mathematics. Vol. 60. New York: Springer-Verlag. doi:10.1007/978-1-4757-1693-1. ISBN 978-1-4757-1693-1.
  2. Fukaya, Kenji; Ono, Kaoru (September 1999). "Arnold conjecture and Gromov-Witten invariants". Topology. 38 (5): 933–1048. doi:10.1016/S0040-9383(98)00042-1.
  3. Liu, Gang; Tian, Gang (1998). "Floer homology and Arnold conjecture". Journal of Differential Geometry. 49 (1): 1–74. doi:10.4310/jdg/1214460936.
  4. Floer, Andreas (1989). "Symplectic fixed points and holomorphic spheres". Communications in Mathematical Physics. 120 (4): 575–611. doi:10.1007/BF01260388. S2CID 123345003.
Symplectomorphism groups