एफ़िन अवकल ज्योमेट्री: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''एफ़िन[[ विभेदक ज्यामिति | | '''एफ़िन[[ विभेदक ज्यामिति | अवकल]]''' ज्योमेट्री एक प्रकार की अवकल ज्योमेट्री होती है, जो आयाम -संरक्षण [[एफ़िन परिवर्तन]] के अपरिवर्तनीयों का अध्ययन करती है। ''एफ़िन अवकल'' ज्योमेट्री का नाम [[फ़ेलिक्स क्लेन]] के [[एर्लांगेन कार्यक्रम|एर्लांगेन प्रोग्राम]] से लिया गया है। एफ़िन और[[ रीमैनियन ज्यामिति | रीमैनियन]] ज्योमेट्री अवकल ज्योमेट्री के बीच बुनियादी अंतर यह है कि एफ़िन अवकल ज्योमेट्री [[मीट्रिक टेंसर]] के अतिरिक्त [[वॉल्यूम फॉर्म]] से सुसज्जित कई गुना का अध्ययन कराती है। | ||
==प्रारंभिक== | ==प्रारंभिक== | ||
यहां हम सबसे सरल स्थितियों पर विचार करते हैं, अर्थात[[ संहिताकरण ]]के [[कई गुना]] होता है {{nowrap|1=''M'' ⊂ '''R'''<sup>''n''+1</sup>}} | यहां हम सबसे सरल स्थितियों पर विचार करते हैं, अर्थात[[ संहिताकरण ]]के [[कई गुना]] होता है {{nowrap|1=''M'' ⊂ '''R'''<sup>''n''+1</sup>}} N-डायमेंशनल मैनिफोल्ड हो, और ξ, {{math|'''R'''<sup>''n''+1</sup>}} पर विपरीत विक्षेप वेक्टर क्षेत्र हो जिसके लिए {{nowrap|1=''T<sub>p</sub>'''''R'''<sup>''n''+1</sup> = ''T<sub>p</sub>M'' ⊕ Span(ξ)}} प्रत्येक {{nowrap|1=''p'' ∈ ''M'',}} के लिए हो, जहां ⊕ सीधी योग को और [[रैखिक विस्तार]] को दर्शाता है। | ||
स्मूथ मैनिफोल्ड के लिए मान लीजिए कि N,Ψ(N) | स्मूथ मैनिफोल्ड के लिए मान लीजिए कि N,के लिए, यदि Ψ(N) से संकेत करें जो N पर [[वेक्टर फ़ील्ड]] के [[मॉड्यूल (गणित)]] को दर्शाता है। {{nowrap|1=''D'' : Ψ('''R'''<sup>''n''+1</sup>)×Ψ('''R'''<sup>''n''+1</sup>) → Ψ('''R'''<sup>''n''+1</sup>)}} R पर मानक [[सहसंयोजक व्युत्पन्न]] अंश होता है जो R <sup>n+1</sup> र चलने वाली मानक कटिबद्धता है जहां {{nowrap|1=''D''(''X'', ''Y'') = ''D<sub>X</sub>Y''.}} होता है| हम D<sub>X</sub>Y को M विघटित कर सकते हैं घटक में के [[स्पर्शरेखा स्थान|स्पर्शरेखा]] समिष्ट और अनुप्रस्थ घटक, ξ के [[समानांतर (ज्यामिति)]]। यह [[कार्ल फ्रेडरिक गॉस]] का समीकरण देता है: {{nowrap|1=''D<sub>X</sub>Y'' = ∇''<sub>X</sub>Y'' + ''h''(''X'',''Y'')ξ,}} कहाँ {{nowrap|1=∇ : Ψ(''M'')×Ψ(''M'') → Ψ(''M'')}} एम और पर प्रेरित [[कनेक्शन (गणित)]] है {{nowrap|1=''h'' : Ψ(''M'')×Ψ(''M'') → '''R'''}} [[द्विरेखीय रूप]] है। ध्यान दें कि ∇ और h अनुप्रस्थ सदिश क्षेत्र ξ की पसंद पर निर्भर करते हैं। हम मात्र उन हाइपर सतहों पर विचार करते हैं जिनके लिए h गैर-विक्षिप्त है। [[ ऊनविम पृष्ठ |ऊनविम पृष्ठ]] M की संपत्ति है और अनुप्रस्थ वेक्टर फ़ील्ड ξ की पसंद पर निर्भर नहीं करती है।<ref name="Nomizu">{{Citation|first=K.|last=Nomizu|first2=T.|last2=Sasaki|title=Affine Differential Geometry: Geometry of Affine Immersions|publisher=Cambridge University Press|year=1994|isbn=0-521-44177-3|url-access=registration|url=https://archive.org/details/affinedifferenti0000nomi}}</ref> यदि h गैर-पतित है तो हम कहते हैं कि M गैर-पतित है। समतल में वक्रों के स्थितियों में, गैर-पतित वक्र वे होते हैं जिनमें विभक्ति बिंदु नहीं होते हैं। 3-समिष्ट में सतहों के स्थितियों में, गैर-क्षतिग्रस्त सतहें होती हैं जो परवलयिक बिंदु के बिना होती हैं सतहों पर बिंदुओं का वर्गीकरण होता है| | ||
हम | हम कुछ स्पर्शरेखा दिशा, उदाहरण के लिए X में ξ की अवकलन को भी विचार कर सकते हैं। यह आयाम , D<sub>''X''</sub>ξ, को M के स्पर्शरेखा वाले घटक और ξ के समानांतर अनुप्रस्थ घटक में विघटित किया जा सकता है। यह [[जूलियस वेनगार्टन]] समीकरण देता है: {{nowrap|1=''D<sub>X</sub>''ξ = −''SX'' + τ(''X'')ξ.}} प्रकार-(1,1)-[[ टेन्सर | टेन्सर]] {{nowrap|1=''S'' : Ψ(''M'') → Ψ(''M'')}} को एफ़िन आकार संचालक, [[ विभेदक रूप |अवकल रूप]] कहा जाता है और डिफ़ेरेंशियल एक-प्रपत्र {{nowrap|1=τ : Ψ(''M'') → '''R'''}} को पार्श्व जोड़ने वाला संपर्क प्रपत्र कहा जाता है। पुनः, S और τ दोनों अनुप्रस्थ सदिश क्षेत्र ξ की पसंद पर निर्भर करते हैं। | ||
==प्रथम प्रेरित आयतन प्रपत्र== | ==प्रथम प्रेरित आयतन प्रपत्र== | ||
उदाहरण {{nowrap|1=Ω : Ψ('''R'''<sup>''n''+1</sup>)<sup>''n''+1</sup> → '''R'''}} पर परिभाषित R<sup>n+1</sup> वॉल्यूम फॉर्म बनें हम M के लिए दिए गए वॉल्यूम फॉर्म को प्रेरित कर सकते हैं {{nowrap|1=ω : Ψ(''M'')<sup>''n''</sup> → '''R'''}} के लिए दिए गए {{nowrap|1=ω(''X''<sub>1</sub>,...,''X''<sub>''n''</sub>) := Ω(''X''<sub>1</sub>,...,''X''<sub>''n''</sub>,ξ).}} यह प्राकृतिक परिभाषा है: | उदाहरण के लिए {{nowrap|1=Ω : Ψ('''R'''<sup>''n''+1</sup>)<sup>''n''+1</sup> → '''R'''}} पर परिभाषित R<sup>n+1</sup> वॉल्यूम फॉर्म बनें हम M के लिए दिए गए वॉल्यूम फॉर्म को प्रेरित कर सकते हैं {{nowrap|1=ω : Ψ(''M'')<sup>''n''</sup> → '''R'''}} के लिए दिए गए {{nowrap|1=ω(''X''<sub>1</sub>,...,''X''<sub>''n''</sub>) := Ω(''X''<sub>1</sub>,...,''X''<sub>''n''</sub>,ξ).}} यह प्राकृतिक परिभाषा है: अवकल ज्योमेट्री में जहां ξ [[सतह सामान्य]] है तो X<sub>1</sub>,..., X<sub>''n''</sub> के लिए फैलाया गया मानक यूक्लिडियन आयतन सदैव ω(X) के समान होता है X<sub>1</sub>,..., X<sub>''n''</sub>). ध्यान दें कि ω अनुप्रस्थ वेक्टर क्षेत्र ξ की पसंद पर निर्भर करता है। | ||
==दूसरा प्रेरित आयतन रूप== | ==दूसरा प्रेरित आयतन रूप== | ||
Line 34: | Line 32: | ||
===समतल वक्र=== | ===समतल वक्र=== | ||
[[Image:AffineNormDrDec.jpeg|thumbnail|वक्र के लिए सामान्य रेखा को जोड़ें {{nowrap|1=γ(''t'') = (''t'' + 2''t''<sup>2</sup>,''t''<sup>2</sup>)}} पर {{nowrap|1=''t'' = 0}} होता है। ]]समतल में वक्र के लिए एफ़िन सामान्य वेक्टर फ़ील्ड की अच्छी ज्यामितीय व्याख्या है।<ref name="Su"/> {{nowrap|1=''I'' ⊂ '''R'''}} [[खुला अंतराल]] हो और चलो {{nowrap|1=γ : ''I'' → '''R'''<sup>2</sup>}} समतल वक्र का [[सुचारू कार्य]] | [[Image:AffineNormDrDec.jpeg|thumbnail|वक्र के लिए सामान्य रेखा को जोड़ें {{nowrap|1=γ(''t'') = (''t'' + 2''t''<sup>2</sup>,''t''<sup>2</sup>)}} पर {{nowrap|1=''t'' = 0}} होता है। ]]समतल में वक्र के लिए एफ़िन सामान्य वेक्टर फ़ील्ड की अच्छी ज्यामितीय व्याख्या है।<ref name="Su"/> {{nowrap|1=''I'' ⊂ '''R'''}} [[खुला अंतराल]] हो और चलो {{nowrap|1=γ : ''I'' → '''R'''<sup>2</sup>}} समतल वक्र का [[सुचारू कार्य]] पैरामीटरों का निर्धारण बनें। हम मानते हैं कि γ(I) गैर-पतित वक्र है (नोमिज़ू और सासाकी के अर्थ में)<ref name="Nomizu"/>), अर्थात बिना [[विभक्ति बिंदु]]ओं के है। बिंदु पर विचार करें {{nowrap|1=''p'' = γ(''t''<sub>0</sub>)}} समतल वक्र पर है। चूँकि γ(I) विभक्ति बिंदुओं के बिना है, इसलिए यह इस प्रकार है कि γ(t<sub>0</sub>) विभक्ति बिंदु नहीं है और इसलिए वक्र स्थानीय रूप से उत्तल होगा,<ref name="CAS">{{Citation|first=J. W.|last=Bruce|first2=P. J.|last2=Giblin|title=Curves and Singularities|publisher=Cambridge University Press|year=1984|ISBN=0-521-42999-4}}</ref> अर्थात सभी बिंदु γ(''t''<sub>0</sub>) के साथ {{nowrap|1=''t''<sub>0</sub> − ε < ''t'' < ''t''<sub>0</sub> + ε,}} पर्याप्त रूप से छोटे ε के लिए, γ(''t''<sub>0</sub>) पर γ(I) की स्पर्शरेखा के ही तरफ स्थित होगा। | ||
γ(t<sub>0</sub>) पर γ(I) की स्पर्शरेखा रेखा पर विचार करें, और वक्र के टुकड़े वाली स्पर्शरेखा रेखा के किनारे पर निकट-समानांतर रेखाओं पर विचार करें {{nowrap|1=''P'' := {γ(t) ∈ '''R'''<sup>2</sup> : ''t''<sub>0</sub> − ε < ''t'' < ''t''<sub>0</sub> + ε}.}} स्पर्श रेखा के पर्याप्त निकट समानांतर रेखाओं के लिए वे P को ठीक दो बिंदुओं पर प्रतिच्छेद करेंगी। प्रत्येक समानांतर रेखा पर हम इन दो प्रतिच्छेदन बिंदुओं को जोड़ने वाले [[रेखा खंड]] के [[मध्य]] बिंदु को चिह्नित करते हैं। प्रत्येक समानांतर रेखा के लिए हमें मध्यबिंदु मिलता है, और इसलिए मध्यबिंदुओं का [[लोकस (गणित)]] P से प्रारंभ होने वाले वक्र का पता लगाता है। जैसे ही हम p के पास पहुंचते हैं, मध्यबिंदु के | γ(t<sub>0</sub>) पर γ(I) की स्पर्शरेखा रेखा पर विचार करें, और वक्र के टुकड़े वाली स्पर्शरेखा रेखा के किनारे पर निकट-समानांतर रेखाओं पर विचार करें {{nowrap|1=''P'' := {γ(t) ∈ '''R'''<sup>2</sup> : ''t''<sub>0</sub> − ε < ''t'' < ''t''<sub>0</sub> + ε}.}} स्पर्श रेखा के पर्याप्त निकट समानांतर रेखाओं के लिए वे P को ठीक दो बिंदुओं पर प्रतिच्छेद करेंगी। प्रत्येक समानांतर रेखा पर हम इन दो प्रतिच्छेदन बिंदुओं को जोड़ने वाले [[रेखा खंड]] के [[मध्य]] बिंदु को चिह्नित करते हैं। प्रत्येक समानांतर रेखा के लिए हमें मध्यबिंदु मिलता है, और इसलिए मध्यबिंदुओं का [[लोकस (गणित)]] P से प्रारंभ होने वाले वक्र का पता लगाता है। जैसे ही हम p के पास पहुंचते हैं, मध्यबिंदु के समिष्ट पर सीमित स्पर्शरेखा रेखा बिल्कुल सामान्य रेखा होती है, अर्थात वह रेखा जिसमें γ(t<sub>0</sub>) पर γ(I) का सामान्य वेक्टर होता है। ध्यान दें कि यह एफ़िन अपरिवर्तनीय निर्माण है क्योंकि समानता और मध्यबिंदु एफ़िन परिवर्तनों के अनुसार अपरिवर्तनीय हैं। | ||
पैरामीटरों का निर्धारण के लिए दिए गए [[परवलय]] पर विचार करें {{nowrap|1=γ(''t'') = (''t'' + 2''t''<sup>2</sup>,''t''<sup>2</sup>)}}. इसका समीकरण है {{nowrap|1=''x''<sup>2</sup> + 4''y''<sup>2</sup> − 4''xy'' − ''y'' = 0.}} γ(0) पर स्पर्श रेखा का समीकरण है {{nowrap|1=''y'' = 0}} और इसलिए समानांतर रेखाएं दी गई हैं {{nowrap|1=''y'' = ''k''}} पर्याप्त रूप से छोटे के लिए {{nowrap|1=''k'' ≥ 0.}} रेखा {{nowrap|1=''y'' = ''k''}} वक्र को पर काटता है {{nowrap|1=''x'' = 2''k'' ± {{radic|''k''}}.}} मध्यबिंदु का बिन्दुपथ किसके के लिए दिया गया है? {{nowrap|1={(2''k'',''k'') : ''k'' ≥ 0}.}} ये रेखाखंड बनाते हैं, और इसलिए इस रेखाखंड की सीमित स्पर्शरेखा रेखा, जैसा कि हम γ(0) की ओर देखते हैं, बस इस रेखाखंड वाली रेखा है, अर्थात रेखा {{nowrap|1=''x'' = 2''y''.}} उस स्थिति में γ(0) पर वक्र की सामान्य रेखा का समीकरण होता है {{nowrap|1=''x'' = 2''y''.}} वास्तव में, प्रत्यक्ष गणना से पता चलता है कि γ(0), अर्थात् ξ(0) पर एफ़िन सामान्य वेक्टर, के लिए दिया जाता है {{nowrap|1=ξ(0) = 2<sup>{{frac|1|3}}</sup>·(2,1).}}<ref name="Davis">Davis, D. (2006), Generic Affine Differential Geometry of Curves in '''R'''<sup>''n''</sup>, '' Proc. Royal Soc. Edinburgh'', 136A, 1195−1205.</ref> चित्र में लाल वक्र γ है, काली रेखाएं स्पर्शरेखा रेखा और कुछ निकटवर्ती स्पर्शरेखा रेखाएं हैं, काले बिंदु प्रदर्शित रेखाओं पर मध्यबिंदु हैं, और नीली रेखा मध्यबिंदुओं का समिष्ट है। | |||
===3- | ===3-समिष्ट में सतहें=== | ||
3- | 3-समिष्ट में चिकनी सतहों के [[अण्डाकार बिंदु]]ओं पर एफ़िन सामान्य रेखा खोजने के लिए समान अनुरूप उपस्थित होती है। इस बार कोई स्पर्शरेखा समतल के समानांतर समतल लिए जाते हैं। ये स्पर्शरेखा समतल के पर्याप्त निकट वाले तलों के लिए, उत्तल समतल वक्र बनाने के लिए सतह को काटते हैं। प्रत्येक उत्तल समतल वक्र का [[द्रव्यमान केंद्र]] होता है। द्रव्यमान के केंद्रों का समिष्ट 3-समिष्ट में वक्र का पता लगाता है। जैसे ही कोई मूल सतह बिंदु की ओर जाता है, इस समिष्ट की सीमित स्पर्शरेखा रेखा एफ़िन सामान्य रेखा होती है, अर्थात वह रेखा जिसमें एफ़िन सामान्य वेक्टर होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[वक्रों की ज्यामिति को ठीक करें]] | * [[वक्रों की ज्यामिति को ठीक करें|वक्रों की ज्योमेट्री को ठीक करें]] | ||
* [[एफ़िन फोकल सेट]] | * [[एफ़िन फोकल सेट]] | ||
* [[एफ़िन क्षेत्र]] | * [[एफ़िन क्षेत्र]] | ||
Line 54: | Line 52: | ||
{{DEFAULTSORT:Affine Differential Geometry}} | {{DEFAULTSORT:Affine Differential Geometry}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 04/07/2023|Affine Differential Geometry]] | ||
[[Category: | [[Category:Machine Translated Page|Affine Differential Geometry]] | ||
[[Category:Pages with script errors|Affine Differential Geometry]] | |||
[[Category:Templates Vigyan Ready|Affine Differential Geometry]] | |||
[[Category:विभेदक ज्यामिति|Affine Differential Geometry]] |
Latest revision as of 10:39, 15 July 2023
एफ़िन अवकल ज्योमेट्री एक प्रकार की अवकल ज्योमेट्री होती है, जो आयाम -संरक्षण एफ़िन परिवर्तन के अपरिवर्तनीयों का अध्ययन करती है। एफ़िन अवकल ज्योमेट्री का नाम फ़ेलिक्स क्लेन के एर्लांगेन प्रोग्राम से लिया गया है। एफ़िन और रीमैनियन ज्योमेट्री अवकल ज्योमेट्री के बीच बुनियादी अंतर यह है कि एफ़िन अवकल ज्योमेट्री मीट्रिक टेंसर के अतिरिक्त वॉल्यूम फॉर्म से सुसज्जित कई गुना का अध्ययन कराती है।
प्रारंभिक
यहां हम सबसे सरल स्थितियों पर विचार करते हैं, अर्थातसंहिताकरण के कई गुना होता है M ⊂ Rn+1 N-डायमेंशनल मैनिफोल्ड हो, और ξ, Rn+1 पर विपरीत विक्षेप वेक्टर क्षेत्र हो जिसके लिए TpRn+1 = TpM ⊕ Span(ξ) प्रत्येक p ∈ M, के लिए हो, जहां ⊕ सीधी योग को और रैखिक विस्तार को दर्शाता है।
स्मूथ मैनिफोल्ड के लिए मान लीजिए कि N,के लिए, यदि Ψ(N) से संकेत करें जो N पर वेक्टर फ़ील्ड के मॉड्यूल (गणित) को दर्शाता है। D : Ψ(Rn+1)×Ψ(Rn+1) → Ψ(Rn+1) R पर मानक सहसंयोजक व्युत्पन्न अंश होता है जो R n+1 र चलने वाली मानक कटिबद्धता है जहां D(X, Y) = DXY. होता है| हम DXY को M विघटित कर सकते हैं घटक में के स्पर्शरेखा समिष्ट और अनुप्रस्थ घटक, ξ के समानांतर (ज्यामिति)। यह कार्ल फ्रेडरिक गॉस का समीकरण देता है: DXY = ∇XY + h(X,Y)ξ, कहाँ ∇ : Ψ(M)×Ψ(M) → Ψ(M) एम और पर प्रेरित कनेक्शन (गणित) है h : Ψ(M)×Ψ(M) → R द्विरेखीय रूप है। ध्यान दें कि ∇ और h अनुप्रस्थ सदिश क्षेत्र ξ की पसंद पर निर्भर करते हैं। हम मात्र उन हाइपर सतहों पर विचार करते हैं जिनके लिए h गैर-विक्षिप्त है। ऊनविम पृष्ठ M की संपत्ति है और अनुप्रस्थ वेक्टर फ़ील्ड ξ की पसंद पर निर्भर नहीं करती है।[1] यदि h गैर-पतित है तो हम कहते हैं कि M गैर-पतित है। समतल में वक्रों के स्थितियों में, गैर-पतित वक्र वे होते हैं जिनमें विभक्ति बिंदु नहीं होते हैं। 3-समिष्ट में सतहों के स्थितियों में, गैर-क्षतिग्रस्त सतहें होती हैं जो परवलयिक बिंदु के बिना होती हैं सतहों पर बिंदुओं का वर्गीकरण होता है|
हम कुछ स्पर्शरेखा दिशा, उदाहरण के लिए X में ξ की अवकलन को भी विचार कर सकते हैं। यह आयाम , DXξ, को M के स्पर्शरेखा वाले घटक और ξ के समानांतर अनुप्रस्थ घटक में विघटित किया जा सकता है। यह जूलियस वेनगार्टन समीकरण देता है: DXξ = −SX + τ(X)ξ. प्रकार-(1,1)- टेन्सर S : Ψ(M) → Ψ(M) को एफ़िन आकार संचालक, अवकल रूप कहा जाता है और डिफ़ेरेंशियल एक-प्रपत्र τ : Ψ(M) → R को पार्श्व जोड़ने वाला संपर्क प्रपत्र कहा जाता है। पुनः, S और τ दोनों अनुप्रस्थ सदिश क्षेत्र ξ की पसंद पर निर्भर करते हैं।
प्रथम प्रेरित आयतन प्रपत्र
उदाहरण के लिए Ω : Ψ(Rn+1)n+1 → R पर परिभाषित Rn+1 वॉल्यूम फॉर्म बनें हम M के लिए दिए गए वॉल्यूम फॉर्म को प्रेरित कर सकते हैं ω : Ψ(M)n → R के लिए दिए गए ω(X1,...,Xn) := Ω(X1,...,Xn,ξ). यह प्राकृतिक परिभाषा है: अवकल ज्योमेट्री में जहां ξ सतह सामान्य है तो X1,..., Xn के लिए फैलाया गया मानक यूक्लिडियन आयतन सदैव ω(X) के समान होता है X1,..., Xn). ध्यान दें कि ω अनुप्रस्थ वेक्टर क्षेत्र ξ की पसंद पर निर्भर करता है।
दूसरा प्रेरित आयतन रूप
स्पर्शरेखा सदिशों के लिए X1,..., Xn होने देना H := (hi,j) हो n × n मैट्रिक्स के लिए दिए गए hi,j := h(Xi,Xj). हम M के लिए दिए गए दूसरे वॉल्यूम फॉर्म को परिभाषित करते हैं ν : Ψ(M)n → R, कहाँ ν(X1,...,Xn) := |det(H)|1⁄2. फिर, यह स्वाभाविक परिभाषा है। यदि M = 'R'n और h यूक्लिडियन अदिश गुणनफल है तो ν(X1,..., Xn) सदैव वेक्टर X के लिए फैलाया गया मानक यूक्लिडियन आयतन X1,..., Xn होता है।
चूँकि h अनुप्रस्थ सदिश क्षेत्र ξ की पसंद पर निर्भर करता है, इसका तात्पर्य यह है कि ν भी ऐसा करता है।
दो प्राकृतिक स्थितियाँ
हम दो प्राकृतिक शर्तें देते हैं हैं। पहला यह है कि प्रेरित संबंध ∇ और प्रेरित आयतन रूप ω संगत हो, अर्थात ∇ω ≡ 0. इसका तात्पर्य यह है कि ∇Xω = 0 सभी के लिए X ∈ Ψ(M). दूसरे शब्दों में, यदि हम सदिशों X1 ...,Xnको समानांतर रूप से परिवहन करते हैं, M में कुछ वक्र के साथ, संबंध ∇ के संबंध में, फिर X1 ...,Xn के लिए फैलाया गया आयतन, वॉल्यूम फॉर्म ω के संबंध में, परिवर्तन नहीं होता है। सीधी गणना[1]पता चलता है कि ∇Xω = τ(X)ω इसलिए ∇Xω = 0 सभी के लिए X ∈ Ψ(M) यदि, और मात्र यदि, τ ≡ 0, अर्थात। DXξ ∈ Ψ(M) सभी के लिए X ∈ Ψ(M). इसका तात्पर्य यह है कि D के संबंध में स्पर्शरेखा दिशा ω ≡ ν. में होता है
निष्कर्ष
इसे दिखाया जा सकता है[1]साइन अप करने के लिए, अनुप्रस्थ वेक्टर फ़ील्ड का अनूठा विकल्प है ξ जिसके लिए दो शर्तें हैं ∇ω ≡ 0 और ω ≡ ν दोनों संतुष्ट हैं. इन दो विशेष अनुप्रस्थ वेक्टर फ़ील्ड को एफ़िन सामान्य वेक्टर फ़ील्ड कहा जाता है, या कभी-कभी विल्हेम ब्लाश्के सामान्य फ़ील्ड भी कहा जाता है।[2] इसकी परिभाषा के लिए वॉल्यूम रूपों पर इसकी निर्भरता से हम देखते हैं कि एफ़िन सामान्य वेक्टर फ़ील्ड वॉल्यूम संरक्षित एफ़िन परिवर्तनों के अनुसार अपरिवर्तनीय है। ये परिवर्तन के लिए दिए गए हैं SL(n+1,R) ⋉ Rn+1, जहां SL(n+1,'R') के विशेष रैखिक समूह को दर्शाता है (n+1) × (n+1) वास्तविक प्रविष्टियों और निर्धारक 1 के साथ आव्यूह, और ⋉ अर्ध-प्रत्यक्ष उत्पाद को दर्शाता है। SL(n+1,R) ⋉ Rn+1 झूठ समूह बनाता है।
एफ़िन सामान्य रेखा
बिंदु पर एफ़िन सामान्य रेखा p ∈ M p से होकर निकलने वाली और ξ के समानांतर रेखा है।
समतल वक्र
समतल में वक्र के लिए एफ़िन सामान्य वेक्टर फ़ील्ड की अच्छी ज्यामितीय व्याख्या है।[2] I ⊂ R खुला अंतराल हो और चलो γ : I → R2 समतल वक्र का सुचारू कार्य पैरामीटरों का निर्धारण बनें। हम मानते हैं कि γ(I) गैर-पतित वक्र है (नोमिज़ू और सासाकी के अर्थ में)[1]), अर्थात बिना विभक्ति बिंदुओं के है। बिंदु पर विचार करें p = γ(t0) समतल वक्र पर है। चूँकि γ(I) विभक्ति बिंदुओं के बिना है, इसलिए यह इस प्रकार है कि γ(t0) विभक्ति बिंदु नहीं है और इसलिए वक्र स्थानीय रूप से उत्तल होगा,[3] अर्थात सभी बिंदु γ(t0) के साथ t0 − ε < t < t0 + ε, पर्याप्त रूप से छोटे ε के लिए, γ(t0) पर γ(I) की स्पर्शरेखा के ही तरफ स्थित होगा।
γ(t0) पर γ(I) की स्पर्शरेखा रेखा पर विचार करें, और वक्र के टुकड़े वाली स्पर्शरेखा रेखा के किनारे पर निकट-समानांतर रेखाओं पर विचार करें P := {γ(t) ∈ R2 : t0 − ε < t < t0 + ε}. स्पर्श रेखा के पर्याप्त निकट समानांतर रेखाओं के लिए वे P को ठीक दो बिंदुओं पर प्रतिच्छेद करेंगी। प्रत्येक समानांतर रेखा पर हम इन दो प्रतिच्छेदन बिंदुओं को जोड़ने वाले रेखा खंड के मध्य बिंदु को चिह्नित करते हैं। प्रत्येक समानांतर रेखा के लिए हमें मध्यबिंदु मिलता है, और इसलिए मध्यबिंदुओं का लोकस (गणित) P से प्रारंभ होने वाले वक्र का पता लगाता है। जैसे ही हम p के पास पहुंचते हैं, मध्यबिंदु के समिष्ट पर सीमित स्पर्शरेखा रेखा बिल्कुल सामान्य रेखा होती है, अर्थात वह रेखा जिसमें γ(t0) पर γ(I) का सामान्य वेक्टर होता है। ध्यान दें कि यह एफ़िन अपरिवर्तनीय निर्माण है क्योंकि समानता और मध्यबिंदु एफ़िन परिवर्तनों के अनुसार अपरिवर्तनीय हैं।
पैरामीटरों का निर्धारण के लिए दिए गए परवलय पर विचार करें γ(t) = (t + 2t2,t2). इसका समीकरण है x2 + 4y2 − 4xy − y = 0. γ(0) पर स्पर्श रेखा का समीकरण है y = 0 और इसलिए समानांतर रेखाएं दी गई हैं y = k पर्याप्त रूप से छोटे के लिए k ≥ 0. रेखा y = k वक्र को पर काटता है x = 2k ± √k. मध्यबिंदु का बिन्दुपथ किसके के लिए दिया गया है? {(2k,k) : k ≥ 0}. ये रेखाखंड बनाते हैं, और इसलिए इस रेखाखंड की सीमित स्पर्शरेखा रेखा, जैसा कि हम γ(0) की ओर देखते हैं, बस इस रेखाखंड वाली रेखा है, अर्थात रेखा x = 2y. उस स्थिति में γ(0) पर वक्र की सामान्य रेखा का समीकरण होता है x = 2y. वास्तव में, प्रत्यक्ष गणना से पता चलता है कि γ(0), अर्थात् ξ(0) पर एफ़िन सामान्य वेक्टर, के लिए दिया जाता है ξ(0) = 21⁄3·(2,1).[4] चित्र में लाल वक्र γ है, काली रेखाएं स्पर्शरेखा रेखा और कुछ निकटवर्ती स्पर्शरेखा रेखाएं हैं, काले बिंदु प्रदर्शित रेखाओं पर मध्यबिंदु हैं, और नीली रेखा मध्यबिंदुओं का समिष्ट है।
3-समिष्ट में सतहें
3-समिष्ट में चिकनी सतहों के अण्डाकार बिंदुओं पर एफ़िन सामान्य रेखा खोजने के लिए समान अनुरूप उपस्थित होती है। इस बार कोई स्पर्शरेखा समतल के समानांतर समतल लिए जाते हैं। ये स्पर्शरेखा समतल के पर्याप्त निकट वाले तलों के लिए, उत्तल समतल वक्र बनाने के लिए सतह को काटते हैं। प्रत्येक उत्तल समतल वक्र का द्रव्यमान केंद्र होता है। द्रव्यमान के केंद्रों का समिष्ट 3-समिष्ट में वक्र का पता लगाता है। जैसे ही कोई मूल सतह बिंदु की ओर जाता है, इस समिष्ट की सीमित स्पर्शरेखा रेखा एफ़िन सामान्य रेखा होती है, अर्थात वह रेखा जिसमें एफ़िन सामान्य वेक्टर होता है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Nomizu, K.; Sasaki, T. (1994), Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, ISBN 0-521-44177-3
- ↑ 2.0 2.1 Su, Buchin (1983), Affine Differential Geometry, Harwood Academic, ISBN 0-677-31060-9
- ↑ Bruce, J. W.; Giblin, P. J. (1984), Curves and Singularities, Cambridge University Press, ISBN 0-521-42999-4
- ↑ Davis, D. (2006), Generic Affine Differential Geometry of Curves in Rn, Proc. Royal Soc. Edinburgh, 136A, 1195−1205.