विकर्णीय आव्यूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Matrices similar to diagonal matrices}}
{{Short description|Matrices similar to diagonal matrices}}


{{About|matrix diagonalization in linear algebra||Diagonalization (disambiguation){{!}}Diagonalization}}


रैखिक बीजगणित में, एक [[वर्ग मैट्रिक्स]] <math>A</math> इसे विकर्णीय या गैर-दोषपूर्ण कहा जाता है यदि यह एक [[विकर्ण मैट्रिक्स]] के लिए [[मैट्रिक्स समानता]] है, यानी, यदि कोई [[उलटा मैट्रिक्स]] मौजूद है <math>P</math> और एक विकर्ण मैट्रिक्स <math>D</math> ऐसा है कि {{nowrap|<math>P^{-1}AP=D</math>,}} या समकक्ष {{nowrap|<math>A = PDP^{-1}</math>.}} (ऐसा {{nowrap|<math>P</math>,}} <math>D</math> अद्वितीय नहीं हैं।) एक आयाम (वेक्टर समष्टि)|परिमित-आयामी सदिश समष्टि के लिए {{nowrap|<math>V</math>,}} एक [[रेखीय मानचित्र]] <math>T:V\to V</math> यदि कोई आधार (रैखिक बीजगणित) मौजूद है तो इसे विकर्णीय कहा जाता है#क्रमबद्ध आधार और निर्देशांक <math>V</math> के [[eigenvector]]s से मिलकर बना है <math>T</math>. ये परिभाषाएँ समतुल्य हैं: यदि <math>T</math> एक [[मैट्रिक्स (गणित)]] प्रतिनिधित्व है <math>T = PDP^{-1}</math> जैसा कि ऊपर है, फिर कॉलम वैक्टर <math>P</math> के eigenvectors से मिलकर एक आधार बनाएं {{nowrap|<math>T</math>,}} और की विकर्ण प्रविष्टियाँ <math>D</math> के संगत [[eigenvalue]]s ​​हैं {{nowrap|<math>T</math>;}} इस eigenvector आधार के संबंध में, <math>A</math> द्वारा प्रतिनिधित्व किया जाता है {{nowrap|<math>D</math>.}} विकर्णीकरण उपरोक्त को खोजने की प्रक्रिया है <math>P</math> और {{nowrap|<math>D</math>.}}


विकर्णीय मैट्रिक्स और मानचित्र गणना के लिए विशेष रूप से आसान होते हैं, एक बार जब उनके आइगेनवैल्यू और आइजेनवेक्टर ज्ञात हो जाते हैं। कोई एक विकर्ण मैट्रिक्स बढ़ा सकता है <math>D</math> किसी घात को केवल विकर्ण प्रविष्टियों को उस घात तक बढ़ाकर, और एक विकर्ण मैट्रिक्स का निर्धारक बस सभी विकर्ण प्रविष्टियों का उत्पाद है; ऐसी गणनाएँ आसानी से सामान्यीकृत हो जाती हैं {{nowrap|<math>A=PDP^{-1}</math>.}} ज्यामितीय रूप से, एक विकर्ण मैट्रिक्स एक [[अमानवीय फैलाव]] (या ''अनिसोट्रोपिक स्केलिंग'') है - यह अंतरिक्ष को [[स्केलिंग (ज्यामिति)]] करता है, जैसा कि एक ''[[सजातीय फैलाव]]'' होता है, लेकिन प्रत्येक ईजेनवेक्टर अक्ष के साथ एक अलग कारक द्वारा, कारक संगत eigenvalue द्वारा दिया गया।


एक वर्ग मैट्रिक्स जो विकर्णीय नहीं है उसे ''[[दोषपूर्ण मैट्रिक्स]]'' कहा जाता है। ऐसा हो सकता है कि एक मैट्रिक्स <math>A</math> [[वास्तविक संख्या]] प्रविष्टियों के साथ वास्तविक संख्याओं की तुलना में दोषपूर्ण है, जिसका अर्थ है <math>A = PDP^{-1}</math> किसी भी व्युत्क्रमणीय के लिए असंभव है <math>P</math> और विकर्ण <math>D</math> वास्तविक प्रविष्टियों के साथ, लेकिन सम्मिश्र संख्या प्रविष्टियों के साथ यह संभव है, ताकि <math>A</math> सम्मिश्र संख्याओं पर विकर्णीय है। उदाहरण के लिए, यह सामान्य [[रोटेशन मैट्रिक्स]] का मामला है।


विकर्णीय मैट्रिक्स के लिए कई परिणाम केवल [[बीजगणितीय रूप से बंद फ़ील्ड]] (जैसे जटिल संख्या) पर टिके होते हैं। इस मामले में, विकर्णीय मैट्रिक्स सभी मैट्रिक्स के स्थान में घने सेट होते हैं, जिसका अर्थ है कि किसी भी दोषपूर्ण मैट्रिक्स को एक छोटे गड़बड़ी सिद्धांत द्वारा विकर्ण मैट्रिक्स में विकृत किया जा सकता है; और [[जॉर्डन सामान्य रूप]] प्रमेय बताता है कि कोई भी मैट्रिक्स विशिष्ट रूप से एक विकर्ण मैट्रिक्स और एक [[निलपोटेंट मैट्रिक्स]] का योग है। बीजगणितीय रूप से बंद क्षेत्र में, विकर्णीय आव्यूह अर्ध-सरलता#अर्ध-सरल आव्यूह|अर्ध-सरल आव्यूह के समतुल्य होते हैं।
रैखिक बीजगणित में, एक वर्ग आव्यूह <math>A</math> को '''विकर्णीय या गैर-दोषपूर्ण''' कहा जाता है यदि यह एक विकर्ण आव्यूह के समान है, अथार्त , यदि एक उलटा आव्यूह <math>P</math> और एक विकर्ण आव्यूह <math>D</math> उपस्थित है जैसे कि {{nowrap|<math>P^{-1}AP=D</math>,}}, या समकक्ष {{nowrap|<math>A = PDP^{-1}</math>.}} (ऐसे {{nowrap|<math>P</math>,}} <math>D</math> अद्वितीय नहीं हैं।) एक परिमित-आयामी सदिश स्थान {{nowrap|<math>V</math>,}} के लिए, एक रैखिक मानचित्र <math>T:V\to V</math> को विकर्ण कहा जाता है यदि <math>T</math> के आइगेनसदिश से युक्त <math>V</math> का एक क्रमबद्ध आधार उपस्थित है। ये परिभाषाएं समतुल्य हैं: यदि <math>T</math> में है उपरोक्त के अनुसार एक आव्यूह प्रतिनिधित्व <math>T = PDP^{-1}</math> फिर <math>P</math> के स्तंभ सदिश {{nowrap|<math>T</math>,}} के आइगेनवेक्टरों से मिलकर एक आधार बनाते हैं, और <math>D</math> की विकर्ण प्रविष्टियाँ {{nowrap|<math>T</math>,}} के संबंधित आइगेनवैल्यू हैं; इस आइगेनसदिश आधार के संबंध में, <math>A</math> को <math>D</math> द्वारा दर्शाया गया है। विकर्णीकरण उपरोक्त <math>P</math> और <math>D</math> को खोजने की प्रक्रिया है।
 
विकर्णीय आव्यूह और मानचित्र गणना के लिए विशेष रूप से आसान होते हैं, एक बार जब उनके आइगेनवैल्यू और आइगेनसदिश ज्ञात हो जाते हैं। कोई एक विकर्ण <math>D</math> आव्यूह बढ़ा सकता है  किसी घात को केवल विकर्ण प्रविष्टियों को उस घात तक बढ़ाकर और एक विकर्ण आव्यूह का निर्धारक बस सभी विकर्ण प्रविष्टियों का उत्पाद है; ऐसी गणनाएँ आसानी से सामान्यीकृत{{nowrap|<math>A=PDP^{-1}</math>.}} हो जाती हैं ज्यामितीय रूप से, एक विकर्ण आव्यूह एक अमानवीय प्रसार (या ''अनिसोट्रोपिक स्केलिंग'') है - यह स्थान को [[स्केलिंग (ज्यामिति)]] करता है, जैसा कि एक ''सजातीय प्रसार'' होता है, किंतु प्रत्येक आइगेनसदिश अक्ष के साथ एक अलग कारक द्वारा, कारक संगत आइगेनवैल्यू द्वारा दिया गया।
 
एक वर्ग आव्यूह जो विकर्णीय नहीं है उसे दोषपूर्ण कहा जाता है। ऐसा हो सकता है कि वास्तविक प्रविष्टियों वाला आव्यूह <math>A</math> वास्तविक संख्याओं पर दोषपूर्ण है, जिसका अर्थ है कि वास्तविक प्रविष्टियों वाले किसी भी उलटा <math>P</math> और विकर्ण <math>D</math> के लिए <math>A = PDP^{-1}</math> असंभव है, किंतु जटिल प्रविष्टियों के साथ यह संभव है, जिससे <math>A</math> विकर्ण हो। जटिल आंकड़े उदाहरण के लिए, यह सामान्य घूर्णन आव्यूह का स्थिति है।
 
विकर्णीय आव्यूह के लिए कई परिणाम केवल [[बीजगणितीय रूप से बंद फ़ील्ड|बीजगणितीय रूप से संवर्त क्षेत्र]] (जैसे जटिल संख्या) पर टिके होते हैं। इस स्थिति में, विकर्णीय आव्यूह सभी आव्यूह के स्थान में घने समुच्चय होते हैं, जिसका अर्थ है कि किसी भी दोषपूर्ण आव्यूह को एक छोटे व्याकुलता सिद्धांत द्वारा विकर्ण आव्यूह में विकृत किया जा सकता है; और [[जॉर्डन सामान्य रूप]] प्रमेय बताता है कि कोई भी आव्यूह विशिष्ट रूप से एक विकर्ण आव्यूह और एक [[निलपोटेंट मैट्रिक्स|निलपोटेंट]] आव्यूह का योग है। बीजगणितीय रूप से संवर्त क्षेत्र में, विकर्णीय आव्यूह अर्ध-सरलता या अर्ध-सरल आव्यूह के समतुल्य होते हैं।


== परिभाषा ==
== परिभाषा ==
एक वर्ग <math>n \times n</math> आव्यूह, <math>A</math>, एक क्षेत्र में प्रविष्टियों के साथ (गणित) <math>F</math> यदि कोई मौजूद है तो इसे विकर्णीय या गैर-दोषपूर्ण कहा जाता है <math>n \times n</math> उलटा मैट्रिक्स (यानी [[सामान्य रैखिक समूह]] जीएल का एक तत्व<sub>''n''</sub>(एफ)), <math>P</math>, ऐसा है कि <math>P^{-1}AP</math> एक विकर्ण मैट्रिक्स है. औपचारिक रूप से,
एक वर्ग <math>n \times n</math> आव्यूह, <math>A</math>, एक क्षेत्र में प्रविष्टियों के साथ (गणित) <math>F</math> यदि कोई उपस्थित है तो इसे विकर्णीय <math>n \times n</math> या गैर-दोषपूर्ण कहा जाता है विपरीत आव्यूह (अथार्त सामान्य रैखिक समूह GL<sub>''n''</sub>(''F'')) का एक तत्व, <math>P</math>, ऐसा है कि <math>P^{-1}AP</math> एक औपचारिक रूप विकर्ण आव्यूह है.  


{{Equation box 1
{{Equation box 1
Line 18: Line 20:
|equation = <math>A \in F^{n \times n} \text{ diagonalizable} \iff \exists\, P \in \operatorname{GL}_n(F) : \; P^{-1}\!AP \text{ diagonal}</math>
|equation = <math>A \in F^{n \times n} \text{ diagonalizable} \iff \exists\, P \in \operatorname{GL}_n(F) : \; P^{-1}\!AP \text{ diagonal}</math>
|cellpadding= 6
|cellpadding= 6
|border
|border                                  
|border colour = #0073CF
                                                        |border colour = #0073CF
|background colour = #F5FFFA
|background colour = #F5FFFA
|title=}}
|title=}}
Line 26: Line 28:
विकर्ण मानचित्रों और आव्यूहों के बारे में मूलभूत तथ्य निम्नलिखित द्वारा व्यक्त किया गया है:
विकर्ण मानचित्रों और आव्यूहों के बारे में मूलभूत तथ्य निम्नलिखित द्वारा व्यक्त किया गया है:


* एक <math>n \times n</math> आव्यूह <math>A</math> एक मैदान के ऊपर <math>F</math> विकर्णीय है यदि और केवल यदि इसके आइगेनस्पेस के [[आयाम (रैखिक बीजगणित)]] का योग बराबर है <math>n</math>, जो कि मामला है यदि और केवल यदि इसका कोई [[आधार (रैखिक बीजगणित)]] मौजूद है <math>F^n</math> के eigenvectors से मिलकर बना है <math>A</math>. यदि ऐसा कोई आधार मिल गया है, तो कोई मैट्रिक्स बना सकता है <math>P</math> इन आधार सदिशों को स्तंभों के रूप में रखना, और <math>P^{-1}AP</math> एक विकर्ण मैट्रिक्स होगा जिसकी विकर्ण प्रविष्टियाँ eigenvalues ​​​​हैं <math>A</math>. गणित का सवाल <math>P</math> के लिए एक [[मोडल मैट्रिक्स]] के रूप में जाना जाता है <math>A</math>.
* एक <math>n \times n</math> आव्यूह <math>A</math> एक क्षेत्र के ऊपर <math>F</math> विकर्णीय है यदि और केवल यदि इसके आइगेनस्पेस के आयाम (रैखिक बीजगणित) का योग समान है <math>n</math>, जो कि स्थिति है यदि और केवल यदि इसका कोई [[आधार (रैखिक बीजगणित)]] उपस्थित है <math>F^n</math> के आईगेनवक्टर से मिलकर बना है <math>A</math>. यदि ऐसा कोई आधार मिल गया है, तो कोई आव्यूह बना सकता है <math>P</math> इन आधार सदिशों को स्तंभों के रूप में रखना, और <math>P^{-1}AP</math> एक विकर्ण आव्यूह होगा जिसकी विकर्ण प्रविष्टियाँ <math>A</math> आईगेनवैल्यू ​​​​हैं आव्यूह P को <math>A</math> के लिए एक मोडल आव्यूह के रूप में जाना जाता है।
* एक रेखीय मानचित्र <math>T : V \to V</math> विकर्णीय है यदि और केवल यदि इसके आइगेनस्पेस के आयाम (रैखिक बीजगणित) का योग बराबर है {{nowrap|<math>\dim(V)</math>,}} जो कि मामला है यदि और केवल यदि इसका कोई आधार मौजूद है <math>V</math> के eigenvectors से मिलकर बना है <math>T</math>. ऐसे आधार के संबंध में, <math>T</math> एक विकर्ण मैट्रिक्स द्वारा दर्शाया जाएगा। इस मैट्रिक्स की विकर्ण प्रविष्टियाँ eigenvalues ​​​​हैं {{nowrap|<math>T</math>.}}
* एक रेखीय मानचित्र <math>T : V \to V</math> विकर्णीय है यदि और केवल यदि इसके आइगेनस्पेस के आयाम (रैखिक बीजगणित) का योग समान है {{nowrap|<math>\dim(V)</math>,}} जो कि स्थिति है यदि और केवल यदि <math>T</math> इसका कोई आधार उपस्थित है <math>V</math> के आईगेनवक्टर से मिलकर बना है . ऐसे आधार के संबंध में, <math>T</math> एक विकर्ण आव्यूह द्वारा दर्शाया जाएगा। इस आव्यूह की विकर्ण प्रविष्टियाँ {{nowrap|<math>T</math>.}} के आईगेनवैल्यू ​​हैं।


निम्नलिखित पर्याप्त (लेकिन आवश्यक नहीं) स्थिति अक्सर उपयोगी होती है।
निम्नलिखित पर्याप्त (किंतु आवश्यक नहीं) स्थिति अधिकांशतः उपयोगी होती है।
* एक <math>n \times n</math> आव्यूह <math>A</math> क्षेत्र पर विकर्णीय है <math>F</math> अगर यह है <math>n</math> में विशिष्ट eigenvalues {{nowrap|<math>F</math>,}} अर्थात यदि इसका अभिलक्षणिक बहुपद है <math>n</math> में विशिष्ट जड़ें {{nowrap|<math>F</math>;}} हालाँकि, इसका विपरीत गलत हो सकता है। विचार करना <math display="block">\begin{bmatrix}  
*एक <math>n \times n</math> आव्यूह A क्षेत्र F पर विकर्णीय है यदि इसके F में n विशिष्ट आईगेनवैल्यू ​​हैं, अर्थात यदि इसकी विशेषता बहुपद की F में n विशिष्ट जड़ें हैं; चूँकि इसका विपरीत गलत हो सकता है। विचार करना है <math display="block">\begin{bmatrix}  
-1 & 3 & -1 \\
-1 & 3 & -1 \\
-3 & 5 & -1 \\
-3 & 5 & -1 \\
-3 & 3 & 1  
-3 & 3 & 1  
\end{bmatrix},</math> जिसके eigenvalues ​​​​1, 2, 2 (सभी अलग-अलग नहीं) हैं और विकर्ण रूप ([[समान (रैखिक बीजगणित)]] के साथ विकर्ण है) {{nowrap|<math>A</math>)}} <math display="block">\begin{bmatrix}
\end{bmatrix},</math>
*जिसके आईगेनवैल्यू ​​1, 2, 2 (सभी अलग-अलग नहीं) हैं और विकर्ण रूप ({{nowrap|<math>A</math>)}} के समान) के साथ विकर्ण है।<math display="block">\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
0 & 0 & 2
\end{bmatrix}</math> और [[आधार का परिवर्तन]] <math>P</math>: <math display="block">\begin{bmatrix}
\end{bmatrix}</math> <math>P</math> और [[आधार का परिवर्तन]] : <math display="block">\begin{bmatrix}
1 & 1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 3
1 & 0 & 3
\end{bmatrix}.</math> बातचीत तब विफल हो जाती है जब <math>A</math> 1 से अधिक आयाम का eigenspace है। इस उदाहरण में, का eigenspace <math>A</math> eigenvalue 2 से संबद्ध आयाम 2 है।
\end{bmatrix}.</math>जब <math>A</math> का आयाम 1 से अधिक हो तो इसका विपरीत विफल हो जाता है इस उदाहरण में, का आईगेनस्पेस <math>A</math> आइगेनवैल्यू 2 से संबद्ध आयाम 2 है।
* एक रेखीय मानचित्र <math>T : V \to V</math> साथ <math>n = \dim(V)</math> यदि है तो विकर्णीय है <math>n</math> विशिष्ट eigenvalues, अर्थात यदि इसकी विशेषता बहुपद है <math>n</math> में विशिष्ट जड़ें <math>F</math>.
*<math>n = \dim(V)</math> के साथ एक रेखीय मानचित्र <math>T : V \to V</math> विकर्णीय है यदि इसमें <math>n</math> अलग-अलग आईगेनवैल्यू ​​हैं, अथार्त यदि इसकी विशेषता बहुपद में <math>F</math> में n अलग जड़ें हैं।


होने देना <math>A</math> एक मैट्रिक्स खत्म हो जाओ {{nowrap|<math>F</math>.}} अगर <math>A</math> विकर्णीय है, तो इसकी कोई भी शक्ति विकर्णीय है। इसके विपरीत, यदि <math>A</math> उलटा है, <math>F</math> बीजगणितीय रूप से बंद है, और <math>A^n</math> कुछ के लिए विकर्णीय है <math>n</math> यह की विशेषता का पूर्णांक गुणज नहीं है {{nowrap|<math>F</math>,}} तब <math>A</math> विकर्णीय है. प्रमाण: यदि <math>A^n</math> तो, विकर्णीय है <math>A</math> किसी बहुपद द्वारा नष्ट कर दिया जाता है {{nowrap|<math>\left(x^n - \lambda_1\right) \cdots \left(x^n - \lambda_k\right)</math>,}} जिसका कोई एकाधिक मूल नहीं है (चूंकि {{nowrap|<math>\lambda_j \ne 0</math>)}} और के न्यूनतम बहुपद से विभाजित किया जाता है {{nowrap|<math>A</math>.}}
मान लीजिए कि A, F के ऊपर एक आव्यूह है। यदि A विकर्णीय है, तो इसकी कोई भी शक्ति वैसी ही है। इसके विपरीत, यदि A व्युत्क्रमणीय है, F बीजगणितीय रूप से बंद है, और <math>A^n</math> कुछ n के लिए विकर्णीय है जो कि F की विशेषता का पूर्णांक गुणज नहीं है, तो A विकर्णीय है। प्रमाण: यदि <math>A^n</math> विकर्णीय है, तो A को किसी बहुपद {{nowrap|<math>\left(x^n - \lambda_1\right) \cdots \left(x^n - \lambda_k\right)</math>,}} द्वारा नष्ट कर दिया जाता है, जिसका कोई एकाधिक मूल नहीं होता है ({{nowrap|<math>\lambda_j \ne 0</math>)}} के बाद से) और {{nowrap|<math>A</math>.}} के न्यूनतम बहुपद से विभाजित होता है।


सम्मिश्र संख्याओं पर <math>\Complex</math>, लगभग हर मैट्रिक्स विकर्णीय है। अधिक सटीक रूप से: जटिल का सेट <math>n \times n</math> वे आव्यूह जो विकर्णीय नहीं हैं {{nowrap|<math>\Complex</math>,}} का एक उपसमुच्चय माना जाता है {{nowrap|<math>\Complex^{n \times n}</math>,}} में लेब्सग का माप शून्य है। कोई यह भी कह सकता है कि विकर्णीय आव्यूह [[ज़ारिस्की टोपोलॉजी]] के संबंध में एक सघन उपसमुच्चय बनाते हैं: गैर-विकर्ण आव्यूह विशेषता बहुपद के [[विभेदक]] की [[बीजगणितीय विविधता]] के अंदर स्थित होते हैं, जो एक [[ऊनविम पृष्ठ]] है। इससे एक [[मानक (गणित)]] द्वारा दी गई सामान्य (मजबूत) टोपोलॉजी में घनत्व का भी पता चलता है। यह भी सच नहीं है {{nowrap|<math>\R</math>.}}
सम्मिश्र संख्याओं <math>\Complex</math> पर, लगभग हर आव्यूह विकर्णीय है। अधिक स्पष्ट रूप से: जटिल <math>n \times n</math> आव्यूहों का समुच्चय जो {{nowrap|<math>\Complex</math>,}} पर विकर्णीय नहीं है, जिसे {{nowrap|<math>\Complex^{n \times n}</math>,}} के उपसमुच्चय के रूप में माना जाता है, लेबेस्ग का माप शून्य है। कोई यह भी कह सकता है कि विकर्णीय आव्यूह ज़ारिस्की टोपोलॉजी के संबंध में एक सघन उपसमुच्चय बनाते हैं: गैर-विकर्ण आव्यूह विशेषता बहुपद के विभेदक के लुप्त समुच्चय के अंदर स्थित होते हैं, जो एक अतिसतह है। इससे एक मानक द्वारा दिए गए सामान्य (प्रबल) टोपोलॉजी में घनत्व का भी पता चलता है। यह बात {{nowrap|<math>\R</math>.}} से अधिक सत्य नहीं है।


जॉर्डन-चेवेल्ली अपघटन एक ऑपरेटर को उसके अर्धसरल (यानी, विकर्ण) भाग और उसके शून्य-शक्तिशाली भाग के योग के रूप में व्यक्त करता है। इसलिए, एक मैट्रिक्स विकर्णीय होता है यदि और केवल तभी जब इसका शून्य-शक्तिशाली भाग शून्य हो। दूसरे तरीके से कहें तो, एक मैट्रिक्स विकर्णीय होता है यदि उसके जॉर्डन रूप में प्रत्येक ब्लॉक में कोई शून्य-शक्तिशाली भाग नहीं होता है; यानी, प्रत्येक ब्लॉक एक-एक-एक मैट्रिक्स है।
जॉर्डन-चेवेल्ली अपघटन एक ऑपरेटर को उसके अर्धसरल (अथार्त , विकर्ण) भाग और उसके शून्य-शक्तिशाली भाग के योग के रूप में व्यक्त करता है। इसलिए, एक आव्यूह विकर्णीय होता है यदि और केवल तभी जब इसका शून्य-शक्तिशाली भाग शून्य हो। दूसरे विधि से कहें तो, एक आव्यूह विकर्णीय होता है यदि उसके जॉर्डन रूप में प्रत्येक ब्लॉक में कोई शून्य-शक्तिशाली भाग नहीं होता है; अथार्त, प्रत्येक ब्लॉक एक-एक आव्यूह है।


== विकर्णीकरण ==
== विकर्णीकरण ==
{{See also||Eigendecomposition of a matrix}}
{{See also||मैट्रिक्स का ईगेंडेकंपोजीशन}}
[[File:Diagonalization as rotation.gif|400px|thumb|right|एक सममित मैट्रिक्स के विकर्णीकरण को आइजनवेक्टरों के साथ संरेखित करने के लिए अक्षों के घूर्णन के रूप में व्याख्या की जा सकती है।]]यदि एक मैट्रिक्स <math>A</math> विकर्ण किया जा सकता है, अर्थात,
[[File:Diagonalization as rotation.gif|400px|thumb|right|एक सममित आव्यूह के विकर्णीकरण को आइजनवेक्टरों के साथ संरेखित करने के लिए अक्षों के घूर्णन के रूप में व्याख्या की जा सकती है।]]यदि एक आव्यूह <math>A</math> विकर्ण किया जा सकता है, अर्थात,


: <math>P^{-1}AP = \begin{bmatrix}
: <math>P^{-1}AP = \begin{bmatrix}
Line 69: Line 72:
           0 &        0 &  \cdots & \lambda_n
           0 &        0 &  \cdots & \lambda_n
\end{bmatrix}.</math>
\end{bmatrix}.</math>
लिखना <math>P</math> इसके कॉलम वैक्टर के [[ब्लॉक मैट्रिक्स]] के रूप में <math>\boldsymbol{\alpha}_{i}</math>
<math>P</math> को इसके स्तंभ सदिश <math>\boldsymbol{\alpha}_{i}</math> के ब्लॉक आव्यूह के रूप में लिखना।
:<math>P = \begin{bmatrix} \boldsymbol{\alpha}_1 & \boldsymbol{\alpha}_2 & \cdots & \boldsymbol{\alpha}_n \end{bmatrix},</math>
:<math>P = \begin{bmatrix} \boldsymbol{\alpha}_1 & \boldsymbol{\alpha}_2 & \cdots & \boldsymbol{\alpha}_n \end{bmatrix},</math>
उपरोक्त समीकरण को इस प्रकार पुनः लिखा जा सकता है
उपरोक्त समीकरण को इस प्रकार पुनः लिखा जा सकता है


:<math>A\boldsymbol{\alpha}_i = \lambda_i \boldsymbol{\alpha}_i \qquad (i=1,2,\dots,n).</math>
:<math>A\boldsymbol{\alpha}_i = \lambda_i \boldsymbol{\alpha}_i \qquad (i=1,2,\dots,n).</math>
तो के स्तंभ सदिश <math>P</math> के [[सही eigenvector]]s हैं {{nowrap|<math>A</math>,}} और संगत विकर्ण प्रविष्टि संगत eigenvalue है। की उलटापन <math>P</math> यह भी पता चलता है कि eigenvectors [[रैखिक रूप से स्वतंत्र]] हैं और इसका आधार बनाते हैं {{nowrap|<math>F^{n}</math>.}} विकर्णीकरण और विकर्णीकरण के विहित दृष्टिकोण के लिए यह आवश्यक और पर्याप्त शर्त है। की [[पंक्ति सदिश]] <math>P^{-1}</math> के बाएँ eigenvectors हैं {{nowrap|<math>A</math>.}}
तो '''<math>P</math>''' के स्तंभ सदिश {{nowrap|<math>A</math>,}} के सही आईगेनवक्टर हैं, और संबंधित विकर्ण प्रविष्टि संबंधित आइगेनवैल्यू है। <math>P</math> की व्युत्क्रमणीयता यह भी बताती है कि आईगेनवक्टर रैखिक रूप से स्वतंत्र हैं और {{nowrap|<math>F^{n}</math>.}} का आधार बनाते हैं। यह विकर्णीकरण और विकर्णीकरण के विहित दृष्टिकोण के लिए आवश्यक और पर्याप्त शर्त है। <math>P^{-1}</math>के पंक्ति सदिश {{nowrap|<math>A</math>.}}के बाएँ आईगेनवक्टर हैं।


जब एक जटिल मैट्रिक्स <math>A\in\mathbb{C}^{n\times n}</math> एक [[हर्मिटियन मैट्रिक्स]] (या अधिक सामान्यतः एक [[सामान्य मैट्रिक्स]]) है, के eigenvectors <math>A</math> का लम्बवत आधार बनाने के लिए चुना जा सकता है {{nowrap|<math>\mathbb{C}^n</math>,}} और <math>P</math> [[एकात्मक मैट्रिक्स]] के रूप में चुना जा सकता है। यदि इसके अतिरिक्त, <math>A\in\mathbb{R}^{n\times n}</math> एक वास्तविक [[सममित मैट्रिक्स]] है, तो इसके eigenvectors को ऑर्थोनॉर्मल आधार के रूप में चुना जा सकता है <math>\mathbb{R}^n</math> और <math>P</math> एक [[ऑर्थोगोनल मैट्रिक्स]] के रूप में चुना जा सकता है।
जब एक जटिल आव्यूह <math>A\in\mathbb{C}^{n\times n}</math> एक हर्मिटियन आव्यूह (या अधिक सामान्यतः एक सामान्य आव्यूह ) होता है, तो<math>A</math> के आइगेनसदिश को {{nowrap|<math>\mathbb{C}^n</math>,}} का ऑर्थोनॉर्मल आधार बनाने के लिए चुना जा सकता है, और <math>P</math> को एकात्मक आव्यूह के रूप में चुना जा सकता है। यदि इसके अतिरिक्त ,<math>A\in\mathbb{R}^{n\times n}</math>एक वास्तविक सममित आव्यूह है, तो इसके आइजनवेक्टरों को <math>\mathbb{R}^n</math> के ऑर्थोनॉर्मल आधार के रूप में चुना जा सकता है और <math>P</math> को ऑर्थोगोनल आव्यूह के रूप में चुना जा सकता है।


अधिकांश व्यावहारिक कार्यों के लिए मैट्रिक्स को कंप्यूटर सॉफ़्टवेयर का उपयोग करके संख्यात्मक रूप से विकर्ण किया जाता है। इसे पूरा करने के लिए eigenvalue एल्गोरिदम मौजूद है।
अधिकांश व्यावहारिक कार्यों के लिए आव्यूह को कंप्यूटर सॉफ़्टवेयर का उपयोग करके संख्यात्मक रूप से विकर्ण किया जाता है। इसे पूरा करने के लिए आइगेनवैल्यू एल्गोरिदम उपस्थित है।


== एक साथ विकर्णीकरण ==
== एक साथ विकर्णीकरण ==
{{See also|Triangular matrix#Simultaneous triangularisability|l1=Simultaneous triangularisability|Weight (representation theory)|Positive definite matrix#Simultaneous_diagonalization|l3=Positive definite matrix}}
{{See also|त्रिकोणीय मैट्रिक्स या एक साथ त्रिकोणीयता|l1=एक साथ त्रिकोणीयता|वजन (प्रतिनिधित्व सिद्धांत)|सकारात्मक निश्चित मैट्रिक्स या एक साथ_विकर्णीकरण|l3=सकारात्मक निश्चित आव्यूह}}


यदि एकल व्युत्क्रमणीय मैट्रिक्स मौजूद है तो मैट्रिक्स के एक सेट को एक साथ विकर्णीय कहा जाता है <math>P</math> ऐसा है कि <math>P^{-1}AP</math> प्रत्येक के लिए एक विकर्ण मैट्रिक्स है <math>A</math> सेट में. निम्नलिखित प्रमेय एक साथ विकर्णीय मैट्रिक्स की विशेषता बताता है: विकर्ण [[आवागमन मैट्रिसेस]] का एक सेट यदि और केवल यदि सेट एक साथ विकर्ण योग्य है।<ref name="HornJohnson">{{cite book|title=मैट्रिक्स विश्लेषण, दूसरा संस्करण|last1=Horn|first1=Roger A.|last2=Johnson|first2=Charles R.|publisher=Cambridge University Press|year=2013|isbn=9780521839402}}</ref>{{rp|p. 64}}
यदि एकल व्युत्क्रमणीय आव्यूह उपस्थित है तो आव्यूह के एक समुच्चय को एक साथ विकर्णीय कहा जाता है जिसमे <math>P</math> ऐसा है कि <math>P^{-1}AP</math> प्रत्येक के लिए एक विकर्ण आव्यूह<math>A</math> है समुच्चय में. निम्नलिखित प्रमेय एक साथ विकर्णीय आव्यूह की विशेषता बताता है: विकर्ण [[आवागमन मैट्रिसेस]] का एक समुच्चय यदि और केवल यदि समुच्चय एक साथ विकर्ण योग्य है।<ref name="HornJohnson">{{cite book|title=मैट्रिक्स विश्लेषण, दूसरा संस्करण|last1=Horn|first1=Roger A.|last2=Johnson|first2=Charles R.|publisher=Cambridge University Press|year=2013|isbn=9780521839402}}</ref>{{rp|p. 64}}


सबका सेट <math>n \times n</math> विकर्णीय मैट्रिक्स (ओवर)। {{nowrap|<math>\Complex</math>)}} साथ <math>n > 1</math> एक साथ विकर्णीय नहीं है। उदाहरण के लिए, मैट्रिक्स
सबका समुच्चय <math>n \times n</math> विकर्णीय आव्यूह (ओवर)। {{nowrap|<math>\Complex</math>)}} साथ <math>n > 1</math> एक साथ विकर्णीय नहीं है। उदाहरण के लिए, आव्यूह


:<math> \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad\text{and}\quad \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} </math>
:<math> \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad\text{and}\quad \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} </math>
विकर्णीय हैं लेकिन एक साथ विकर्णीय नहीं हैं क्योंकि वे गति नहीं करते हैं।
विकर्णीय हैं किंतु एक साथ विकर्णीय नहीं हैं क्योंकि वे गति नहीं करते हैं।


एक सेट में सामान्य मैट्रिक्स को कम्यूट करना शामिल होता है यदि और केवल तभी जब यह एक एकात्मक मैट्रिक्स द्वारा एक साथ विकर्ण योग्य हो; अर्थात्, एक एकात्मक मैट्रिक्स मौजूद है <math>U</math> ऐसा है कि <math>U^{*} AU</math> प्रत्येक के लिए विकर्ण है <math>A</math> सेट में.
एक समुच्चय में सामान्य आव्यूह को कम्यूट करना सम्मिलित होता है यदि और केवल तभी जब यह एक एकात्मक आव्यूह द्वारा एक साथ विकर्ण योग्य हो; अर्थात्, एक एकात्मक आव्यूह <math>U</math> उपस्थित है जैसे कि समुच्चय में प्रत्येक <math>A</math>के लिए <math>U^{*} AU</math> विकर्ण है।


लाई सिद्धांत की भाषा में, एक साथ विकर्ण मैट्रिक्स का एक सेट एक टोरल लाई बीजगणित उत्पन्न करता है।
लाई सिद्धांत की भाषा में, एक साथ विकर्ण आव्यूह का एक समुच्चय एक टोरल लाई बीजगणित उत्पन्न करता है।


== उदाहरण ==
== उदाहरण ==


=== विकर्णीय आव्यूह ===
=== विकर्णीय आव्यूह ===
* इनवोल्यूशन (गणित) वास्तविक (और वास्तव में 2 नहीं बल्कि विशेषता वाले किसी भी क्षेत्र) पर विकर्णीय है, विकर्ण पर ±1 के साथ।
* विकर्ण पर ±1 के साथ इन्वोल्यूशन वास्तविक (और वास्तव में 2 नहीं विशेषता वाले किसी भी क्षेत्र) पर विकर्णीय होते हैं।
* परिमित क्रम [[एंडोमोर्फिज्म]] विकर्णीय हैं <math>\mathbb{C}</math> (या कोई भी बीजगणितीय रूप से बंद क्षेत्र जहां क्षेत्र की विशेषता एंडोमोर्फिज्म के क्रम को विभाजित नहीं करती है) विकर्ण पर एकता की जड़ों के साथ। यह इस प्रकार है क्योंकि न्यूनतम बहुपद [[वियोज्य बहुपद]] है, क्योंकि [[एकता की जड़ें]] अलग-अलग हैं।
*परिमित क्रम एंडोमोर्फिज्म विकर्ण पर एकता की जड़ों के साथ <math>\mathbb{C}</math> (या किसी भी बीजगणितीय रूप से बंद क्षेत्र जहां क्षेत्र की विशेषता एंडोमोर्फिज्म के क्रम को विभाजित नहीं करती है) पर विकर्णीय हैं। यह इस प्रकार है क्योंकि न्यूनतम बहुपद वियोज्य है, क्योंकि एकता की जड़ें अलग-अलग हैं।
* [[प्रक्षेपण (रैखिक बीजगणित)]] विकर्णीय हैं, विकर्ण पर 0s और 1s हैं।
* [[प्रक्षेपण (रैखिक बीजगणित)]] विकर्णीय हैं, विकर्ण पर 0s और 1s हैं।
* वास्तविक [[सममित मैट्रिक्स]] ऑर्थोगोनल मैट्रिक्स द्वारा विकर्ण योग्य होते हैं; यानी, एक वास्तविक सममित मैट्रिक्स दिया गया है {{nowrap|<math>A</math>,}} <math>Q^{\mathrm T}AQ</math> कुछ ऑर्थोगोनल मैट्रिक्स के लिए विकर्ण है {{nowrap|<math>Q</math>.}} अधिक सामान्यतः, आव्यूह एकात्मक आव्यूह द्वारा विकर्णीय होते हैं यदि और केवल यदि वे सामान्य आव्यूह हों। वास्तविक सममित मैट्रिक्स के मामले में, हम इसे देखते हैं {{nowrap|<math>A=A^{\mathrm T}</math>,}} इतना स्पष्ट रूप से <math>AA^{\mathrm T} = A^{\mathrm T}A</math> धारण करता है. सामान्य मैट्रिक्स के उदाहरण वास्तविक सममित (या [[तिरछा-सममित मैट्रिक्स]] | तिरछा-सममित) मैट्रिक्स (जैसे सहप्रसरण मैट्रिक्स) और हर्मिटियन मैट्रिक्स (या तिरछा-हर्मिटियन मैट्रिक्स) हैं। अनंत-आयामी वेक्टर स्थानों के सामान्यीकरण के लिए [[वर्णक्रमीय प्रमेय]] देखें।
*वास्तविक सममित आव्यूह ऑर्थोगोनल आव्यूह द्वारा विकर्णीय होते हैं; अथार्त एक वास्तविक सममित आव्यूह {{nowrap|<math>A</math>,}} दिया गया है, <math>Q^{\mathrm T}AQ</math> कुछ ऑर्थोगोनल आव्यूह {{nowrap|<math>Q</math>.}} के लिए विकर्ण है। अधिक सामान्यतः आव्यूह एकात्मक आव्यूह द्वारा विकर्ण होते हैं यदि और केवल यदि वे सामान्य हैं। वास्तविक सममित आव्यूह के स्थिति में, हम देखते हैं कि {{nowrap|<math>A=A^{\mathrm T}</math>,}}, इसलिए स्पष्ट रूप से<math>AA^{\mathrm T} = A^{\mathrm T}A</math> कायम है। सामान्य आव्यूहों के उदाहरण वास्तविक सममित (या तिरछा-सममित) आव्यूह (जैसे सहप्रसरण आव्यूह) और हर्मिटियन आव्यूह (या तिरछा-हर्मिटियन आव्यूह) हैं। अनंत-आयामी सदिश स्थानों के सामान्यीकरण के लिए वर्णक्रमीय प्रमेय देखें।


=== आव्यूह जो विकर्णीय नहीं हैं ===
=== आव्यूह जो विकर्णीय नहीं हैं ===
सामान्य तौर पर, एक रोटेशन मैट्रिक्स वास्तविक पर विकर्णीय नहीं होता है, लेकिन सभी रोटेशन मैट्रिक्स # स्वतंत्र विमान जटिल क्षेत्र पर विकर्ण होते हैं। यहां तक ​​कि अगर कोई मैट्रिक्स विकर्णीय नहीं है, तो सबसे अच्छा करना हमेशा संभव होता है, और समान गुणों वाला एक मैट्रिक्स ढूंढना होता है जिसमें अग्रणी विकर्ण पर आइगेनवैल्यू होते हैं, और सुपरडायगोनल पर या तो एक या शून्य होते हैं - जिसे [[ जॉर्डन सामान्य रूप |जॉर्डन सामान्य रूप]] के रूप में जाना जाता है।
सामान्यतः एक घूर्णन आव्यूह वास्तविक पर विकर्णीय नहीं होता है, किंतु सभी घूर्णन आव्यूह या स्वतंत्र विमान जटिल क्षेत्र पर विकर्ण होते हैं। यहां तक ​​कि यदि कोई आव्यूह विकर्णीय नहीं है, तो सबसे अच्छा करना सदैव संभव होता है, और समान गुणों वाला एक आव्यूह खोजना होता है जिसमें अग्रणी विकर्ण पर आइगेनवैल्यू होते हैं, और सुपरडायगोनल पर या तो एक या शून्य होते हैं - जिसे [[ जॉर्डन सामान्य रूप |जॉर्डन सामान्य रूप]] के रूप में जाना जाता है।


कुछ मैट्रिक्स किसी भी क्षेत्र में विकर्णीय नहीं होते हैं, विशेष रूप से गैर-शून्य निलपोटेंट मैट्रिक्स। यह आम तौर पर तब होता है जब किसी आइगेनवैल्यू के आइजेनवैल्यू और आइजेनवेक्टर#बीजगणितीय बहुलता मेल नहीं खाते। उदाहरण के लिए, विचार करें
कुछ आव्यूह किसी भी क्षेत्र में विकर्णीय नहीं होते हैं, विशेष रूप से गैर-शून्य निलपोटेंट आव्यूह यह सामान्यतः तब होता है जब किसी आइगेनवैल्यू के आइगेनवैल्यू और आइगेनसदिश या बीजगणितीय बहुलता मेल नहीं खाते है । उदाहरण के लिए, विचार करें


:<math> C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. </math>
:<math> C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. </math>
यह मैट्रिक्स विकर्णीय नहीं है: कोई मैट्रिक्स नहीं है <math>U</math> ऐसा है कि <math>U^{-1}CU</math> एक विकर्ण मैट्रिक्स है. वास्तव में, <math>C</math> इसका एक eigenvalue (अर्थात् शून्य) है और इस eigenvalue में बीजगणितीय बहुलता 2 और ज्यामितीय बहुलता 1 है।
यह आव्यूह विकर्णीय नहीं है: ऐसा कोई आव्यूह <math>U</math> नहीं है कि <math>U^{-1}CU</math> एक विकर्ण आव्यूह हो। वास्तव में, <math>C</math> का एक आइगेनवैल्यू (अर्थात् शून्य) है और इस आइगेनवैल्यू में बीजगणितीय बहुलता 2 और ज्यामितीय बहुलता 1 है।


कुछ वास्तविक मैट्रिक्स वास्तविक पर विकर्णीय नहीं होते हैं। उदाहरण के लिए मैट्रिक्स पर विचार करें
कुछ वास्तविक आव्यूह वास्तविक पर विकर्णीय नहीं होते हैं। उदाहरण के लिए आव्यूह पर विचार करें


:<math> B = \left[\begin{array}{rr} 0 & 1 \\ \!-1 & 0 \end{array}\right]. </math>
:<math> B = \left[\begin{array}{rr} 0 & 1 \\ \!-1 & 0 \end{array}\right]. </math>
गणित का सवाल <math>B</math> इसका कोई वास्तविक eigenvalues ​​​​नहीं है, इसलिए कोई वास्तविक मैट्रिक्स नहीं है <math>Q</math> ऐसा है कि <math>Q^{-1}BQ</math> एक विकर्ण मैट्रिक्स है. हालाँकि, हम विकर्णीकरण कर सकते हैं <math>B</math> यदि हम सम्मिश्र संख्याओं की अनुमति देते हैं। दरअसल, अगर हम लेते हैं
आव्यूह <math>B</math> में कोई वास्तविक आईगेनवैल्यू ​​नहीं है, इसलिए कोई वास्तविक आव्यूह <math>Q</math> नहीं है जैसे कि <math>Q^{-1}BQ</math> एक विकर्ण आव्यूह है। चूँकि यदि हम सम्मिश्र संख्याओं की अनुमति देते हैं तो हम <math>B</math> को विकर्णित कर सकते हैं। इसलिए , यदि हम लेते हैं


:<math> Q = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}, </math>
:<math> Q = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}, </math>
तब <math>Q^{-1}BQ</math> विकर्ण है. उसे ढूंढना आसान है <math>B</math> रोटेशन मैट्रिक्स है जो कोण द्वारा वामावर्त घूमता है <math display="inline">\theta = \frac{3\pi}{2}</math>
तब <math>Q^{-1}BQ</math> विकर्ण है। यह पता लगाना आसान है कि <math>B</math> घूर्णन आव्यूह है जो कोण <math display="inline">\theta = \frac{3\pi}{2}</math> द्वारा वामावर्त घूमता है ध्यान दें कि उपरोक्त उदाहरण दर्शाते हैं कि विकर्णीय आव्यूहों का योग विकर्णीय होने की आवश्यकता नहीं है।
ध्यान दें कि उपरोक्त उदाहरण दर्शाते हैं कि विकर्णीय आव्यूहों का योग विकर्णीय होने की आवश्यकता नहीं है।


=== मैट्रिक्स को विकर्ण कैसे करें ===
=== आव्यूह को विकर्ण कैसे करें ===
किसी मैट्रिक्स को विकर्णित करना उसके [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स]] को खोजने जैसी ही प्रक्रिया है, उस स्थिति में जब आइजेनवेक्टर एक आधार बनाते हैं। उदाहरण के लिए, मैट्रिक्स पर विचार करें
किसी आव्यूह को विकर्णित करना उसके [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स]] को खोजने जैसी ही प्रक्रिया है, उस स्थिति में जब आइगेनसदिश एक आधार बनाते हैं। उदाहरण के लिए, आव्यूह पर विचार करें


:<math>A=\left[\begin{array}{rrr}
:<math>A=\left[\begin{array}{rrr}
Line 127: Line 129:
1 & \!\!\!-1 & 3
1 & \!\!\!-1 & 3
\end{array}\right].</math>
\end{array}\right].</math>
विशेषता बहुपद की जड़ें <math>p(\lambda)=\det(\lambda I-A)</math> eigenvalues ​​हैं {{nowrap|<math>\lambda_1 = 1,\lambda_2 = 1,\lambda_3 = 2</math>.}}रेखीय प्रणाली को हल करना <math>\left(I-A\right) \mathbf{v} = \mathbf{0}</math> eigenvectors देता है <math>\mathbf{v}_1 = (1,1,0)</math> और {{nowrap|<math>\mathbf{v}_2 = (0,2,1)</math>,}} जबकि <math>\left(2I-A\right)\mathbf{v} = \mathbf{0}</math> देता है {{nowrap|<math>\mathbf{v}_3 = (1,0,-1)</math>;}} वह है, <math>A \mathbf{v}_i = \lambda_i \mathbf{v}_i</math> के लिए {{nowrap|<math>i = 1,2,3</math>.}} ये वैक्टर एक आधार बनाते हैं {{nowrap|<math>V = \mathbb{R}^3</math>,}} इसलिए हम उन्हें चेंज ऑफ बेसिस | चेंज-ऑफ-बेस मैट्रिक्स के कॉलम वैक्टर के रूप में इकट्ठा कर सकते हैं <math>P</math> पाने के लिए और:
अभिलक्षणिक बहुपद <math>p(\lambda)=\det(\lambda I-A)</math> के मूल आईगेनवैल्यू {{nowrap|<math>\lambda_1 = 1,\lambda_2 = 1,\lambda_3 = 2</math>.}} हैं। रैखिक प्रणाली <math>\left(I-A\right) \mathbf{v} = \mathbf{0}</math> को हल करने पर [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स|आइगेन]]सदिश <math>\mathbf{v}_1 = (1,1,0)</math> और {{nowrap|<math>\mathbf{v}_2 = (0,2,1)</math>,}} मिलते हैं, जबकि <math>\left(2I-A\right)\mathbf{v} = \mathbf{0}</math> से {{nowrap|<math>\mathbf{v}_3 = (1,0,-1)</math>;}} मिलता है; अर्थात्, {{nowrap|<math>i = 1,2,3</math>.}} की लिए <math>A \mathbf{v}_i = \lambda_i \mathbf{v}_i</math>. ये सदिश {{nowrap|<math>V = \mathbb{R}^3</math>,}} का आधार बनाते हैं, इसलिए हम इन्हें प्राप्त करने के लिए परिवर्तन-आधारित आव्यूह '''<math>P</math>''' के कॉलम सदिश के रूप में संग्रह कर सकते हैं:
<math display="block">P^{-1}AP =
<math display="block">P^{-1}AP =
\left[\begin{array}{rrr}
\left[\begin{array}{rrr}
Line 148: Line 150:
=
=
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = D .</math>
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = D .</math>
हम इस समीकरण को परिवर्तनों के संदर्भ में देख सकते हैं: <math>P</math> मानक आधार को eigenbasis पर ले जाता है, {{nowrap|<math>P \mathbf{e}_i = \mathbf{v}_i</math>,}} तो हमारे पास:
हम इस समीकरण को परिवर्तनों के संदर्भ में देख सकते हैं: <math>P</math> मानक आधार को आईगेनबेसिस {{nowrap|<math>P \mathbf{e}_i = \mathbf{v}_i</math>,}} पर ले जाता है, इसलिए हमारे पास:
<math display="block">P^{-1} AP \mathbf{e}_i =
<math display="block">P^{-1} AP \mathbf{e}_i =
P^{-1} A \mathbf{v}_i =
P^{-1} A \mathbf{v}_i =
P^{-1} (\lambda_i\mathbf{v}_i) =
P^{-1} (\lambda_i\mathbf{v}_i) =
\lambda_i\mathbf{e}_i,</math>
\lambda_i\mathbf{e}_i,</math>
ताकि <math>P^{-1} AP</math> इसके eigenvectors के रूप में मानक आधार है, जो परिभाषित करने वाली संपत्ति है {{nowrap|<math>D</math>.}}
जिससे <math>P^{-1} AP</math> इसके आईगेनवक्टर के रूप में मानक आधार है, जो {{nowrap|<math>D</math>.}} परिभाषित करने वाली गुण है


ध्यान दें कि इसमें eigenvectors का कोई पसंदीदा क्रम नहीं है {{nowrap|<math>P</math>;}} में [[eigenvectors]] का क्रम बदलना <math>P</math> बस विकर्ण रूप में [[eigenvalues]] ​​​​के क्रम को बदलता है {{nowrap|<math>A</math>.}}<ref>{{cite book| last1=Anton |first1=H. |last2= Rorres|first2= C. |title=प्राथमिक रैखिक बीजगणित (अनुप्रयोग संस्करण)| url=https://archive.org/details/studentsolutions00grob | url-access=registration |publisher=John Wiley & Sons|edition=8th|date=22 Feb 2000| ISBN= 978-0-471-17052-5}}</ref>
<ref name=":0">{{cite book| last1=Anton |first1=H. |last2= Rorres|first2= C. |title=प्राथमिक रैखिक बीजगणित (अनुप्रयोग संस्करण)| url=https://archive.org/details/studentsolutions00grob | url-access=registration |publisher=John Wiley & Sons|edition=8th|date=22 Feb 2000| ISBN= 978-0-471-17052-5}}</ref>ध्यान दें कि {{nowrap|<math>P</math>;}} में आईगेनवक्टर का कोई पसंदीदा क्रम नहीं है; {{nowrap|<math>P</math>;}} में आईगेनवक्टर का क्रम बदलने से {{nowrap|<math>A</math>.}} के विकर्ण रूप में आईगेनवैल्यू ​​का क्रम बदल जाता है।<ref name=":0" />
 
== आव्यूह फ़ंक्शंस का अनुप्रयोग ==
 
विकर्णीकरण का उपयोग आव्यूह {{nowrap|<math>A = PDP^{-1}</math>:}} की शक्तियों की कुशलतापूर्वक गणना करने के लिए किया जा सकता है।
== मैट्रिक्स फ़ंक्शंस का अनुप्रयोग ==
विकर्णीकरण का उपयोग मैट्रिक्स की शक्तियों की कुशलतापूर्वक गणना करने के लिए किया जा सकता है {{nowrap|<math>A = PDP^{-1}</math>:}}


: <math>\begin{align}  
: <math>\begin{align}  
Line 165: Line 165:
       &= PD\left(P^{-1}P\right) D \left(P^{-1}P\right) \cdots \left(P^{-1}P\right) D P^{-1} = PD^kP^{-1},
       &= PD\left(P^{-1}P\right) D \left(P^{-1}P\right) \cdots \left(P^{-1}P\right) D P^{-1} = PD^kP^{-1},
\end{align}</math>
\end{align}</math>
और उत्तरार्द्ध की गणना करना आसान है क्योंकि इसमें केवल विकर्ण मैट्रिक्स की शक्तियां शामिल हैं। उदाहरण के लिए, मैट्रिक्स के लिए <math>A</math> eigenvalues ​​​​के साथ <math>\lambda = 1,1,2</math> उपरोक्त उदाहरण में हम गणना करते हैं:
और उत्तरार्द्ध की गणना करना आसान है क्योंकि इसमें केवल विकर्ण आव्यूह की शक्तियां सम्मिलित हैं। उदाहरण के लिए, आव्यूह के लिए <math>A</math> आईगेनवैल्यू ​​​​के साथ <math>\lambda = 1,1,2</math> उपरोक्त उदाहरण में हम गणना करते हैं:


: <math>\begin{align}
: <math>\begin{align}
Line 186: Line 186:
       \end{bmatrix}.
       \end{bmatrix}.
\end{align}</math>
\end{align}</math>
इस दृष्टिकोण को [[ मैट्रिक्स घातांक |मैट्रिक्स घातांक]] और अन्य [[मैट्रिक्स फ़ंक्शन]] के लिए सामान्यीकृत किया जा सकता है जिन्हें पावर श्रृंखला के रूप में परिभाषित किया जा सकता है। उदाहरण के लिए, परिभाषित करना {{nowrap|<math display="inline">\exp(A) = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots</math>,}} अपने पास:
इस दृष्टिकोण को [[ मैट्रिक्स घातांक |आव्यूह घातांक]] और अन्य [[मैट्रिक्स फ़ंक्शन|आव्यूह फलन]] के लिए सामान्यीकृत किया जा सकता है जिन्हें पावर श्रृंखला के रूप में परिभाषित किया जा सकता है। उदाहरण के लिए, परिभाषित करना {{nowrap|<math display="inline">\exp(A) = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots</math>,}} अपने पास:
: <math>\begin{align}
: <math>\begin{align}
   \exp(A) = P \exp(D) P^{-1}
   \exp(A) = P \exp(D) P^{-1}
Line 206: Line 206:
     \end{bmatrix}.
     \end{bmatrix}.
\end{align}</math>
\end{align}</math>
यह [[रैखिक पुनरावर्ती अनुक्रम]]ों जैसे फाइबोनैचि संख्या#मैट्रिक्स फॉर्म के लिए बंद फॉर्म अभिव्यक्ति खोजने में विशेष रूप से उपयोगी है।
यह [[रैखिक पुनरावर्ती अनुक्रम]] जैसे फाइबोनैचि संख्या या आव्यूह फॉर्म के लिए संवर्त फॉर्म अभिव्यक्ति खोजने में विशेष रूप से उपयोगी है।


=== विशेष अनुप्रयोग ===
=== विशेष अनुप्रयोग ===
उदाहरण के लिए, निम्नलिखित मैट्रिक्स पर विचार करें:
उदाहरण के लिए, निम्नलिखित आव्यूह पर विचार करें:


:<math>M = \begin{bmatrix}a & b - a\\ 0 & b\end{bmatrix}.</math>
:<math>M = \begin{bmatrix}a & b - a\\ 0 & b\end{bmatrix}.</math>
की विभिन्न शक्तियों की गणना <math>M</math> एक आश्चर्यजनक पैटर्न का पता चलता है:
<math>M</math> की विभिन्न शक्तियों की गणना है जो की एक आश्चर्यजनक पैटर्न का पता चलता है:


:<math>
:<math>
Line 220: Line 220:
   \ldots
   \ldots
</math>
</math>
उपरोक्त घटना को विकर्ण करके समझाया जा सकता है {{nowrap|<math>M</math>.}} इसे पूरा करने के लिए, हमें एक आधार की आवश्यकता है <math>\R^2</math> के eigenvectors से मिलकर बना है {{nowrap|<math>M</math>.}} ऐसा ही एक eigenvector आधार दिया गया है
उपरोक्त घटना को {{nowrap|<math>M</math>.}} को विकर्ण करके समझाया जा सकता है। इसे पूरा करने के लिए, हमें {{nowrap|<math>M</math>.}} के आईगेनवक्टर से युक्त <math>\R^2</math> के आधार की आवश्यकता है। ऐसा एक आईगेनवक्टर आधार दिया गया है


:<math>
:<math>
Line 226: Line 226:
   \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{e}_1 + \mathbf{e}_2,
   \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{e}_1 + \mathbf{e}_2,
</math>
</math>
कहां ई<sub>''i''</sub> R के मानक आधार को दर्शाता है<sup>n</sup>. आधार का विपरीत परिवर्तन किसके द्वारा दिया गया है?
जहाँ '''e'''<sub>''i''</sub> '''R'''<sup>''n''</sup> के मानक आधार को दर्शाता है. आधार का विपरीत परिवर्तन किसके द्वारा दिया गया है?


:<math>\mathbf{e}_1 = \mathbf{u},\qquad \mathbf{e}_2 = \mathbf{v} - \mathbf{u}.</math>
:<math>\mathbf{e}_1 = \mathbf{u},\qquad \mathbf{e}_2 = \mathbf{v} - \mathbf{u}.</math>
Line 232: Line 232:


:<math>M\mathbf{u} = a\mathbf{u},\qquad M\mathbf{v} = b\mathbf{v}.</math>
:<math>M\mathbf{u} = a\mathbf{u},\qquad M\mathbf{v} = b\mathbf{v}.</math>
इस प्रकार, और बी क्रमशः 'यू' और 'वी' के अनुरूप आइगेनवैल्यू हैं। मैट्रिक्स गुणन की रैखिकता से, हमारे पास वह है
इस प्रकार, a और b क्रमशः u और v के संगत आइगेनवैल्यू ​​हैं। आव्यूह गुणन की रैखिकता से, हमारे पास वह है


:<math> M^n \mathbf{u} = a^n \mathbf{u},\qquad M^n \mathbf{v} = b^n \mathbf{v}.</math>
:<math> M^n \mathbf{u} = a^n \mathbf{u},\qquad M^n \mathbf{v} = b^n \mathbf{v}.</math>
Line 241: Line 241:
   M^n \mathbf{e}_2 &= M^n \left(\mathbf{v} - \mathbf{u}\right) = b^n \mathbf{v} - a^n\mathbf{u} = \left(b^n - a^n\right) \mathbf{e}_1 + b^n\mathbf{e}_2.
   M^n \mathbf{e}_2 &= M^n \left(\mathbf{v} - \mathbf{u}\right) = b^n \mathbf{v} - a^n\mathbf{u} = \left(b^n - a^n\right) \mathbf{e}_1 + b^n\mathbf{e}_2.
\end{align}</math>
\end{align}</math>
पूर्ववर्ती संबंध, मैट्रिक्स रूप में व्यक्त किए गए हैं
पूर्ववर्ती संबंध, आव्यूह रूप में व्यक्त किए गए हैं


:<math>M^n = \begin{bmatrix} a^n & b^n - a^n \\ 0 & b^n \end{bmatrix}, </math>
:<math>M^n = \begin{bmatrix} a^n & b^n - a^n \\ 0 & b^n \end{bmatrix}, </math>
जिससे उपरोक्त घटना की व्याख्या हो सके।
जिससे उपरोक्त घटना की व्याख्या हो सकती है।


== क्वांटम यांत्रिक अनुप्रयोग ==
== क्वांटम यांत्रिक अनुप्रयोग ==
[[क्वांटम यांत्रिकी]] और [[क्वांटम रसायन शास्त्र]] गणना में मैट्रिक्स विकर्णीकरण सबसे अधिक बार लागू संख्यात्मक प्रक्रियाओं में से एक है। मूल कारण यह है कि समय-स्वतंत्र श्रोडिंगर समीकरण एक आइगेनवैल्यू समीकरण है, यद्यपि अधिकांश भौतिक स्थितियों में अनंत आयामी स्थान (एक [[हिल्बर्ट स्थान]]) पर होता है।
[[क्वांटम यांत्रिकी]] और [[क्वांटम रसायन शास्त्र]] गणना में आव्यूह विकर्णीकरण सबसे अधिक बार प्रयुक्त संख्यात्मक प्रक्रियाओं में से एक है। मूल कारण यह है कि समय-स्वतंत्र श्रोडिंगर समीकरण एक आइगेनवैल्यू समीकरण है, यद्यपि अधिकांश भौतिक स्थितियों में अनंत आयामी स्थान (एक [[हिल्बर्ट स्थान]]) पर होता है।


हिल्बर्ट स्पेस को सीमित आयाम तक छोटा करना एक बहुत ही सामान्य सन्निकटन है, जिसके बाद श्रोडिंगर समीकरण को वास्तविक सममित, या जटिल हर्मिटियन मैट्रिक्स की एक स्वदेशी समस्या के रूप में तैयार किया जा सकता है। औपचारिक रूप से यह सन्निकटन [[परिवर्तनशील सिद्धांत]] पर आधारित है, जो नीचे से बंधे हैमिल्टनवासियों के लिए मान्य है।
हिल्बर्ट स्पेस को सीमित आयाम तक छोटा करना एक बहुत ही सामान्य सन्निकटन है, जिसके बाद श्रोडिंगर समीकरण को वास्तविक सममित या जटिल हर्मिटियन आव्यूह की एक स्वदेशी समस्या के रूप में तैयार किया जा सकता है। औपचारिक रूप से यह सन्निकटन [[परिवर्तनशील सिद्धांत]] पर आधारित है, जो नीचे से बंधे हैमिल्टनवासियों के लिए मान्य है।


गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी)#प्रथम क्रम सुधार|प्रथम-क्रम गड़बड़ी सिद्धांत भी पतित राज्यों के लिए मैट्रिक्स आइगेनवैल्यू समस्या की ओर ले जाता है।
व्याकुलता सिद्धांत (क्वांटम यांत्रिकी) या प्रथम क्रम सुधार या प्रथम-क्रम व्याकुलता सिद्धांत भी पतित अवस्था के लिए आव्यूह आइगेनवैल्यू समस्या की ओर ले जाता है।


== यह भी देखें ==
== यह भी देखें ==
* दोषपूर्ण मैट्रिक्स
* दोषपूर्ण आव्यूह
* स्केलिंग (ज्यामिति)
* स्केलिंग (ज्यामिति)
* [[त्रिकोणीय मैट्रिक्स]]
* [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय आव्यूह]]  
* अर्धसरल ऑपरेटर
* अर्धसरल ऑपरेटर
* [[विकर्णीय समूह]]
* [[विकर्णीय समूह]]
Line 270: Line 270:
{{reflist}}
{{reflist}}


{{Matrix classes}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: मैट्रिसेस]]  
[[Category:Collapse templates]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages that use a deprecated format of the math tags]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:मैट्रिसेस]]

Latest revision as of 13:08, 8 September 2023



रैखिक बीजगणित में, एक वर्ग आव्यूह को विकर्णीय या गैर-दोषपूर्ण कहा जाता है यदि यह एक विकर्ण आव्यूह के समान है, अथार्त , यदि एक उलटा आव्यूह और एक विकर्ण आव्यूह उपस्थित है जैसे कि ,, या समकक्ष . (ऐसे , अद्वितीय नहीं हैं।) एक परिमित-आयामी सदिश स्थान , के लिए, एक रैखिक मानचित्र को विकर्ण कहा जाता है यदि के आइगेनसदिश से युक्त का एक क्रमबद्ध आधार उपस्थित है। ये परिभाषाएं समतुल्य हैं: यदि में है उपरोक्त के अनुसार एक आव्यूह प्रतिनिधित्व फिर के स्तंभ सदिश , के आइगेनवेक्टरों से मिलकर एक आधार बनाते हैं, और की विकर्ण प्रविष्टियाँ , के संबंधित आइगेनवैल्यू हैं; इस आइगेनसदिश आधार के संबंध में, को द्वारा दर्शाया गया है। विकर्णीकरण उपरोक्त और को खोजने की प्रक्रिया है।

विकर्णीय आव्यूह और मानचित्र गणना के लिए विशेष रूप से आसान होते हैं, एक बार जब उनके आइगेनवैल्यू और आइगेनसदिश ज्ञात हो जाते हैं। कोई एक विकर्ण आव्यूह बढ़ा सकता है  किसी घात को केवल विकर्ण प्रविष्टियों को उस घात तक बढ़ाकर और एक विकर्ण आव्यूह का निर्धारक बस सभी विकर्ण प्रविष्टियों का उत्पाद है; ऐसी गणनाएँ आसानी से सामान्यीकृत. हो जाती हैं ज्यामितीय रूप से, एक विकर्ण आव्यूह एक अमानवीय प्रसार (या अनिसोट्रोपिक स्केलिंग) है - यह स्थान को स्केलिंग (ज्यामिति) करता है, जैसा कि एक सजातीय प्रसार होता है, किंतु प्रत्येक आइगेनसदिश अक्ष के साथ एक अलग कारक द्वारा, कारक संगत आइगेनवैल्यू द्वारा दिया गया।

एक वर्ग आव्यूह जो विकर्णीय नहीं है उसे दोषपूर्ण कहा जाता है। ऐसा हो सकता है कि वास्तविक प्रविष्टियों वाला आव्यूह वास्तविक संख्याओं पर दोषपूर्ण है, जिसका अर्थ है कि वास्तविक प्रविष्टियों वाले किसी भी उलटा और विकर्ण के लिए असंभव है, किंतु जटिल प्रविष्टियों के साथ यह संभव है, जिससे विकर्ण हो। जटिल आंकड़े उदाहरण के लिए, यह सामान्य घूर्णन आव्यूह का स्थिति है।

विकर्णीय आव्यूह के लिए कई परिणाम केवल बीजगणितीय रूप से संवर्त क्षेत्र (जैसे जटिल संख्या) पर टिके होते हैं। इस स्थिति में, विकर्णीय आव्यूह सभी आव्यूह के स्थान में घने समुच्चय होते हैं, जिसका अर्थ है कि किसी भी दोषपूर्ण आव्यूह को एक छोटे व्याकुलता सिद्धांत द्वारा विकर्ण आव्यूह में विकृत किया जा सकता है; और जॉर्डन सामान्य रूप प्रमेय बताता है कि कोई भी आव्यूह विशिष्ट रूप से एक विकर्ण आव्यूह और एक निलपोटेंट आव्यूह का योग है। बीजगणितीय रूप से संवर्त क्षेत्र में, विकर्णीय आव्यूह अर्ध-सरलता या अर्ध-सरल आव्यूह के समतुल्य होते हैं।

परिभाषा

एक वर्ग आव्यूह, , एक क्षेत्र में प्रविष्टियों के साथ (गणित) यदि कोई उपस्थित है तो इसे विकर्णीय या गैर-दोषपूर्ण कहा जाता है विपरीत आव्यूह (अथार्त सामान्य रैखिक समूह GLn(F)) का एक तत्व, , ऐसा है कि एक औपचारिक रूप विकर्ण आव्यूह है.

लक्षण वर्णन

विकर्ण मानचित्रों और आव्यूहों के बारे में मूलभूत तथ्य निम्नलिखित द्वारा व्यक्त किया गया है:

  • एक आव्यूह एक क्षेत्र के ऊपर विकर्णीय है यदि और केवल यदि इसके आइगेनस्पेस के आयाम (रैखिक बीजगणित) का योग समान है , जो कि स्थिति है यदि और केवल यदि इसका कोई आधार (रैखिक बीजगणित) उपस्थित है के आईगेनवक्टर से मिलकर बना है . यदि ऐसा कोई आधार मिल गया है, तो कोई आव्यूह बना सकता है इन आधार सदिशों को स्तंभों के रूप में रखना, और एक विकर्ण आव्यूह होगा जिसकी विकर्ण प्रविष्टियाँ आईगेनवैल्यू ​​​​हैं आव्यूह P को के लिए एक मोडल आव्यूह के रूप में जाना जाता है।
  • एक रेखीय मानचित्र विकर्णीय है यदि और केवल यदि इसके आइगेनस्पेस के आयाम (रैखिक बीजगणित) का योग समान है , जो कि स्थिति है यदि और केवल यदि इसका कोई आधार उपस्थित है के आईगेनवक्टर से मिलकर बना है . ऐसे आधार के संबंध में, एक विकर्ण आव्यूह द्वारा दर्शाया जाएगा। इस आव्यूह की विकर्ण प्रविष्टियाँ . के आईगेनवैल्यू ​​हैं।

निम्नलिखित पर्याप्त (किंतु आवश्यक नहीं) स्थिति अधिकांशतः उपयोगी होती है।

  • एक आव्यूह A क्षेत्र F पर विकर्णीय है यदि इसके F में n विशिष्ट आईगेनवैल्यू ​​हैं, अर्थात यदि इसकी विशेषता बहुपद की F में n विशिष्ट जड़ें हैं; चूँकि इसका विपरीत गलत हो सकता है। विचार करना है
  • जिसके आईगेनवैल्यू ​​1, 2, 2 (सभी अलग-अलग नहीं) हैं और विकर्ण रूप () के समान) के साथ विकर्ण है।
    और आधार का परिवर्तन :
    जब का आयाम 1 से अधिक हो तो इसका विपरीत विफल हो जाता है इस उदाहरण में, का आईगेनस्पेस आइगेनवैल्यू 2 से संबद्ध आयाम 2 है।
  • के साथ एक रेखीय मानचित्र विकर्णीय है यदि इसमें अलग-अलग आईगेनवैल्यू ​​हैं, अथार्त यदि इसकी विशेषता बहुपद में में n अलग जड़ें हैं।

मान लीजिए कि A, F के ऊपर एक आव्यूह है। यदि A विकर्णीय है, तो इसकी कोई भी शक्ति वैसी ही है। इसके विपरीत, यदि A व्युत्क्रमणीय है, F बीजगणितीय रूप से बंद है, और कुछ n के लिए विकर्णीय है जो कि F की विशेषता का पूर्णांक गुणज नहीं है, तो A विकर्णीय है। प्रमाण: यदि विकर्णीय है, तो A को किसी बहुपद , द्वारा नष्ट कर दिया जाता है, जिसका कोई एकाधिक मूल नहीं होता है () के बाद से) और . के न्यूनतम बहुपद से विभाजित होता है।

सम्मिश्र संख्याओं पर, लगभग हर आव्यूह विकर्णीय है। अधिक स्पष्ट रूप से: जटिल आव्यूहों का समुच्चय जो , पर विकर्णीय नहीं है, जिसे , के उपसमुच्चय के रूप में माना जाता है, लेबेस्ग का माप शून्य है। कोई यह भी कह सकता है कि विकर्णीय आव्यूह ज़ारिस्की टोपोलॉजी के संबंध में एक सघन उपसमुच्चय बनाते हैं: गैर-विकर्ण आव्यूह विशेषता बहुपद के विभेदक के लुप्त समुच्चय के अंदर स्थित होते हैं, जो एक अतिसतह है। इससे एक मानक द्वारा दिए गए सामान्य (प्रबल) टोपोलॉजी में घनत्व का भी पता चलता है। यह बात . से अधिक सत्य नहीं है।

जॉर्डन-चेवेल्ली अपघटन एक ऑपरेटर को उसके अर्धसरल (अथार्त , विकर्ण) भाग और उसके शून्य-शक्तिशाली भाग के योग के रूप में व्यक्त करता है। इसलिए, एक आव्यूह विकर्णीय होता है यदि और केवल तभी जब इसका शून्य-शक्तिशाली भाग शून्य हो। दूसरे विधि से कहें तो, एक आव्यूह विकर्णीय होता है यदि उसके जॉर्डन रूप में प्रत्येक ब्लॉक में कोई शून्य-शक्तिशाली भाग नहीं होता है; अथार्त, प्रत्येक ब्लॉक एक-एक आव्यूह है।

विकर्णीकरण

एक सममित आव्यूह के विकर्णीकरण को आइजनवेक्टरों के साथ संरेखित करने के लिए अक्षों के घूर्णन के रूप में व्याख्या की जा सकती है।

यदि एक आव्यूह विकर्ण किया जा सकता है, अर्थात,

तब:

को इसके स्तंभ सदिश के ब्लॉक आव्यूह के रूप में लिखना।

उपरोक्त समीकरण को इस प्रकार पुनः लिखा जा सकता है

तो के स्तंभ सदिश , के सही आईगेनवक्टर हैं, और संबंधित विकर्ण प्रविष्टि संबंधित आइगेनवैल्यू है। की व्युत्क्रमणीयता यह भी बताती है कि आईगेनवक्टर रैखिक रूप से स्वतंत्र हैं और . का आधार बनाते हैं। यह विकर्णीकरण और विकर्णीकरण के विहित दृष्टिकोण के लिए आवश्यक और पर्याप्त शर्त है। के पंक्ति सदिश .के बाएँ आईगेनवक्टर हैं।

जब एक जटिल आव्यूह एक हर्मिटियन आव्यूह (या अधिक सामान्यतः एक सामान्य आव्यूह ) होता है, तो के आइगेनसदिश को , का ऑर्थोनॉर्मल आधार बनाने के लिए चुना जा सकता है, और को एकात्मक आव्यूह के रूप में चुना जा सकता है। यदि इसके अतिरिक्त ,एक वास्तविक सममित आव्यूह है, तो इसके आइजनवेक्टरों को के ऑर्थोनॉर्मल आधार के रूप में चुना जा सकता है और को ऑर्थोगोनल आव्यूह के रूप में चुना जा सकता है।

अधिकांश व्यावहारिक कार्यों के लिए आव्यूह को कंप्यूटर सॉफ़्टवेयर का उपयोग करके संख्यात्मक रूप से विकर्ण किया जाता है। इसे पूरा करने के लिए आइगेनवैल्यू एल्गोरिदम उपस्थित है।

एक साथ विकर्णीकरण

यदि एकल व्युत्क्रमणीय आव्यूह उपस्थित है तो आव्यूह के एक समुच्चय को एक साथ विकर्णीय कहा जाता है जिसमे ऐसा है कि प्रत्येक के लिए एक विकर्ण आव्यूह है समुच्चय में. निम्नलिखित प्रमेय एक साथ विकर्णीय आव्यूह की विशेषता बताता है: विकर्ण आवागमन मैट्रिसेस का एक समुच्चय यदि और केवल यदि समुच्चय एक साथ विकर्ण योग्य है।[1]: p. 64 

सबका समुच्चय विकर्णीय आव्यूह (ओवर)। ) साथ एक साथ विकर्णीय नहीं है। उदाहरण के लिए, आव्यूह

विकर्णीय हैं किंतु एक साथ विकर्णीय नहीं हैं क्योंकि वे गति नहीं करते हैं।

एक समुच्चय में सामान्य आव्यूह को कम्यूट करना सम्मिलित होता है यदि और केवल तभी जब यह एक एकात्मक आव्यूह द्वारा एक साथ विकर्ण योग्य हो; अर्थात्, एक एकात्मक आव्यूह उपस्थित है जैसे कि समुच्चय में प्रत्येक के लिए विकर्ण है।

लाई सिद्धांत की भाषा में, एक साथ विकर्ण आव्यूह का एक समुच्चय एक टोरल लाई बीजगणित उत्पन्न करता है।

उदाहरण

विकर्णीय आव्यूह

  • विकर्ण पर ±1 के साथ इन्वोल्यूशन वास्तविक (और वास्तव में 2 नहीं विशेषता वाले किसी भी क्षेत्र) पर विकर्णीय होते हैं।
  • परिमित क्रम एंडोमोर्फिज्म विकर्ण पर एकता की जड़ों के साथ (या किसी भी बीजगणितीय रूप से बंद क्षेत्र जहां क्षेत्र की विशेषता एंडोमोर्फिज्म के क्रम को विभाजित नहीं करती है) पर विकर्णीय हैं। यह इस प्रकार है क्योंकि न्यूनतम बहुपद वियोज्य है, क्योंकि एकता की जड़ें अलग-अलग हैं।
  • प्रक्षेपण (रैखिक बीजगणित) विकर्णीय हैं, विकर्ण पर 0s और 1s हैं।
  • वास्तविक सममित आव्यूह ऑर्थोगोनल आव्यूह द्वारा विकर्णीय होते हैं; अथार्त एक वास्तविक सममित आव्यूह , दिया गया है, कुछ ऑर्थोगोनल आव्यूह . के लिए विकर्ण है। अधिक सामान्यतः आव्यूह एकात्मक आव्यूह द्वारा विकर्ण होते हैं यदि और केवल यदि वे सामान्य हैं। वास्तविक सममित आव्यूह के स्थिति में, हम देखते हैं कि ,, इसलिए स्पष्ट रूप से कायम है। सामान्य आव्यूहों के उदाहरण वास्तविक सममित (या तिरछा-सममित) आव्यूह (जैसे सहप्रसरण आव्यूह) और हर्मिटियन आव्यूह (या तिरछा-हर्मिटियन आव्यूह) हैं। अनंत-आयामी सदिश स्थानों के सामान्यीकरण के लिए वर्णक्रमीय प्रमेय देखें।

आव्यूह जो विकर्णीय नहीं हैं

सामान्यतः एक घूर्णन आव्यूह वास्तविक पर विकर्णीय नहीं होता है, किंतु सभी घूर्णन आव्यूह या स्वतंत्र विमान जटिल क्षेत्र पर विकर्ण होते हैं। यहां तक ​​कि यदि कोई आव्यूह विकर्णीय नहीं है, तो सबसे अच्छा करना सदैव संभव होता है, और समान गुणों वाला एक आव्यूह खोजना होता है जिसमें अग्रणी विकर्ण पर आइगेनवैल्यू होते हैं, और सुपरडायगोनल पर या तो एक या शून्य होते हैं - जिसे जॉर्डन सामान्य रूप के रूप में जाना जाता है।

कुछ आव्यूह किसी भी क्षेत्र में विकर्णीय नहीं होते हैं, विशेष रूप से गैर-शून्य निलपोटेंट आव्यूह यह सामान्यतः तब होता है जब किसी आइगेनवैल्यू के आइगेनवैल्यू और आइगेनसदिश या बीजगणितीय बहुलता मेल नहीं खाते है । उदाहरण के लिए, विचार करें

यह आव्यूह विकर्णीय नहीं है: ऐसा कोई आव्यूह नहीं है कि एक विकर्ण आव्यूह हो। वास्तव में, का एक आइगेनवैल्यू (अर्थात् शून्य) है और इस आइगेनवैल्यू में बीजगणितीय बहुलता 2 और ज्यामितीय बहुलता 1 है।

कुछ वास्तविक आव्यूह वास्तविक पर विकर्णीय नहीं होते हैं। उदाहरण के लिए आव्यूह पर विचार करें

आव्यूह में कोई वास्तविक आईगेनवैल्यू ​​नहीं है, इसलिए कोई वास्तविक आव्यूह नहीं है जैसे कि एक विकर्ण आव्यूह है। चूँकि यदि हम सम्मिश्र संख्याओं की अनुमति देते हैं तो हम को विकर्णित कर सकते हैं। इसलिए , यदि हम लेते हैं

तब विकर्ण है। यह पता लगाना आसान है कि घूर्णन आव्यूह है जो कोण द्वारा वामावर्त घूमता है ध्यान दें कि उपरोक्त उदाहरण दर्शाते हैं कि विकर्णीय आव्यूहों का योग विकर्णीय होने की आवश्यकता नहीं है।

आव्यूह को विकर्ण कैसे करें

किसी आव्यूह को विकर्णित करना उसके आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स को खोजने जैसी ही प्रक्रिया है, उस स्थिति में जब आइगेनसदिश एक आधार बनाते हैं। उदाहरण के लिए, आव्यूह पर विचार करें

अभिलक्षणिक बहुपद के मूल आईगेनवैल्यू . हैं। रैखिक प्रणाली को हल करने पर आइगेनसदिश और , मिलते हैं, जबकि से ; मिलता है; अर्थात्, . की लिए . ये सदिश , का आधार बनाते हैं, इसलिए हम इन्हें प्राप्त करने के लिए परिवर्तन-आधारित आव्यूह के कॉलम सदिश के रूप में संग्रह कर सकते हैं:

हम इस समीकरण को परिवर्तनों के संदर्भ में देख सकते हैं: मानक आधार को आईगेनबेसिस , पर ले जाता है, इसलिए हमारे पास:
जिससे इसके आईगेनवक्टर के रूप में मानक आधार है, जो . परिभाषित करने वाली गुण है

[2]ध्यान दें कि ; में आईगेनवक्टर का कोई पसंदीदा क्रम नहीं है; ; में आईगेनवक्टर का क्रम बदलने से . के विकर्ण रूप में आईगेनवैल्यू ​​का क्रम बदल जाता है।[2]

आव्यूह फ़ंक्शंस का अनुप्रयोग

विकर्णीकरण का उपयोग आव्यूह : की शक्तियों की कुशलतापूर्वक गणना करने के लिए किया जा सकता है।

और उत्तरार्द्ध की गणना करना आसान है क्योंकि इसमें केवल विकर्ण आव्यूह की शक्तियां सम्मिलित हैं। उदाहरण के लिए, आव्यूह के लिए आईगेनवैल्यू ​​​​के साथ उपरोक्त उदाहरण में हम गणना करते हैं:

इस दृष्टिकोण को आव्यूह घातांक और अन्य आव्यूह फलन के लिए सामान्यीकृत किया जा सकता है जिन्हें पावर श्रृंखला के रूप में परिभाषित किया जा सकता है। उदाहरण के लिए, परिभाषित करना , अपने पास:

यह रैखिक पुनरावर्ती अनुक्रम जैसे फाइबोनैचि संख्या या आव्यूह फॉर्म के लिए संवर्त फॉर्म अभिव्यक्ति खोजने में विशेष रूप से उपयोगी है।

विशेष अनुप्रयोग

उदाहरण के लिए, निम्नलिखित आव्यूह पर विचार करें:

की विभिन्न शक्तियों की गणना है जो की एक आश्चर्यजनक पैटर्न का पता चलता है:

उपरोक्त घटना को . को विकर्ण करके समझाया जा सकता है। इसे पूरा करने के लिए, हमें . के आईगेनवक्टर से युक्त के आधार की आवश्यकता है। ऐसा एक आईगेनवक्टर आधार दिया गया है

जहाँ ei Rn के मानक आधार को दर्शाता है. आधार का विपरीत परिवर्तन किसके द्वारा दिया गया है?

सीधी गणनाएँ यह दर्शाती हैं

इस प्रकार, a और b क्रमशः u और v के संगत आइगेनवैल्यू ​​हैं। आव्यूह गुणन की रैखिकता से, हमारे पास वह है

मानक आधार पर वापस लौटते हुए, हमारे पास है

पूर्ववर्ती संबंध, आव्यूह रूप में व्यक्त किए गए हैं

जिससे उपरोक्त घटना की व्याख्या हो सकती है।

क्वांटम यांत्रिक अनुप्रयोग

क्वांटम यांत्रिकी और क्वांटम रसायन शास्त्र गणना में आव्यूह विकर्णीकरण सबसे अधिक बार प्रयुक्त संख्यात्मक प्रक्रियाओं में से एक है। मूल कारण यह है कि समय-स्वतंत्र श्रोडिंगर समीकरण एक आइगेनवैल्यू समीकरण है, यद्यपि अधिकांश भौतिक स्थितियों में अनंत आयामी स्थान (एक हिल्बर्ट स्थान) पर होता है।

हिल्बर्ट स्पेस को सीमित आयाम तक छोटा करना एक बहुत ही सामान्य सन्निकटन है, जिसके बाद श्रोडिंगर समीकरण को वास्तविक सममित या जटिल हर्मिटियन आव्यूह की एक स्वदेशी समस्या के रूप में तैयार किया जा सकता है। औपचारिक रूप से यह सन्निकटन परिवर्तनशील सिद्धांत पर आधारित है, जो नीचे से बंधे हैमिल्टनवासियों के लिए मान्य है।

व्याकुलता सिद्धांत (क्वांटम यांत्रिकी) या प्रथम क्रम सुधार या प्रथम-क्रम व्याकुलता सिद्धांत भी पतित अवस्था के लिए आव्यूह आइगेनवैल्यू समस्या की ओर ले जाता है।

यह भी देखें

टिप्पणियाँ


संदर्भ

  1. Horn, Roger A.; Johnson, Charles R. (2013). मैट्रिक्स विश्लेषण, दूसरा संस्करण. Cambridge University Press. ISBN 9780521839402.
  2. 2.0 2.1 Anton, H.; Rorres, C. (22 Feb 2000). प्राथमिक रैखिक बीजगणित (अनुप्रयोग संस्करण) (8th ed.). John Wiley & Sons. ISBN 978-0-471-17052-5.