क्रमपरिवर्तन की समता: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 4: | Line 4: | ||
गणित में, जब X कम से कम दो तत्वों वाला एक परिमित समुच्चय होता है, तो X के क्रमपरिवर्तन (अर्थात् X से यदि X का कोई कुल क्रम निश्चित है, तो X के क्रमपरिवर्तन <math>\sigma</math> की समता (विषमता या समता) को σ के लिए व्युत्क्रमों की संख्या की समता के रूप में परिभाषित किया जा सकता है, अर्थात, X के तत्व x, y के जोड़े जैसे कि x < y और σ(x) > σ(y). | गणित में, जब X कम से कम दो तत्वों वाला एक परिमित समुच्चय होता है, तो X के क्रमपरिवर्तन (अर्थात् X से यदि X का कोई कुल क्रम निश्चित है, तो X के क्रमपरिवर्तन <math>\sigma</math> की समता (विषमता या समता) को σ के लिए व्युत्क्रमों की संख्या की समता के रूप में परिभाषित किया जा सकता है, अर्थात, X के तत्व x, y के जोड़े जैसे कि x < y और σ(x) > σ(y). | ||
क्रमपरिवर्तन σ का चिह्न, हस्ताक्षर, या चिह्न sgn(σ) दर्शाया जाता है और यदि σ सम है तो +1 के रूप में परिभाषित किया जाता है और यदि σ विषम है तो −1 के रूप में परिभाषित किया जाता है। हस्ताक्षर सममित समूह S<sub>''n''</sub> के वैकल्पिक चरित्र को परिभाषित करता है। क्रमपरिवर्तन के संकेत के लिए एक और संकेतन अधिक सामान्य लेवी-सिविटा प्रतीक (''ε<sub>σ</sub>'') द्वारा दिया गया है, जिसे ''X'' से | क्रमपरिवर्तन σ का चिह्न, हस्ताक्षर, या चिह्न sgn(σ) दर्शाया जाता है और यदि σ सम है तो +1 के रूप में परिभाषित किया जाता है और यदि σ विषम है तो −1 के रूप में परिभाषित किया जाता है। हस्ताक्षर सममित समूह S<sub>''n''</sub> के वैकल्पिक चरित्र को परिभाषित करता है। क्रमपरिवर्तन के संकेत के लिए एक और संकेतन अधिक सामान्य लेवी-सिविटा प्रतीक (''ε<sub>σ</sub>'') द्वारा दिया गया है, जिसे ''X'' से ''X'', तक सभी मानचित्रों के लिए परिभाषित किया गया है, और गैर-विशेषण मानचित्रों के लिए इसका मान शून्य है। | ||
क्रमपरिवर्तन का संकेत स्पष्ट रूप से इस प्रकार व्यक्त किया जा सकता है | क्रमपरिवर्तन का संकेत स्पष्ट रूप से इस प्रकार व्यक्त किया जा सकता है | ||
Line 16: | Line 16: | ||
== उदाहरण == | == उदाहरण == | ||
1 <math>\sigma(1) = 3,</math> <math>\sigma(2) = 4,</math> <math>\sigma(3) = 5,</math> <math>\sigma(4) = 2,</math> और <math>\sigma(5) = 1.</math> | 1 <math>\sigma(1) = 3,</math> <math>\sigma(2) = 4,</math> <math>\sigma(3) = 5,</math> <math>\sigma(4) = 2,</math> और <math>\sigma(5) = 1.</math> द्वारा परिभाषित समुच्चय {{mset|1, 2, 3, 4, 5}} के क्रमपरिवर्तन σ पर विचार करें, एक-पंक्ति संकेतन में, इस क्रमपरिवर्तन को 34521 दर्शाया गया है। इसे पहचान क्रमपरिवर्तन 12345 से प्राप्त किया जा सकता है तीन स्थानांतरण: पहले संख्या 2 और 4 का आदान-प्रदान करें, फिर 3 और 5 का आदान-प्रदान करें, और अंत में 1 और 3 का आदान-प्रदान करें। इससे पता चलता है कि दिया गया क्रमपरिवर्तन σ विषम है। चक्र संकेतन लेख की विधि का अनुसरण करते हुए, इसे बाएँ से दाएँ, जैसे, लिखते हुए लिखा जा सकता है | ||
: <math>\sigma=\begin{pmatrix}1&2&3&4&5\\ | : <math>\sigma=\begin{pmatrix}1&2&3&4&5\\ | ||
3&4&5&2&1\end{pmatrix} = \begin{pmatrix}1&3&5\end{pmatrix} \begin{pmatrix}2&4\end{pmatrix} = \begin{pmatrix}1&3\end{pmatrix} \begin{pmatrix}3&5\end{pmatrix} \begin{pmatrix}2&4\end{pmatrix} .</math> | 3&4&5&2&1\end{pmatrix} = \begin{pmatrix}1&3&5\end{pmatrix} \begin{pmatrix}2&4\end{pmatrix} = \begin{pmatrix}1&3\end{pmatrix} \begin{pmatrix}3&5\end{pmatrix} \begin{pmatrix}2&4\end{pmatrix} .</math> | ||
Line 34: | Line 34: | ||
* प्रत्येक विषम क्रमपरिवर्तन का व्युत्क्रम विषम होता है | * प्रत्येक विषम क्रमपरिवर्तन का व्युत्क्रम विषम होता है | ||
सममित समूह S<sub>''n''</sub> को ध्यान में रखते हुए | सममित समूह S<sub>''n''</sub> को ध्यान में रखते हुए समुच्चय {1, ..., n} के सभी क्रमपरिवर्तनों से, हम यह निष्कर्ष निकाल सकते हैं कि मानचित्र | ||
:{{math|1=sgn: S<sub>''n''</sub> → {−1, 1} }} | :{{math|1=sgn: S<sub>''n''</sub> → {−1, 1} }} | ||
जो प्रत्येक क्रमपरिवर्तन को अपना हस्ताक्षर निर्दिष्ट करता है वह एक [[समूह समरूपता]] है।<ref>Rotman (1995), [{{Google books|plainurl=y|id=lYrsiaHSHKcC|page=9|text=sgn}} p. 9, Theorem 1.6.]</ref> | जो प्रत्येक क्रमपरिवर्तन को अपना हस्ताक्षर निर्दिष्ट करता है वह एक [[समूह समरूपता]] है।<ref>Rotman (1995), [{{Google books|plainurl=y|id=lYrsiaHSHKcC|page=9|text=sgn}} p. 9, Theorem 1.6.]</ref> | ||
इसके अतिरिक्त हम देखते हैं कि सम क्रमपरिवर्तन S<sub>''n''</sub> का एक [[उपसमूह]] बनाते हैं.<ref name="Jacobson" /> यह n अक्षरों पर एक प्रत्यावर्ती समूह है, जिसे A<sub>''n''</sub> द्वारा दर्शाया जाता है.<ref name="Jacobson_a">जैकबसन (2009), पृ. 51.</ref> यह समरूपता sgn का [[कर्नेल (बीजगणित)]] है।<ref>रेफरी>गुडमैन, [{{Google books|plainurl=y|id=l1TKk4InOQ4C|page=116|text=kernel of the sign homomorphism}} पी। 116, परिभाषा 2.4.21]<nowiki></ref></nowiki></ref> विषम क्रमपरिवर्तन एक उपसमूह नहीं बना सकते, क्योंकि दो विषम क्रमपरिवर्तनों का संयोजन सम है, किंतु वे | इसके अतिरिक्त हम देखते हैं कि सम क्रमपरिवर्तन S<sub>''n''</sub> का एक [[उपसमूह]] बनाते हैं.<ref name="Jacobson" /> यह n अक्षरों पर एक प्रत्यावर्ती समूह है, जिसे A<sub>''n''</sub> द्वारा दर्शाया जाता है.<ref name="Jacobson_a">जैकबसन (2009), पृ. 51.</ref> यह समरूपता sgn का [[कर्नेल (बीजगणित)]] है।<ref>रेफरी>गुडमैन, [{{Google books|plainurl=y|id=l1TKk4InOQ4C|page=116|text=kernel of the sign homomorphism}} पी। 116, परिभाषा 2.4.21]<nowiki></ref><nowiki></nowiki></nowiki><nowiki></ref></nowiki> विषम क्रमपरिवर्तन एक उपसमूह नहीं बना सकते, क्योंकि दो विषम क्रमपरिवर्तनों का संयोजन सम है, किंतु वे A<sub>''n''</sub> (S<sub>''n''</sub>). का एक सहसमुच्चय बनाते हैं।.<ref>Meijer & Bauer (2004), [{{Google books|plainurl=y|id=ZakN8Y7dcC8C|page=72|text=these permutations do not form a subgroup since the product of two odd permutations is even}} p. 72]</ref> | ||
यदि n > 1, तो S<sub>''n''</sub> में उतने ही सम क्रमपरिवर्तन हैं जितने विषम हैं;[3] परिणामस्वरूप, A<sub>''n''</sub> | यदि n > 1, तो S<sub>''n''</sub> में उतने ही सम क्रमपरिवर्तन हैं जितने विषम हैं;[3] परिणामस्वरूप, A<sub>''n''</sub> में n!/2 क्रमपरिवर्तन होते हैं। (कारण यह है कि यदि σ सम है तो (1 2)σ विषम है, और यदि σ विषम है तो (1 2)σ सम है, और ये दोनों मानचित्र एक दूसरे के व्युत्क्रम हैं।)<ref name="Jacobson_a" /> | ||
एक [[चक्रीय क्रमपरिवर्तन]] सम होता है और केवल तभी जब इसकी लंबाई विषम हो। यह जैसे सूत्रों से अनुसरण करता है | एक [[चक्रीय क्रमपरिवर्तन]] सम होता है और केवल तभी जब इसकी लंबाई विषम हो। यह जैसे सूत्रों से अनुसरण करता है | ||
Line 55: | Line 55: | ||
* σ में व्युत्क्रमों की संख्या की समता के रूप में (किसी भी क्रम के तहत); या | * σ में व्युत्क्रमों की संख्या की समता के रूप में (किसी भी क्रम के तहत); या | ||
* ट्रांसपोज़िशन की संख्या की समता के रूप में σ को विघटित किया जा सकता है (चूँकि हम इसे विघटित करना चुनते हैं)। | * ट्रांसपोज़िशन की संख्या की समता के रूप में σ को विघटित किया जा सकता है (चूँकि हम इसे विघटित करना चुनते हैं)। | ||
== अन्य परिभाषाएँ एवं प्रमाण == | == अन्य परिभाषाएँ एवं प्रमाण == | ||
Line 138: | Line 62: | ||
:<math>(a\ b\ c \dots x\ y\ z)=(a\ b)(b\ c) \dots (x\ y)(y\ z),</math> | :<math>(a\ b\ c \dots x\ y\ z)=(a\ b)(b\ c) \dots (x\ y)(y\ z),</math> | ||
इसलिए k को चक्र का आकार कहें, और देखें कि, इस परिभाषा के तहत, ट्रांसपोज़िशन आकार 1 के चक्र हैं। m असंयुक्त चक्रों में एक अपघटन से हम | इसलिए k को चक्र का आकार कहें, और देखें कि, इस परिभाषा के तहत, ट्रांसपोज़िशन आकार 1 के चक्र हैं। m असंयुक्त चक्रों में एक अपघटन से हम ''k''<sub>1</sub> + ''k''<sub>2</sub> + ... + ''k<sub>m</sub>'' ट्रांसपोज़िशन में σ का अपघटन प्राप्त कर सकते हैं, जहां k<sub>''i''</sub> ith चक्र का आकार है। संख्या ''N''(''σ'') = ''k''<sub>1</sub> + ''k''<sub>2</sub> + ... + ''k<sub>m</sub>'' को σ का विभेदक कहा जाता है, और इसकी गणना इस प्रकार भी की जा सकती है | ||
:<math>n \text{ minus the number of disjoint cycles in the decomposition of } \sigma</math> | :<math>n \text{ minus the number of disjoint cycles in the decomposition of } \sigma</math> | ||
Line 152: | Line 76: | ||
किसी भी स्थिति में, यह देखा जा सकता है {{nowrap|1=''N''((''a'' ''b'')''σ'') = ''N''(''σ'') ± 1}}, इसलिए N((a b)σ) की समता N(σ) की समता से भिन्न होगी। | किसी भी स्थिति में, यह देखा जा सकता है {{nowrap|1=''N''((''a'' ''b'')''σ'') = ''N''(''σ'') ± 1}}, इसलिए N((a b)σ) की समता N(σ) की समता से भिन्न होगी। | ||
यदि {{nowrap|1=''σ'' = ''t''<sub>1</sub>''t''<sub>2</sub> ... ''t''<sub>''r''</sub>}} एक क्रमपरिवर्तन σ का स्थानान्तरण में एक मनमाना अपघटन है, तो ''t''<sub>2</sub> के बाद r स्थानान्तरण <math>t_1</math> को प्रयुक्त करके ... ''t<sub>r</sub>'' | यदि {{nowrap|1=''σ'' = ''t''<sub>1</sub>''t''<sub>2</sub> ... ''t''<sub>''r''</sub>}} एक क्रमपरिवर्तन σ का स्थानान्तरण में एक मनमाना अपघटन है, तो ''t''<sub>2</sub> के बाद r स्थानान्तरण <math>t_1</math> को प्रयुक्त करके ... ''t<sub>r</sub>'' के बाद पहचान के बाद (जिसका N शून्य है) निरीक्षण करें कि N(σ) ) और r में समान समानता है। σ की समता को N(σ) की समता के रूप में परिभाषित करके, एक क्रमपरिवर्तन जिसमें एक समान लंबाई का अपघटन होता है वह एक सम क्रमपरिवर्तन होता है और एक क्रमपरिवर्तन जिसमें एक विषम लंबाई का अपघटन होता है वह एक विषम क्रमपरिवर्तन होता है। | ||
; | ; टिप्पणिया | ||
* उपरोक्त तर्क की सावधानीपूर्वक जांच से पता चलता है {{nowrap|''r'' ≥ ''N''(''σ'')}}, और चूंकि चक्रों में σ का कोई भी अपघटन, जिसका आकार r के समान है, को r स्थानान्तरण की संरचना के रूप में व्यक्त किया जा सकता है, संख्या N(σ) σ के अपघटन में चक्रों के आकार का न्यूनतम संभव योग है, जिसमें सम्मिलित है ऐसे स्थिति जिनमें सभी चक्र स्थानान्तरण हैं। | * उपरोक्त तर्क की सावधानीपूर्वक जांच से पता चलता है {{nowrap|''r'' ≥ ''N''(''σ'')}}, और चूंकि चक्रों में σ का कोई भी अपघटन, जिसका आकार r के समान है, को r स्थानान्तरण की संरचना के रूप में व्यक्त किया जा सकता है, संख्या N(σ) σ के अपघटन में चक्रों के आकार का न्यूनतम संभव योग है, जिसमें सम्मिलित है ऐसे स्थिति जिनमें सभी चक्र स्थानान्तरण हैं। | ||
* यह प्रमाण उन बिंदुओं के समूह में (संभवतः इच्छानुसार ) क्रम प्रस्तुत नहीं करता है जिन पर σ कार्य करता है। | * यह प्रमाण उन बिंदुओं के समूह में (संभवतः इच्छानुसार ) क्रम प्रस्तुत नहीं करता है जिन पर σ कार्य करता है। | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
समता को [[कॉक्सेटर समूह]] के लिए सामान्यीकृत किया जा सकता है: एक लंबाई फ़ंक्शन ℓ(v) को परिभाषित करता है, जो जेनरेटर की पसंद पर निर्भर करता है (सममित समूह, आसन्न ट्रांसपोज़िशन के लिए), और फिर फ़ंक्शन {{nowrap|''v'' ↦ (−1)<sup>ℓ(''v'')</sup>}} एक सामान्यीकृत संकेत मानचित्र देता है। | समता को [[कॉक्सेटर समूह|कॉक्समुच्चयर समूह]] के लिए सामान्यीकृत किया जा सकता है: एक लंबाई फ़ंक्शन ℓ(v) को परिभाषित करता है, जो जेनरेटर की पसंद पर निर्भर करता है (सममित समूह, आसन्न ट्रांसपोज़िशन के लिए), और फिर फ़ंक्शन {{nowrap|''v'' ↦ (−1)<sup>ℓ(''v'')</sup>}} एक सामान्यीकृत संकेत मानचित्र देता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 175: | Line 99: | ||
* {{cite book |last1=Goodman |first1=Frederick M. |title=Algebra: Abstract and Concrete |isbn=978-0-9799142-0-1 }} | * {{cite book |last1=Goodman |first1=Frederick M. |title=Algebra: Abstract and Concrete |isbn=978-0-9799142-0-1 }} | ||
* {{cite book |last1=Meijer |first1=Paul Herman Ernst |last2=Bauer |first2=Edmond |title=Group theory: the application to quantum mechanics |series=Dover classics of science and mathematics |year=2004 |publisher=Dover Publications |isbn=978-0-486-43798-9 }} | * {{cite book |last1=Meijer |first1=Paul Herman Ernst |last2=Bauer |first2=Edmond |title=Group theory: the application to quantum mechanics |series=Dover classics of science and mathematics |year=2004 |publisher=Dover Publications |isbn=978-0-486-43798-9 }} | ||
[[ru:Перестановка#Связанные определения]] | [[ru:Перестановка#Связанные определения]] | ||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:क्रमपरिवर्तन]] | |||
[[Category:प्रमाण युक्त लेख]] | |||
[[Category:समता (गणित)]] | |||
[[Category:समूह सिद्धांत]] |
Latest revision as of 09:37, 15 July 2023
गणित में, जब X कम से कम दो तत्वों वाला एक परिमित समुच्चय होता है, तो X के क्रमपरिवर्तन (अर्थात् X से यदि X का कोई कुल क्रम निश्चित है, तो X के क्रमपरिवर्तन की समता (विषमता या समता) को σ के लिए व्युत्क्रमों की संख्या की समता के रूप में परिभाषित किया जा सकता है, अर्थात, X के तत्व x, y के जोड़े जैसे कि x < y और σ(x) > σ(y).
क्रमपरिवर्तन σ का चिह्न, हस्ताक्षर, या चिह्न sgn(σ) दर्शाया जाता है और यदि σ सम है तो +1 के रूप में परिभाषित किया जाता है और यदि σ विषम है तो −1 के रूप में परिभाषित किया जाता है। हस्ताक्षर सममित समूह Sn के वैकल्पिक चरित्र को परिभाषित करता है। क्रमपरिवर्तन के संकेत के लिए एक और संकेतन अधिक सामान्य लेवी-सिविटा प्रतीक (εσ) द्वारा दिया गया है, जिसे X से X, तक सभी मानचित्रों के लिए परिभाषित किया गया है, और गैर-विशेषण मानचित्रों के लिए इसका मान शून्य है।
क्रमपरिवर्तन का संकेत स्पष्ट रूप से इस प्रकार व्यक्त किया जा सकता है
- sgn(σ) = (−1)N(σ)
जहां N(σ) σ में व्युत्क्रम (असतत गणित) की संख्या है।
वैकल्पिक रूप से, क्रमपरिवर्तन के चिह्न को इसके अपघटन से ट्रांसपोज़िशन के उत्पाद (गणित) के रूप में परिभाषित किया जा सकता है
- sgn(σ) = (−1)m
जहाँ m अपघटन में स्थानान्तरण की संख्या है। यद्यपि ऐसा अपघटन अद्वितीय नहीं है, सभी अपघटनों में ट्रांसपोज़िशन की संख्या की समानता समान है, जिसका अर्थ है कि क्रमपरिवर्तन का संकेत अच्छी तरह से परिभाषित है।[1]
उदाहरण
1 और द्वारा परिभाषित समुच्चय {1, 2, 3, 4, 5} के क्रमपरिवर्तन σ पर विचार करें, एक-पंक्ति संकेतन में, इस क्रमपरिवर्तन को 34521 दर्शाया गया है। इसे पहचान क्रमपरिवर्तन 12345 से प्राप्त किया जा सकता है तीन स्थानांतरण: पहले संख्या 2 और 4 का आदान-प्रदान करें, फिर 3 और 5 का आदान-प्रदान करें, और अंत में 1 और 3 का आदान-प्रदान करें। इससे पता चलता है कि दिया गया क्रमपरिवर्तन σ विषम है। चक्र संकेतन लेख की विधि का अनुसरण करते हुए, इसे बाएँ से दाएँ, जैसे, लिखते हुए लिखा जा सकता है
उदाहरण के लिए, ट्रांसपोज़िशन की कार्यात्मक संरचना के रूप में σ लिखने के कई अन्य विधि हैं
- σ = (1 5)(3 4)(2 4)(1 2)(2 3),
किंतु इसे सम संख्या में स्थानान्तरण के उत्पाद के रूप में लिखना असंभव है।
गुण
पहचान क्रमपरिवर्तन एक सम क्रमपरिवर्तन है।[1] एक सम क्रमपरिवर्तन को सम और विषम संख्याओं की संरचना के रूप में प्राप्त किया जा सकता है और दो तत्वों के केवल एक सम संख्या के आदान-प्रदान (जिन्हें ट्रांसपोज़िशन (गणित) कहा जाता है) के रूप में प्राप्त किया जा सकता है, जबकि एक विषम क्रमपरिवर्तन (केवल) एक विषम संख्या के ट्रांसपोज़िशन द्वारा प्राप्त किया जा सकता है। .
निम्नलिखित नियम सीधे पूर्णांकों के योग के संबंधित नियमों का अनुसरण करते हैं:[1]
- दो सम क्रमपरिवर्तनों का संघटन सम होता है
- दो विषम क्रमपरिवर्तनों का संघटन सम है
- विषम और सम क्रमपरिवर्तन की संरचना विषम होती है
इनसे यह निष्कर्ष निकलता है
- प्रत्येक सम क्रमपरिवर्तन का व्युत्क्रम भी सम होता है
- प्रत्येक विषम क्रमपरिवर्तन का व्युत्क्रम विषम होता है
सममित समूह Sn को ध्यान में रखते हुए समुच्चय {1, ..., n} के सभी क्रमपरिवर्तनों से, हम यह निष्कर्ष निकाल सकते हैं कि मानचित्र
- sgn: Sn → {−1, 1}
जो प्रत्येक क्रमपरिवर्तन को अपना हस्ताक्षर निर्दिष्ट करता है वह एक समूह समरूपता है।[2]
इसके अतिरिक्त हम देखते हैं कि सम क्रमपरिवर्तन Sn का एक उपसमूह बनाते हैं.[1] यह n अक्षरों पर एक प्रत्यावर्ती समूह है, जिसे An द्वारा दर्शाया जाता है.[3] यह समरूपता sgn का कर्नेल (बीजगणित) है।[4]</nowiki></ref> विषम क्रमपरिवर्तन एक उपसमूह नहीं बना सकते, क्योंकि दो विषम क्रमपरिवर्तनों का संयोजन सम है, किंतु वे An (Sn). का एक सहसमुच्चय बनाते हैं।.[5]
यदि n > 1, तो Sn में उतने ही सम क्रमपरिवर्तन हैं जितने विषम हैं;[3] परिणामस्वरूप, An में n!/2 क्रमपरिवर्तन होते हैं। (कारण यह है कि यदि σ सम है तो (1 2)σ विषम है, और यदि σ विषम है तो (1 2)σ सम है, और ये दोनों मानचित्र एक दूसरे के व्युत्क्रम हैं।)[3]
एक चक्रीय क्रमपरिवर्तन सम होता है और केवल तभी जब इसकी लंबाई विषम हो। यह जैसे सूत्रों से अनुसरण करता है
व्यवहार में, यह निर्धारित करने के लिए कि दिया गया क्रमपरिवर्तन सम है या विषम, कोई क्रमपरिवर्तन को असंयुक्त चक्रों के उत्पाद के रूप में लिखता है। क्रमपरिवर्तन विषम है यदि और केवल यदि इस गुणनखंड में विषम संख्या में सम-लंबाई चक्र सम्मिलित हों।
यह निर्धारित करने के लिए एक और विधि है कि कोई दिया गया क्रमपरिवर्तन सम है या विषम, संबंधित क्रमपरिवर्तन मैट्रिक्स का निर्माण करना और उसके निर्धारक की गणना करना है। निर्धारक का मान क्रमपरिवर्तन की समता के समान है।
विषम क्रम (समूह सिद्धांत) का प्रत्येक क्रमपरिवर्तन सम होना चाहिए। क्रमपरिवर्तन (1 2)(3 4) में A4 दर्शाता है कि इसका विपरीत सामान्यतः सत्य नहीं है।
दो परिभाषाओं की समानता
यह खंड प्रमाण प्रस्तुत करता है कि क्रमपरिवर्तन σ की समता को दो समकक्ष विधि से परिभाषित किया जा सकता है:
- σ में व्युत्क्रमों की संख्या की समता के रूप में (किसी भी क्रम के तहत); या
- ट्रांसपोज़िशन की संख्या की समता के रूप में σ को विघटित किया जा सकता है (चूँकि हम इसे विघटित करना चुनते हैं)।
अन्य परिभाषाएँ एवं प्रमाण
के क्रमपरिवर्तन की समता है इसके चक्रीय क्रमपरिवर्तन में अंक भी एन्कोड किए गए हैं।
मान लीजिए σ = (i1 i2 ... ir+1)(j1 j2 ... js+1)...(ℓ1 ℓ2 ... ℓu+1) असंयुक्त चक्रों में σ का अद्वितीय चक्र संकेतन | अपघटन हो, जिसे किसी भी क्रम में बनाया जा सकता है क्योंकि वे आवागमन करते हैं। एक चक्र (a b c ... x y z) सम्मिलित है k + 1 अंक सदैव k ट्रांसपोज़िशन (2-चक्र) बनाकर प्राप्त किए जा सकते हैं:
इसलिए k को चक्र का आकार कहें, और देखें कि, इस परिभाषा के तहत, ट्रांसपोज़िशन आकार 1 के चक्र हैं। m असंयुक्त चक्रों में एक अपघटन से हम k1 + k2 + ... + km ट्रांसपोज़िशन में σ का अपघटन प्राप्त कर सकते हैं, जहां ki ith चक्र का आकार है। संख्या N(σ) = k1 + k2 + ... + km को σ का विभेदक कहा जाता है, और इसकी गणना इस प्रकार भी की जा सकती है
यदि हम σ के निश्चित बिंदुओं को 1-चक्र के रूप में सम्मिलित करने का ध्यान रखते हैं।
मान लीजिए कि क्रमपरिवर्तन σ के बाद एक ट्रांसपोज़िशन (a b) प्रयुक्त किया जाता है। जब a और b σ के विभिन्न चक्रों में होते हैं
- ,
और यदि a और b σ के एक ही चक्र में हैं
- .
किसी भी स्थिति में, यह देखा जा सकता है N((a b)σ) = N(σ) ± 1, इसलिए N((a b)σ) की समता N(σ) की समता से भिन्न होगी।
यदि σ = t1t2 ... tr एक क्रमपरिवर्तन σ का स्थानान्तरण में एक मनमाना अपघटन है, तो t2 के बाद r स्थानान्तरण को प्रयुक्त करके ... tr के बाद पहचान के बाद (जिसका N शून्य है) निरीक्षण करें कि N(σ) ) और r में समान समानता है। σ की समता को N(σ) की समता के रूप में परिभाषित करके, एक क्रमपरिवर्तन जिसमें एक समान लंबाई का अपघटन होता है वह एक सम क्रमपरिवर्तन होता है और एक क्रमपरिवर्तन जिसमें एक विषम लंबाई का अपघटन होता है वह एक विषम क्रमपरिवर्तन होता है।
- टिप्पणिया
- उपरोक्त तर्क की सावधानीपूर्वक जांच से पता चलता है r ≥ N(σ), और चूंकि चक्रों में σ का कोई भी अपघटन, जिसका आकार r के समान है, को r स्थानान्तरण की संरचना के रूप में व्यक्त किया जा सकता है, संख्या N(σ) σ के अपघटन में चक्रों के आकार का न्यूनतम संभव योग है, जिसमें सम्मिलित है ऐसे स्थिति जिनमें सभी चक्र स्थानान्तरण हैं।
- यह प्रमाण उन बिंदुओं के समूह में (संभवतः इच्छानुसार ) क्रम प्रस्तुत नहीं करता है जिन पर σ कार्य करता है।
सामान्यीकरण
समता को कॉक्समुच्चयर समूह के लिए सामान्यीकृत किया जा सकता है: एक लंबाई फ़ंक्शन ℓ(v) को परिभाषित करता है, जो जेनरेटर की पसंद पर निर्भर करता है (सममित समूह, आसन्न ट्रांसपोज़िशन के लिए), और फिर फ़ंक्शन v ↦ (−1)ℓ(v) एक सामान्यीकृत संकेत मानचित्र देता है।
यह भी देखें
- पन्द्रह पहेली एक क्लासिक एप्लीकेशन है
- ज़ोलोटारेव की लेम्मा
टिप्पणियाँ
संदर्भ
- Weisstein, Eric W. "Even Permutation". MathWorld.
- Jacobson, Nathan (2009). Basic algebra. Vol. 1 (2nd ed.). Dover. ISBN 978-0-486-47189-1.
- Rotman, J.J. (1995). An introduction to the theory of groups. Graduate texts in mathematics. Springer-Verlag. ISBN 978-0-387-94285-8.
- Goodman, Frederick M. Algebra: Abstract and Concrete. ISBN 978-0-9799142-0-1.
- Meijer, Paul Herman Ernst; Bauer, Edmond (2004). Group theory: the application to quantum mechanics. Dover classics of science and mathematics. Dover Publications. ISBN 978-0-486-43798-9.