हस्ताक्षरित-अंकीय प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Positional system with signed digits; the representation may not be unique}} | {{Short description|Positional system with signed digits; the representation may not be unique}} | ||
{{Numeral systems}} | {{Numeral systems}} | ||
{{distinguish|हस्ताक्षरित संख्या | {{distinguish|हस्ताक्षरित संख्या प्रतिनिधित्व}} | ||
}} | |||
संख्याओं के लिए [[गणितीय संकेतन]] में | संख्याओं के लिए [[गणितीय संकेतन]] में '''हस्ताक्षरित-अंकीय प्रतिनिधित्व''' एक [[स्थितीय अंक प्रणाली]] है जिसमें [[पूर्णांकों]] को सांकेतिक करने के लिए हस्ताक्षरित अंकों के एक समूह का उपयोग किया जाता है। | ||
हस्ताक्षरित-अंकीय प्रतिनिधित्व का उपयोग पूर्णांकों को | हस्ताक्षरित-अंकीय प्रतिनिधित्व का उपयोग पूर्णांकों को तीव्रता से जोड़ने के लिए किया जा सकता है क्योंकि यह आश्रित कैरीज़ की श्रृंखला को समाप्त कर सकती है।<ref>Dhananjay Phatak, I. Koren (1994) [http://citeseer.ist.psu.edu/phatak94hybrid.html Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant Number Representations with Bounded Carry Propagation Chains]</ref> बाइनरी अंक प्रणाली में एक विशेष स्थिति हस्ताक्षरित-अंक प्रतिनिधित्व गैर-आसन्न रूप है, जो न्यूनतम स्थान पर ओवरहेड के साथ गति लाभ प्रदान कर सकता है। | ||
==इतिहास== | ==इतिहास== | ||
गणना | गणना मे प्रारंभिक लेखक कोल्सन (1726) और कॉची (1840) को हस्ताक्षरित-अंक प्रतिनिधित्व का उपयोग करने के लिए प्रेरित किया था। अस्वीकृत गए अंकों को नए अंकों से परिवर्तित करने के लिए सेलिंग (1887) और काजोरी (1928) द्वारा सुझाव दिया गया था। | ||
1928 में | 1928 में फ्लोरियन काजोरी ने [[ जॉन कोल्सन |जॉन कोलसन]] (1726) और [[ऑगस्टिन-लुई कॉची]] (1840) से प्रारम्भ करते हुए, हस्ताक्षरित अंकों के आवर्ती विषय पर ध्यान दिया।<ref>[[Augustin-Louis Cauchy]] (16 November 1840) "Sur les moyens d'eviter les erreurs dans les calculs numerique", [[Comptes rendus]] 11:789. Also found in ''Oevres completes'' Ser. 1, vol. 5, pp. 434–42.</ref> अपनी पुस्तक गणितीय संकेतन के इतिहास में काजोरी ने पुस्तक का शीर्षक "ऋणात्मक अंक" रखा।<ref>{{cite book |last= Cajori |first=Florian |author-link=Florian Cajori|title= गणितीय संकेतन का इतिहास|page= [https://archive.org/details/historyofmathema00cajo_0/page/57 57] |publisher= [[Dover Publications]] |year= 1993 |orig-year= 1928-1929 |isbn= 978-0486677668 | url = https://archive.org/details/historyofmathema00cajo_0|url-access= registration }}</ref> पूर्णता परीक्षण के लिए कोल्सन उदाहरणों का उपयोग करता है और भाजक के गुणजों की एक तालिका का उपयोग करके जोड़ (pp.163-4), गुणा (pp.165-6) और विभाजन (pp.170-1) का वर्णन करता है। वह गुणन में विभाजन द्वारा सन्निकटन की सुविधा बताते हैं। कोल्सन ने एक उपकरण (गणना तालिका) भी तैयार किया था जो हस्ताक्षरित अंकों का उपयोग करके गणना करता था। | ||
[[एडवर्ड सेलिंग]]<ref>Eduard Selling (1887) ''Eine neue Rechenmachine'', pp. 15–18, Berlin</ref> ने ऋणात्मक चिह्न को इंगित करने के लिए अंक 1, 2, 3, 4, और 5 को | [[एडवर्ड सेलिंग]]<ref>Eduard Selling (1887) ''Eine neue Rechenmachine'', pp. 15–18, Berlin</ref> ने ऋणात्मक चिह्न को इंगित करने के लिए अंक 1, 2, 3, 4, और 5 को व्युत्क्रम करने पर चर्चा की। उन्होंने मौखिक रूप से उपयोग के लिए नामों के रूप में स्नी, जेस, जेर्ड, रेफ़ और निफ़ का भी सुझाव दिया। अधिकांश अन्य प्रारंभिक स्रोतों ने किसी अंक के ऊपर एक बार (गणित) का उपयोग उसके लिए एक ऋणात्मक संकेत इंगित करने के लिए किया था। हस्ताक्षरित अंकों का एक और जर्मन उपयोग 1902 में क्लेन के विश्वकोश में वर्णित किया गया था।<ref>Rudolf Mehmke (1902) "Numerisches Rechen", §4 Beschränkung in den verwendeten Ziffern, [[Klein's encyclopedia]], I-2, p. 944.</ref> | ||
==परिभाषा और | ==परिभाषा और विशेषताएँ== | ||
===अंक समुच्चय=== | ===अंक समुच्चय=== | ||
मान लीजिए कि <math>\mathcal{D}</math> | मान लीजिए कि <math>\mathcal{D}</math> गणनांक के साथ [[संख्यात्मक अंक|संख्यात्मक]] अंकों का एक सीमित समुच्चय है तब <math>b > 1</math> के लिए <math>b \leq 1</math> को मूलांक या संख्या आधार के रूप में जाना जाता है यदि <math>\mathcal{D}</math> एक अद्वितीय फलन के साथ जुड़ा हुआ है, तो <math>d_i</math> का उपयोग सभी हस्ताक्षरित-अंक प्रतिनिधित्व <math>0 \leq i < b.</math> के रूप मे <math>b</math> के लिए किया जा सकता है। यह फलन <math>f_{\mathcal{D}},</math> को कठोरता से और औपचारिक रूप से स्थापित करता है कि कैसे पूर्णांक मानों को प्रतीकों/ग्लिफ़ों को निर्दिष्ट किया जाता है। हालांकि उन्हें परिभाषित किया जा सकता है। इस प्रकार से प्रस्तुत करने के लिए किसी विशेष प्रणाली के साथ मिश्रित नहीं किया गया है, इन दो अलग-अलग (यद्यपि निकटता से संबंधित) अवधारणाओं को अलग रखा गया है और <math>\mathcal{D}</math> को तीन अलग-अलग <math>\mathcal{D}_{+}</math>, <math>\mathcal{D}_{0}</math>, और <math>\mathcal{D}_{-}</math> समुच्चयों में विभाजित किया जा सकता है, जो क्रमशः धनात्मक शून्य और ऋणात्मक अंकों का प्रतिनिधित्व करते है, इस प्रकार सभी अंक <math>d_{+}\in\mathcal{D}_{+}</math> संतुष्ट हो सकते है। सभी अंक <math>d_{0}\in\mathcal{D}_{0}</math> और <math>f_\mathcal{D}(d_{+}) > 0</math> , <math>f_\mathcal{D}(d_{0}) = 0</math>, <math>f_\mathcal{D}(d_{-}) < 0</math> और <math>d_{-}\in\mathcal{D}_{-}</math> गणनांक है, जो क्रमशः धनात्मक और ऋणात्मक अंकों की संख्या <math>b = b_{+} + b_{0} + b_{-}</math> देते है। | ||
<math>\mathcal{D}</math> को तीन अलग-अलग | |||
====संतुलित रूप प्रतिनिधित्व==== | ====संतुलित रूप प्रतिनिधित्व==== | ||
{{See also|संतुलित त्रिगुट | {{See also|संतुलित त्रिगुट | ||
}} | }} | ||
संतुलित रूप प्रतिनिधित्व वे प्रतिनिधित्व हैं जहां प्रत्येक | संतुलित रूप प्रतिनिधित्व वे प्रतिनिधित्व हैं जहां प्रत्येक धनात्मक अंक के लिए <math>d_{-}</math> एक संगत ऋणात्मक अंक <math>d_{+}</math> इस प्रकार सम्मिलित होता है जैसे कि <math>f_\mathcal{D}(d_{+}) = -f_\mathcal{D}(d_{-})</math> मे <math>b_{+} = b_{-}</math> सम्मिलित है। केवल [[विषम संख्या]] आधारों में ही संतुलित रूप में निरूपण हो सकता है।अन्यथा <math>d_{b/2}</math> को स्वयं के विपरीत होना होगा और इसलिए <math>0\ne \frac b2</math> हो सकता है। संतुलित रूप में ऋणात्मक अंक <math>d_{-}\in\mathcal{D}_{-}</math> को सामान्यतः धनात्मक अंक के रूप में दर्शाया जाता है और अंक के ऊपर एक बार <math>d_{-} = \bar{d}_{+}</math> होता है। उदाहरण के लिए [[संतुलित टर्नरी]] का अंक समुच्चय <math>\mathcal{D}_{3} = \lbrace\bar{1},0,1\rbrace</math> के साथ <math>f_{\mathcal{D}_{3}}(\bar{1}) = -1</math>, <math>f_{\mathcal{D}_{3}}(0) = 0</math>, और <math>f_{\mathcal{D}_{3}}(1) = 1</math> होता है। इस फलन को विषम [[अभाज्य संख्या]] क्रम <math>q</math> के सीमित क्षेत्रों में स्वीकृत किया जाता है:<ref>{{Cite book|title=परिमित क्षेत्रों पर प्रक्षेप्य ज्यामिति|first1=J. W. P.|last1=Hirschfeld|author-link=J. W. P. Hirschfeld|publisher=[[Oxford University Press]]|year=1979|page=8|isbn=978-0-19-850295-1}}</ref> | ||
:<math>\mathbb{F}_{q} = \lbrace0, 1, \bar{1} = -1,... d = \frac{q - 1}{2},\ \bar{d} = \frac{1-q}{2}\ |\ q = 0\rbrace.</math><br /> | :<math>\mathbb{F}_{q} = \lbrace0, 1, \bar{1} = -1,... d = \frac{q - 1}{2},\ \bar{d} = \frac{1-q}{2}\ |\ q = 0\rbrace.</math><br /> | ||
====दोहरा हस्ताक्षरित-अंकीय प्रतिनिधित्व==== | ====दोहरा हस्ताक्षरित-अंकीय प्रतिनिधित्व==== | ||
प्रत्येक अंक समुच्चय <math>\mathcal{D}</math> में एक दोहरे अंक का समुच्चय <math>\mathcal{D}^\operatorname{op}</math> होता है जो कि <math>g:\mathcal{D}\rightarrow\mathcal{D}^\operatorname{op}</math> द्वारा परिभाषित समरूपता <math>-f_\mathcal{D} = g\circ f_{\mathcal{D}^\operatorname{op}}</math> के साथ अंकों के व्युत्क्रम क्रम द्वारा दिया जाता है। जिसके परिणामस्वरूप मूल्यांकन <math>\mathcal{N}</math> के साथ <math>\mathcal{D}</math> से निर्मित संख्या प्रणाली [[अंगूठी (गणित)|वलय (गणित)]] <math>\mathcal{N}</math> के किसी भी हस्ताक्षरित-अंकीय प्रतिनिधित्व <math>\mathcal{N}</math> के लिए <math>v_\mathcal{D}:\mathcal{N}\rightarrow N</math> का एक दोहरा हस्ताक्षर-अंकीय प्रतिनिधित्व सम्मिलित होता है, [[मूल्यांकन (बीजगणित)]] के साथ <math>\mathcal{D}^\operatorname{op}</math> से निर्मित <math>\mathcal{N}^\operatorname{op}</math> और <math>N</math> द्वारा परिभाषित एक समरूपता <math>h:\mathcal{N}\rightarrow\mathcal{N}^\operatorname{op}</math> जहां <math>-v_\mathcal{D} = h\circ v_{\mathcal{D}^\operatorname{op}}</math> का योगात्मक व्युत्क्रम संकारक है। संतुलित रूप प्रतिनिधित्व के लिए निर्धारित अंक दोगुना होता है। | |||
===पूर्णांकों के लिए=== | ===पूर्णांकों के लिए=== | ||
अंक समुच्चय | जैसा कि ऊपर परिभाषित किया गया है, अंक समुच्चय <math>\mathcal{D}</math> और फलन <math>f:\mathcal{D}\rightarrow\mathbb{Z}</math> को देखते हुए, हम एक [[पूर्णांक]] समरूपता <math>T:\mathbb{Z}\rightarrow\mathbb{Z}</math> को निम्नलिखित के रूप में परिभाषित कर सकते है: | ||
:<math>T(n) = | :<math>T(n) = | ||
\begin{cases} | \begin{cases} | ||
\frac{n - f(d_i)}{b} &\text{if } n \equiv i \bmod b, 0 \leq i < b | \frac{n - f(d_i)}{b} &\text{if } n \equiv i \bmod b, 0 \leq i < b | ||
\end{cases}</math> | \end{cases}</math> | ||
यदि का एकमात्र [[आवधिक बिंदु]] | यदि <math>T</math> का एकमात्र [[आवधिक बिंदु|आवधिक]] निश्चित बिंदु <math>0</math> है, तो <math>\mathcal{D}</math> का उपयोग करके पूर्णांकों <math>\mathbb{Z}</math> के सभी हस्ताक्षरित-अंकीय निरूपण का समुच्चय [[क्लेन प्लस]] <math>\mathcal{D}^+</math> द्वारा दिया जाता है। <math>n\in\mathbb{N}</math> के कम से कम एक अंक के साथ <math>d_n \ldots d_0</math> अंकों की सभी परिमित संयोजित चर का समुच्चय के प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व <math>m \in \mathcal{D}^+</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{D}^+\rightarrow\mathbb{Z}</math> होता है: | ||
:<math>v_\mathcal{D}(m) = \sum_{i=0}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. | :<math>v_\mathcal{D}(m) = \sum_{i=0}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. | ||
उदाहरणों में अंकों के साथ संतुलित | उदाहरणों में अंकों के साथ संतुलित फलन <math>\mathcal{D} = \lbrace \bar{1}, 0, 1\rbrace</math> सम्मिलित है। यदि कोई गैर-शून्य आवर्त बिंदु <math>T</math> सम्मिलित है तो ऐसे पूर्णांक उपस्थित होते हैं जिन्हें अनंत संख्या में गैर-शून्य अंक <math>\mathcal{D}</math> द्वारा दर्शाया जाता है। उदाहरणों में अंक समुच्चय के साथ मानक [[दशमलव अंक प्रणाली]] <math>\operatorname{dec} = \lbrace 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \rbrace</math> सम्मिलित है, जिसके लिए रेडिक्स पूरक <math>9</math> की आवश्यकता होती है। योगात्मक व्युत्क्रम का प्रतिनिधित्व करने के लिए <math>-1</math>, <math>T_\operatorname{dec}(-1) = \frac{-1 - 9}{10} = -1</math> और अंक समुच्चय के साथ स्थितीय अंक प्रणाली <math>\mathcal{D} = \lbrace \text{A}, 0, 1\rbrace</math> के साथ <math>f(\text{A}) = -4</math> के लिए जिसे संख्या <math>2</math> को <math>T_\mathcal{D}(2) = \frac{2 - (-4)}{3} = 2</math> के रूप में दर्शाने के लिए अंक <math>\text{A}</math> की एक अनंत संख्या की आवश्यकता होती है। | ||
===दशमलव भिन्नों के लिए=== | ===दशमलव भिन्नों के लिए=== | ||
{{Main|दशमलव प्रतिनिधित्व | {{Main|दशमलव प्रतिनिधित्व | ||
}} | }} | ||
यदि पूर्णांकों को क्लेन प्लस | यदि पूर्णांकों को क्लेन प्लस <math>\mathcal{D}^+</math> द्वारा दर्शाया जा सकता है, तो दशमलव अंशों के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय या <math>b</math>-एडिक परिमेय <math>\mathbb{Z}[1\backslash b]</math>, <math>\mathcal{Q} = \mathcal{D}^+\times\mathcal{P}\times\mathcal{D}^*</math> द्वारा दिया गया है, जो कि क्लेन प्लस का कार्टेशियन <math>\mathcal{D}^+</math> का उत्पाद है। [[सिंगलटन (गणित)]] <math>\mathcal{P}</math> जिसमें मूलांक बिंदु <math>d_n \ldots d_0</math> और क्लेन स्टार <math>\mathcal{D}^*</math> शामिल है, <math>m,n\in\mathbb{N}</math> के साथ अंकों के सभी परिमित संयोजित चर समुच्चय <math>d_{-1} \ldots d_{-m}</math> के प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व <math>q \in \mathcal{Q}</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{Q}\rightarrow\mathbb{Z}[1\backslash b]</math> होता है: | ||
:<math>v_\mathcal{D}(q) = \sum_{i=-m}^{n}f_\mathcal{D}(d_{i})b^{i}</math> | :<math>v_\mathcal{D}(q) = \sum_{i=-m}^{n}f_\mathcal{D}(d_{i})b^{i}</math> | ||
===वास्तविक संख्याओं के लिए=== | ===वास्तविक संख्याओं के लिए=== | ||
{{Main|वास्तविक का निर्माण#कॉची अनुक्रमों से निर्माण | {{Main|वास्तविक का निर्माण#कॉची अनुक्रमों से निर्माण | ||
}} | }} | ||
यदि पूर्णांकों को क्लेन प्लस | यदि पूर्णांकों को क्लेन प्लस <math>\mathcal{D}^+</math> द्वारा दर्शाया जा सकता है, तो वास्तविक संख्या <math>\mathbb{R}</math> के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय <math>\mathcal{R} = \mathcal{D}^+ \times \mathcal{P} \times \mathcal{D}^\mathbb{N}</math> द्वारा दिया जाता है, जो कार्तीय गुणनफल है। क्लेन प्लस <math>\mathcal{D}^+</math> कम से कम एक अंक के साथ <math>d_n \ldots d_0</math> अंकों की सभी परिमित संयोजित चर का समुच्चय, सिंगलटन <math>\mathcal{P}</math> मूलांक बिंदु (<math>.</math> या <math>,</math>) से युक्त होता है। और [[कैंटर स्पेस|कैंटर समष्टि]] <math>\mathcal{D}^\mathbb{N}</math> के साथ <math>d_{-1} d_{-2} \ldots</math> अंकों की सभी अनंत संयोजित चर का समुच्चय प्रत्येक हस्ताक्षरित अंकीय प्रतिनिधित्व <math>r \in \mathcal{R}</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{R}\rightarrow\mathbb{R}</math> होता है: | ||
:<math>v_\mathcal{D}(r) = \sum_{i=-\infty}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. | :<math>v_\mathcal{D}(r) = \sum_{i=-\infty}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. | ||
अनंत श्रृंखला | अनंत श्रृंखला सदैव एक सीमित वास्तविक संख्या में परिवर्तित होती है। | ||
===अन्य संख्या प्रणालियों के लिए=== | ===अन्य संख्या प्रणालियों के लिए=== | ||
सभी आधार | सभी आधार <math>b</math> अंकों को <math>\mathcal{D}^\mathbb{Z}</math> के उपसमुच्चय के रूप में दर्शाया जा सकता है, <math>\mathcal{D}</math> में अंकों के सभी दोहरे अनंत अनुक्रमों का समुच्चय, जहां <math>\mathbb{Z}</math> पूर्णांकों का समुच्चय है और आधार <math>b</math> अंकों की श्रंखला है औपचारिक घात श्रृंखला <math>\mathbb{Z}[[b,b^{-1}]]</math> द्वारा दोगुनी अनंत श्रृंखला का प्रतिनिधित्व किया जाता है: | ||
:<math>\sum_{i = -\infty}^{\infty}a_i b^i</math> | :<math>\sum_{i = -\infty}^{\infty}a_i b^i</math> | ||
जहाँ <math>a_i\in\mathbb{Z}</math> के लिए <math>i\in\mathbb{Z}</math> | जहाँ <math>a_i\in\mathbb{Z}</math> के लिए <math>i\in\mathbb{Z}</math> है। | ||
====पूर्णांकों की मॉड्यूलो घातें {{math|''b''}}==== | ====पूर्णांकों की मॉड्यूलो घातें {{math|''b''}}==== | ||
पूर्णांक | पूर्णांक मॉड्यूल <math>b^n</math>, <math>\mathbb{Z}\backslash b^n\mathbb{Z}</math> के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय <math>\mathcal{D}^n</math> द्वारा दिया गया है, अंकों के सभी परिमित संयोजित चर का समुच्चय <math>d_{n - 1} \ldots d_0</math> लंबाई <math>n</math> की <math>n\in\mathbb{N}</math> के साथ प्रत्येक हस्ताक्षरित अंक प्रतिनिधित्व <math>m \in \mathcal{D}^n</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{D}^n\rightarrow\mathbb{Z}/b^n\mathbb{Z}</math> है: | ||
:<math>v_\mathcal{D}(m) \equiv \sum_{i=0}^{n - 1}f_\mathcal{D}(d_{i})b^{i} \bmod b^n</math><br /> | :<math>v_\mathcal{D}(m) \equiv \sum_{i=0}^{n - 1}f_\mathcal{D}(d_{i})b^{i} \bmod b^n</math><br /> | ||
====चेकर समूह==== | ====चेकर समूह==== | ||
एक प्रुफ़र समूह पूर्णांकों और <math>b</math>-एडिक परिमेय संख्या का भागफल समूह <math>\mathbb{Z}(b^\infty) = \mathbb{Z}[1\backslash b]/\mathbb{Z}</math> है। प्रुफ़र समूह के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय क्लेन स्टार <math>\mathcal{D}^*</math> द्वारा दिया गया है, अंकों के सभी परिमित संयोजित संख्याओ का समुच्चय <math>d_{1} \ldots d_{n}</math>, <math>n\in\mathbb{N}</math> के साथ प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व <math>p \in \mathcal{D}^*</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{D}^*\rightarrow\mathbb{Z}(b^\infty)</math> होता है: | |||
:<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{n}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> | :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{n}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> | ||
====[[वृत्त समूह]]==== | ====[[वृत्त समूह]]==== | ||
वृत्त समूह भागफल समूह | वृत्त समूह पूर्णांकों और वास्तविक संख्याओं का भागफल समूह <math>\mathbb{T} = \mathbb{R}/\mathbb{Z}</math> है। वृत्त समूह के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय कैंटर समष्टि <math>\mathcal{D}^\mathbb{N}</math> द्वारा दिया गया है, अंकों के सभी दाएं-अनंत संयोजित चर का समुच्चय <math>d_{1} d_{2} \ldots</math> प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व <math>m \in \mathcal{D}^n</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{T}</math> होता है: | ||
:<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{\infty}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> | :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{\infty}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> | ||
अनंत शृंखला सदैव परिवर्तित रहती है। | |||
===={{math|''b''}}- | ===={{math|''b''}}-एडिक पूर्णांक==== | ||
{{math|''b''}}-एडिक पूर्णांकों के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय <math>\mathbb{Z}_b</math> कैंटर समष्टि <math>\mathcal{D}^\mathbb{N}</math> द्वारा दिया गया है, अंकों के सभी बाएं-अनंत संयोजित चर का समुच्चय <math>\ldots d_{1} d_{0}</math> प्रत्येक हस्ताक्षरित अंक प्रतिनिधित्व <math>m \in \mathcal{D}^n</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{Z}_{b}</math> है: | |||
:<math>v_\mathcal{D}(m) = \sum_{i=0}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math> | :<math>v_\mathcal{D}(m) = \sum_{i=0}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math> | ||
===={{math|''b''}}-एडिक सोलनॉइड==== | |||
{{math|''b''}}-एडिक सोलनॉइड के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय <math>\mathbb{T}_b</math> कैंटर समष्टि <math>\mathcal{D}^\mathbb{Z}</math> द्वारा दिया गया है, अंकों के सभी दोगुने अनंत संयोजित चर का समुच्चय {<math>\ldots d_{1} d_{0} d_{-1} \ldots</math> प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व <math>m \in \mathcal{D}^n</math> का मूल्यांकन <math>v_\mathcal{D}:\mathcal{D}^\mathbb{Z}\rightarrow\mathbb{T}_{b}</math> है: | |||
:<math>v_\mathcal{D}(m) = \sum_{i=-\infty}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math><br /> | :<math>v_\mathcal{D}(m) = \sum_{i=-\infty}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math><br /> | ||
==लिखित और मौखिक भाषा में== | ==लिखित और मौखिक भाषा में== | ||
===[[इंडो-आर्यन भाषाएँ]]=== | ===[[इंडो-आर्यन भाषाएँ]]=== | ||
इंडो-आर्यन भाषाओं में संख्याओं के मौखिक और लिखित रूपों में 11 और के बीच की संख्याओं के लिए | इंडो-आर्यन भाषाओं में संख्याओं के मौखिक और लिखित रूपों में 11 और 90 के बीच की संख्याओं के लिए ऋणात्मक अंक का उपयोग किया जाता है उदाहरण के लिए, हिंदी और [[बंगाली भाषा]] में "अन", पंजाबी में "अन" या "उन्ना", मराठी में "एकोन", 90 जो नौ पर समाप्त होता है। उनके नाम के बाद आने वाले संख्या को पंजाबी (उपसर्ग "ik" का अर्थ है "एक") के लिए नीचे प्रदर्शित किया गया हैं:<ref>[http://quizlet.com/16314536/punjabi-numbers-1-100-flash-cards/ Punjabi numbers] from [[Quizlet]]</ref> | ||
* 19 उन्नी, 20 विह, 21 इक्की | * 19 उन्नी, 20 विह, 21 इक्की | ||
*29 उनत्ती, 30 तिह, 31 इकत्ती | *29 उनत्ती, 30 तिह, 31 इकत्ती | ||
Line 94: | Line 85: | ||
* 89 अननवे, 90 नब्बे, 91 इकिन्नावेन | * 89 अननवे, 90 नब्बे, 91 इकिन्नावेन | ||
इसी | इसी प्रकार सेसोथो भाषा 8 और 9 बनाने के लिए ऋणात्मक अंकों का उपयोग करती है। | ||
* 8 रोबेली (/रो-बे-डी/) जिसका अर्थ है "दो | * 8 रोबेली (/रो-बे-डी/) जिसका अर्थ है "दो विभाजित करना" अर्थात दो अंगुलियां को नीचे करना | ||
* 9 रोबोंग (/रो-बोंग/) का अर्थ है "एक को | * 9 रोबोंग (/रो-बोंग/) का अर्थ है "एक को विभाजित करना" अर्थात एक उंगली को नीचे करना | ||
===[[शास्त्रीय लैटिन]]=== | ===[[शास्त्रीय लैटिन]]=== | ||
शास्त्रीय लैटिन में<ref>J. Matthew Harrington (2016) [https://cpb-us-w2.wpmucdn.com/campuspress.yale.edu/dist/4/3253/files/2018/08/Harrington-Latin-Grammar-2016.pdf Synopsis of Ancient Latin Grammar]</ref> पूर्णांक 18 और 19 | शास्त्रीय लैटिन में<ref>J. Matthew Harrington (2016) [https://cpb-us-w2.wpmucdn.com/campuspress.yale.edu/dist/4/3253/files/2018/08/Harrington-Latin-Grammar-2016.pdf Synopsis of Ancient Latin Grammar]</ref> पूर्णांक 18 और 19 के प्रयोग में "आठ" या "नौ" के लिए संगत भागों सहित कोई मौखिक या लिखित रूप भी नहीं था उनके अस्तित्व में होने के अतिरिक्त इसके [[शास्त्रीय लैटिन|शास्त्रीय]] लैटिन भाषा को निम्न रूप मे प्रदर्शित किया गया है:, | ||
*18 = डुओडेविगिन्टि ("बीस में से दो लिए गए"), (IIXX या XIIX), | *18 = डुओडेविगिन्टि ("बीस में से दो लिए गए"), (IIXX या XIIX), | ||
Line 105: | Line 96: | ||
*20 = विगिन्ति ("बीस"), (XX) | *20 = विगिन्ति ("बीस"), (XX) | ||
आगामी पूर्णांक अंकों [28, 29, 38, 39, ..., 88, 89] के लिए भाषा में योगात्मक रूप बहुत अधिक सामान्य था, हालाँकि, सूचीबद्ध संख्याओं के लिए | आगामी पूर्णांक अंकों [28, 29, 38, 39, ..., 88, 89] के लिए भाषा में योगात्मक रूप बहुत अधिक सामान्य था, हालाँकि, सूचीबद्ध संख्याओं के लिए उपरोक्त रूप अभी भी पसंद किया गया था। इसलिए, तीस के निकट जाने पर अंकों को इस प्रकार व्यक्त किया गया है:<ref>[https://en.wiktionary.org/wiki/duodetriginta#Latin] from [[English Wiktionary]]</ref> | ||
*28 = डुओडेट्रिगिंटा ("तीस में से दो लिए गए"), कम बार भी विगिन्टि ऑक्टो / ऑक्टो एट विगिन्टि ("अट्ठाईस / आठ और बीस"), (IIXXX या XXIIX बनाम XXVIII, बाद वाला पूरी तरह से | *28 = डुओडेट्रिगिंटा ("तीस में से दो लिए गए"), कम बार भी विगिन्टि ऑक्टो / ऑक्टो एट विगिन्टि ("अट्ठाईस / आठ और बीस"), (IIXXX या XXIIX बनाम XXVIII, बाद वाला पूरी तरह से नष्ट हो चुका है।) | ||
*29 = अन्डेट्रीगिन्टा ("तीस में से एक लिया गया") कम पसंदीदा रूप के | *29 = अन्डेट्रीगिन्टा ("तीस में से एक लिया गया") कम पसंदीदा रूप के अतिरिक्त भी उनके संतुलन में था। | ||
यह समकालीन इतिहासकारों के तर्क के मुख्य आधारों में से एक है, जो बताता है कि अन्य श्रेणियों की तुलना में | यह समकालीन इतिहासकारों के तर्क के मुख्य आधारों में से एक है, जो बताता है कि अन्य श्रेणियों की तुलना में कार्डिनल संख्या की इस श्रेणी में घटाव I- और II- इतना सामान्य क्यों था। अंक 98 और 99 को भी दोनों रूपों में व्यक्त किया जा सकता है, फिर भी "दो से सौ" अपेक्षाकृत अलग प्रतीत हो सकता है - इसका स्पष्ट प्रमाण है कि प्रामाणिक स्रोतों में घटावपूर्ण तरीके से लिखी गई इन संख्याओं की दुर्लभ घटना है। | ||
===फ़िनिश भाषा=== | ===फ़िनिश भाषा=== | ||
हालाँकि, एक और भाषा है जिसमें यह सुविधा है (अब तक, केवल अंशों में), हालाँकि, आज भी सक्रिय उपयोग में है। यह फ़िनिश भाषा है, जहाँ 8 या 9 का अंक आने पर (वर्तनी में लिखे गए) अंकों का उपयोग इस प्रकार किया जाता है। योजना इस प्रकार है:<ref>[https://www.kielitoimistonsanakirja.fi/#/perusluku] from [[Kielitoimiston sanakirja]]</ref> | हालाँकि, एक और भाषा है जिसमें यह सुविधा है (अब तक, केवल अंशों में), हालाँकि, आज भी सक्रिय उपयोग में है। यह फ़िनिश भाषा है, जहाँ 8 या 9 का अंक आने पर (वर्तनी में लिखे गए) अंकों का उपयोग इस प्रकार किया जाता है। योजना इस प्रकार है:<ref>[https://www.kielitoimistonsanakirja.fi/#/perusluku] from [[Kielitoimiston sanakirja]]</ref> | ||
*1 = "yksi" (नोट: yhd- या yht- अधिकतर जब | *1 = "yksi" (नोट: yhd- या yht- अधिकतर जब अस्वीकृत किया जाने वाला होता है उदाहरण के लिए "yhdessä" = "एक साथ, एक [इकाई] के रूप में") | ||
*2 | *2 = "kaksi" (यह भी ध्यान दे: kahde-, kahte- जब मना कर दिया जाए) | ||
*3 = "kolme" | *3 = "kolme" | ||
*4 = "neljä" | *4 = "neljä" | ||
*7="seitsemän" | *7="seitsemän" | ||
*8 = "kah(d)eksan" ( | *8 = "kah(d)eksan" (दो कम है) | ||
*9 = "yh(d)eksän" ( | *9 = "yh(d)eksän" (एक कम है) | ||
*10 = "kymmenen" (दस) | *10 = "kymmenen" (दस) | ||
उपरोक्त सूची कोई विशेष | उपरोक्त सूची कोई विशेष स्थिति नहीं है, जिसके परिणामस्वरूप यह बड़े कार्डिनल्स संख्या में भी दिखाई देती है, उदाहरण के लिए: | ||
*399 = तीन सौ निन्यानवे | *399 = तीन सौ निन्यानवे | ||
इन विशेषताओं पर | इन विशेषताओं पर महत्व देना अंकों के सबसे छोटे बोलचाल के रूपों में भी उपस्थित रहता है: | ||
* 1 = "yy" | * 1 = "yy" | ||
Line 140: | Line 131: | ||
===समयपालन=== | ===समयपालन=== | ||
अंग्रेजी भाषा में समय को इस प्रकार संदर्भित करना सामान्य है, उदाहरण के लिए 'सेवन टू थ्री' 'टू' निषेध का प्रदर्शन | अंग्रेजी भाषा में समय को इस प्रकार संदर्भित करना सामान्य है, उदाहरण के लिए 'सेवन टू थ्री' 'टू' निषेध का प्रदर्शन करना है। | ||
==अन्य प्रणाली== | ==अन्य प्रणाली== | ||
आधार जैसे अन्य हस्ताक्षरित | आधार जैसे अन्य हस्ताक्षरित अंकीय आधार <math>b \neq b_{+} + b_{-} + 1</math> सम्मिलित हैं इसका एक उल्लेखनीय उदाहरण [[बूथ एन्कोडिंग]] है जिसमें एक अंक समुच्चय होता है, जिसमें एक अंक समुच्चय <math>b_{+} = 1</math> और <math>b_{-} = 1</math> होता है लेकिन जो आधार <math>b = 2 < 3 = b_{+} + b_{-} + 1</math> का उपयोग करता है। मानक बाइनरी अंक प्रणाली केवल मान <math>\lbrace0,1\rbrace</math> के अंकों का उपयोग करेगी। ध्यान दें कि गैर-मानक हस्ताक्षरित-अंकीय प्रतिनिधित्व अद्वितीय नहीं हैं। | ||
उदाहरण के लिए: | |||
: <math>0111_{\mathcal{D}} = 4 + 2 + 1 = 7</math> | : <math>0111_{\mathcal{D}} = 4 + 2 + 1 = 7</math> | ||
Line 149: | Line 142: | ||
: <math>1\bar{1}11_{\mathcal{D}} = 8 - 4 + 2 + 1 = 7</math> | : <math>1\bar{1}11_{\mathcal{D}} = 8 - 4 + 2 + 1 = 7</math> | ||
: <math>100\bar{1}_{\mathcal{D}} = 8 - 1 = 7</math> | : <math>100\bar{1}_{\mathcal{D}} = 8 - 1 = 7</math> | ||
बूथ एन्कोडिंग का गैर-आसन्न रूप (एनएएफ) प्रत्येक पूर्णांक मान के लिए एक अद्वितीय प्रतिनिधित्व | बूथ एन्कोडिंग का गैर-आसन्न रूप (एनएएफ) प्रत्येक पूर्णांक मान के लिए एक अद्वितीय प्रतिनिधित्व का दायित्व करता है। हालाँकि यह केवल पूर्णांक मानों के लिए प्रयुक्त होता है। उदाहरण के लिए एनएएफ में निम्नलिखित दोहराई जाने वाली बाइनरी संख्याओं पर विचार करें: | ||
: <math>\frac{2}{3} = 0.\overline{10}_{\mathcal{D}} = 1.\overline{0\bar{1}}_{\mathcal{D}}</math> | : <math>\frac{2}{3} = 0.\overline{10}_{\mathcal{D}} = 1.\overline{0\bar{1}}_{\mathcal{D}}</math> | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 173: | Line 166: | ||
श्रेणी:औपचारिक भाषाएँ | श्रेणी:औपचारिक भाषाएँ | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Signed-Digit Representation]] | |||
[[Category: | [[Category:Created On 03/07/2023|Signed-Digit Representation]] | ||
[[Category:Created On 03/07/2023]] | [[Category:Lua-based templates|Signed-Digit Representation]] | ||
[[Category:Machine Translated Page|Signed-Digit Representation]] | |||
[[Category:Pages using sidebar with the child parameter|Signed-Digit Representation]] | |||
[[Category:Pages with script errors|Signed-Digit Representation]] | |||
[[Category:Templates Translated in Hindi|Signed-Digit Representation]] | |||
[[Category:Templates Vigyan Ready|Signed-Digit Representation]] | |||
[[Category:Templates that add a tracking category|Signed-Digit Representation]] | |||
[[Category:Templates that generate short descriptions|Signed-Digit Representation]] | |||
[[Category:Templates using TemplateData|Signed-Digit Representation]] | |||
[[Category:Use dmy dates from December 2020|Signed-Digit Representation]] |
Latest revision as of 10:28, 15 July 2023
Part of a series on |
Numeral systems |
---|
List of numeral systems |
संख्याओं के लिए गणितीय संकेतन में हस्ताक्षरित-अंकीय प्रतिनिधित्व एक स्थितीय अंक प्रणाली है जिसमें पूर्णांकों को सांकेतिक करने के लिए हस्ताक्षरित अंकों के एक समूह का उपयोग किया जाता है।
हस्ताक्षरित-अंकीय प्रतिनिधित्व का उपयोग पूर्णांकों को तीव्रता से जोड़ने के लिए किया जा सकता है क्योंकि यह आश्रित कैरीज़ की श्रृंखला को समाप्त कर सकती है।[1] बाइनरी अंक प्रणाली में एक विशेष स्थिति हस्ताक्षरित-अंक प्रतिनिधित्व गैर-आसन्न रूप है, जो न्यूनतम स्थान पर ओवरहेड के साथ गति लाभ प्रदान कर सकता है।
इतिहास
गणना मे प्रारंभिक लेखक कोल्सन (1726) और कॉची (1840) को हस्ताक्षरित-अंक प्रतिनिधित्व का उपयोग करने के लिए प्रेरित किया था। अस्वीकृत गए अंकों को नए अंकों से परिवर्तित करने के लिए सेलिंग (1887) और काजोरी (1928) द्वारा सुझाव दिया गया था।
1928 में फ्लोरियन काजोरी ने जॉन कोलसन (1726) और ऑगस्टिन-लुई कॉची (1840) से प्रारम्भ करते हुए, हस्ताक्षरित अंकों के आवर्ती विषय पर ध्यान दिया।[2] अपनी पुस्तक गणितीय संकेतन के इतिहास में काजोरी ने पुस्तक का शीर्षक "ऋणात्मक अंक" रखा।[3] पूर्णता परीक्षण के लिए कोल्सन उदाहरणों का उपयोग करता है और भाजक के गुणजों की एक तालिका का उपयोग करके जोड़ (pp.163-4), गुणा (pp.165-6) और विभाजन (pp.170-1) का वर्णन करता है। वह गुणन में विभाजन द्वारा सन्निकटन की सुविधा बताते हैं। कोल्सन ने एक उपकरण (गणना तालिका) भी तैयार किया था जो हस्ताक्षरित अंकों का उपयोग करके गणना करता था।
एडवर्ड सेलिंग[4] ने ऋणात्मक चिह्न को इंगित करने के लिए अंक 1, 2, 3, 4, और 5 को व्युत्क्रम करने पर चर्चा की। उन्होंने मौखिक रूप से उपयोग के लिए नामों के रूप में स्नी, जेस, जेर्ड, रेफ़ और निफ़ का भी सुझाव दिया। अधिकांश अन्य प्रारंभिक स्रोतों ने किसी अंक के ऊपर एक बार (गणित) का उपयोग उसके लिए एक ऋणात्मक संकेत इंगित करने के लिए किया था। हस्ताक्षरित अंकों का एक और जर्मन उपयोग 1902 में क्लेन के विश्वकोश में वर्णित किया गया था।[5]
परिभाषा और विशेषताएँ
अंक समुच्चय
मान लीजिए कि गणनांक के साथ संख्यात्मक अंकों का एक सीमित समुच्चय है तब के लिए को मूलांक या संख्या आधार के रूप में जाना जाता है यदि एक अद्वितीय फलन के साथ जुड़ा हुआ है, तो का उपयोग सभी हस्ताक्षरित-अंक प्रतिनिधित्व के रूप मे के लिए किया जा सकता है। यह फलन को कठोरता से और औपचारिक रूप से स्थापित करता है कि कैसे पूर्णांक मानों को प्रतीकों/ग्लिफ़ों को निर्दिष्ट किया जाता है। हालांकि उन्हें परिभाषित किया जा सकता है। इस प्रकार से प्रस्तुत करने के लिए किसी विशेष प्रणाली के साथ मिश्रित नहीं किया गया है, इन दो अलग-अलग (यद्यपि निकटता से संबंधित) अवधारणाओं को अलग रखा गया है और को तीन अलग-अलग , , और समुच्चयों में विभाजित किया जा सकता है, जो क्रमशः धनात्मक शून्य और ऋणात्मक अंकों का प्रतिनिधित्व करते है, इस प्रकार सभी अंक संतुष्ट हो सकते है। सभी अंक और , , और गणनांक है, जो क्रमशः धनात्मक और ऋणात्मक अंकों की संख्या देते है।
संतुलित रूप प्रतिनिधित्व
संतुलित रूप प्रतिनिधित्व वे प्रतिनिधित्व हैं जहां प्रत्येक धनात्मक अंक के लिए एक संगत ऋणात्मक अंक इस प्रकार सम्मिलित होता है जैसे कि मे सम्मिलित है। केवल विषम संख्या आधारों में ही संतुलित रूप में निरूपण हो सकता है।अन्यथा को स्वयं के विपरीत होना होगा और इसलिए हो सकता है। संतुलित रूप में ऋणात्मक अंक को सामान्यतः धनात्मक अंक के रूप में दर्शाया जाता है और अंक के ऊपर एक बार होता है। उदाहरण के लिए संतुलित टर्नरी का अंक समुच्चय के साथ , , और होता है। इस फलन को विषम अभाज्य संख्या क्रम के सीमित क्षेत्रों में स्वीकृत किया जाता है:[6]
दोहरा हस्ताक्षरित-अंकीय प्रतिनिधित्व
प्रत्येक अंक समुच्चय में एक दोहरे अंक का समुच्चय होता है जो कि द्वारा परिभाषित समरूपता के साथ अंकों के व्युत्क्रम क्रम द्वारा दिया जाता है। जिसके परिणामस्वरूप मूल्यांकन के साथ से निर्मित संख्या प्रणाली वलय (गणित) के किसी भी हस्ताक्षरित-अंकीय प्रतिनिधित्व के लिए का एक दोहरा हस्ताक्षर-अंकीय प्रतिनिधित्व सम्मिलित होता है, मूल्यांकन (बीजगणित) के साथ से निर्मित और द्वारा परिभाषित एक समरूपता जहां का योगात्मक व्युत्क्रम संकारक है। संतुलित रूप प्रतिनिधित्व के लिए निर्धारित अंक दोगुना होता है।
पूर्णांकों के लिए
जैसा कि ऊपर परिभाषित किया गया है, अंक समुच्चय और फलन को देखते हुए, हम एक पूर्णांक समरूपता को निम्नलिखित के रूप में परिभाषित कर सकते है:
यदि का एकमात्र आवधिक निश्चित बिंदु है, तो का उपयोग करके पूर्णांकों के सभी हस्ताक्षरित-अंकीय निरूपण का समुच्चय क्लेन प्लस द्वारा दिया जाता है। के कम से कम एक अंक के साथ अंकों की सभी परिमित संयोजित चर का समुच्चय के प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व का मूल्यांकन होता है:
- .
उदाहरणों में अंकों के साथ संतुलित फलन सम्मिलित है। यदि कोई गैर-शून्य आवर्त बिंदु सम्मिलित है तो ऐसे पूर्णांक उपस्थित होते हैं जिन्हें अनंत संख्या में गैर-शून्य अंक द्वारा दर्शाया जाता है। उदाहरणों में अंक समुच्चय के साथ मानक दशमलव अंक प्रणाली सम्मिलित है, जिसके लिए रेडिक्स पूरक की आवश्यकता होती है। योगात्मक व्युत्क्रम का प्रतिनिधित्व करने के लिए , और अंक समुच्चय के साथ स्थितीय अंक प्रणाली के साथ के लिए जिसे संख्या को के रूप में दर्शाने के लिए अंक की एक अनंत संख्या की आवश्यकता होती है।
दशमलव भिन्नों के लिए
यदि पूर्णांकों को क्लेन प्लस द्वारा दर्शाया जा सकता है, तो दशमलव अंशों के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय या -एडिक परिमेय , द्वारा दिया गया है, जो कि क्लेन प्लस का कार्टेशियन का उत्पाद है। सिंगलटन (गणित) जिसमें मूलांक बिंदु और क्लेन स्टार शामिल है, के साथ अंकों के सभी परिमित संयोजित चर समुच्चय के प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व का मूल्यांकन होता है:
वास्तविक संख्याओं के लिए
यदि पूर्णांकों को क्लेन प्लस द्वारा दर्शाया जा सकता है, तो वास्तविक संख्या के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय द्वारा दिया जाता है, जो कार्तीय गुणनफल है। क्लेन प्लस कम से कम एक अंक के साथ अंकों की सभी परिमित संयोजित चर का समुच्चय, सिंगलटन मूलांक बिंदु ( या ) से युक्त होता है। और कैंटर समष्टि के साथ अंकों की सभी अनंत संयोजित चर का समुच्चय प्रत्येक हस्ताक्षरित अंकीय प्रतिनिधित्व का मूल्यांकन होता है:
- .
अनंत श्रृंखला सदैव एक सीमित वास्तविक संख्या में परिवर्तित होती है।
अन्य संख्या प्रणालियों के लिए
सभी आधार अंकों को के उपसमुच्चय के रूप में दर्शाया जा सकता है, में अंकों के सभी दोहरे अनंत अनुक्रमों का समुच्चय, जहां पूर्णांकों का समुच्चय है और आधार अंकों की श्रंखला है औपचारिक घात श्रृंखला द्वारा दोगुनी अनंत श्रृंखला का प्रतिनिधित्व किया जाता है:
जहाँ के लिए है।
पूर्णांकों की मॉड्यूलो घातें b
पूर्णांक मॉड्यूल , के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय द्वारा दिया गया है, अंकों के सभी परिमित संयोजित चर का समुच्चय लंबाई की के साथ प्रत्येक हस्ताक्षरित अंक प्रतिनिधित्व का मूल्यांकन है:
चेकर समूह
एक प्रुफ़र समूह पूर्णांकों और -एडिक परिमेय संख्या का भागफल समूह है। प्रुफ़र समूह के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय क्लेन स्टार द्वारा दिया गया है, अंकों के सभी परिमित संयोजित संख्याओ का समुच्चय , के साथ प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व का मूल्यांकन होता है:
वृत्त समूह
वृत्त समूह पूर्णांकों और वास्तविक संख्याओं का भागफल समूह है। वृत्त समूह के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय कैंटर समष्टि द्वारा दिया गया है, अंकों के सभी दाएं-अनंत संयोजित चर का समुच्चय प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व का मूल्यांकन होता है:
अनंत शृंखला सदैव परिवर्तित रहती है।
b-एडिक पूर्णांक
b-एडिक पूर्णांकों के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय कैंटर समष्टि द्वारा दिया गया है, अंकों के सभी बाएं-अनंत संयोजित चर का समुच्चय प्रत्येक हस्ताक्षरित अंक प्रतिनिधित्व का मूल्यांकन है:
b-एडिक सोलनॉइड
b-एडिक सोलनॉइड के सभी हस्ताक्षरित-अंकीय प्रतिनिधित्व का समुच्चय कैंटर समष्टि द्वारा दिया गया है, अंकों के सभी दोगुने अनंत संयोजित चर का समुच्चय { प्रत्येक हस्ताक्षरित-अंकीय प्रतिनिधित्व का मूल्यांकन है:
लिखित और मौखिक भाषा में
इंडो-आर्यन भाषाएँ
इंडो-आर्यन भाषाओं में संख्याओं के मौखिक और लिखित रूपों में 11 और 90 के बीच की संख्याओं के लिए ऋणात्मक अंक का उपयोग किया जाता है उदाहरण के लिए, हिंदी और बंगाली भाषा में "अन", पंजाबी में "अन" या "उन्ना", मराठी में "एकोन", 90 जो नौ पर समाप्त होता है। उनके नाम के बाद आने वाले संख्या को पंजाबी (उपसर्ग "ik" का अर्थ है "एक") के लिए नीचे प्रदर्शित किया गया हैं:[7]
- 19 उन्नी, 20 विह, 21 इक्की
- 29 उनत्ती, 30 तिह, 31 इकत्ती
- 39 ऊंटाली, 40 चली, 41 इक्ताली
- 49 उनन्जा, 50 पंजाह, 51 इकवन्जा
- 59 उनाहत, 60 साथ, 61 इकाहत
- 69 उनत्तार, 70 सत्तार, 71 इखत्तर
- 79 उनासी, 80 अस्सी, 81 इकियासी
- 89 अननवे, 90 नब्बे, 91 इकिन्नावेन
इसी प्रकार सेसोथो भाषा 8 और 9 बनाने के लिए ऋणात्मक अंकों का उपयोग करती है।
- 8 रोबेली (/रो-बे-डी/) जिसका अर्थ है "दो विभाजित करना" अर्थात दो अंगुलियां को नीचे करना
- 9 रोबोंग (/रो-बोंग/) का अर्थ है "एक को विभाजित करना" अर्थात एक उंगली को नीचे करना
शास्त्रीय लैटिन
शास्त्रीय लैटिन में[8] पूर्णांक 18 और 19 के प्रयोग में "आठ" या "नौ" के लिए संगत भागों सहित कोई मौखिक या लिखित रूप भी नहीं था उनके अस्तित्व में होने के अतिरिक्त इसके शास्त्रीय लैटिन भाषा को निम्न रूप मे प्रदर्शित किया गया है:,
- 18 = डुओडेविगिन्टि ("बीस में से दो लिए गए"), (IIXX या XIIX),
- 19 = अन्डेविगिन्ति (बीस में से एक लिया गया), (IXX या XIX)
- 20 = विगिन्ति ("बीस"), (XX)
आगामी पूर्णांक अंकों [28, 29, 38, 39, ..., 88, 89] के लिए भाषा में योगात्मक रूप बहुत अधिक सामान्य था, हालाँकि, सूचीबद्ध संख्याओं के लिए उपरोक्त रूप अभी भी पसंद किया गया था। इसलिए, तीस के निकट जाने पर अंकों को इस प्रकार व्यक्त किया गया है:[9]
- 28 = डुओडेट्रिगिंटा ("तीस में से दो लिए गए"), कम बार भी विगिन्टि ऑक्टो / ऑक्टो एट विगिन्टि ("अट्ठाईस / आठ और बीस"), (IIXXX या XXIIX बनाम XXVIII, बाद वाला पूरी तरह से नष्ट हो चुका है।)
- 29 = अन्डेट्रीगिन्टा ("तीस में से एक लिया गया") कम पसंदीदा रूप के अतिरिक्त भी उनके संतुलन में था।
यह समकालीन इतिहासकारों के तर्क के मुख्य आधारों में से एक है, जो बताता है कि अन्य श्रेणियों की तुलना में कार्डिनल संख्या की इस श्रेणी में घटाव I- और II- इतना सामान्य क्यों था। अंक 98 और 99 को भी दोनों रूपों में व्यक्त किया जा सकता है, फिर भी "दो से सौ" अपेक्षाकृत अलग प्रतीत हो सकता है - इसका स्पष्ट प्रमाण है कि प्रामाणिक स्रोतों में घटावपूर्ण तरीके से लिखी गई इन संख्याओं की दुर्लभ घटना है।
फ़िनिश भाषा
हालाँकि, एक और भाषा है जिसमें यह सुविधा है (अब तक, केवल अंशों में), हालाँकि, आज भी सक्रिय उपयोग में है। यह फ़िनिश भाषा है, जहाँ 8 या 9 का अंक आने पर (वर्तनी में लिखे गए) अंकों का उपयोग इस प्रकार किया जाता है। योजना इस प्रकार है:[10]
- 1 = "yksi" (नोट: yhd- या yht- अधिकतर जब अस्वीकृत किया जाने वाला होता है उदाहरण के लिए "yhdessä" = "एक साथ, एक [इकाई] के रूप में")
- 2 = "kaksi" (यह भी ध्यान दे: kahde-, kahte- जब मना कर दिया जाए)
- 3 = "kolme"
- 4 = "neljä"
- 7="seitsemän"
- 8 = "kah(d)eksan" (दो कम है)
- 9 = "yh(d)eksän" (एक कम है)
- 10 = "kymmenen" (दस)
उपरोक्त सूची कोई विशेष स्थिति नहीं है, जिसके परिणामस्वरूप यह बड़े कार्डिनल्स संख्या में भी दिखाई देती है, उदाहरण के लिए:
- 399 = तीन सौ निन्यानवे
इन विशेषताओं पर महत्व देना अंकों के सबसे छोटे बोलचाल के रूपों में भी उपस्थित रहता है:
- 1 = "yy"
- 2 = "kaa"
- 3 = "koo"
- 7 = "seiska"
- 8 = "kasi"
- 9 = "ysi"
- 10 = "kymppi"
हालाँकि, इस घटना का लिखित अंकों पर कोई प्रभाव नहीं पड़ता है, फिनिश मानक पश्चिमी-अरबी दशमलव अंकन का उपयोग करते हैं।
समयपालन
अंग्रेजी भाषा में समय को इस प्रकार संदर्भित करना सामान्य है, उदाहरण के लिए 'सेवन टू थ्री' 'टू' निषेध का प्रदर्शन करना है।
अन्य प्रणाली
आधार जैसे अन्य हस्ताक्षरित अंकीय आधार सम्मिलित हैं इसका एक उल्लेखनीय उदाहरण बूथ एन्कोडिंग है जिसमें एक अंक समुच्चय होता है, जिसमें एक अंक समुच्चय और होता है लेकिन जो आधार का उपयोग करता है। मानक बाइनरी अंक प्रणाली केवल मान के अंकों का उपयोग करेगी। ध्यान दें कि गैर-मानक हस्ताक्षरित-अंकीय प्रतिनिधित्व अद्वितीय नहीं हैं।
उदाहरण के लिए:
बूथ एन्कोडिंग का गैर-आसन्न रूप (एनएएफ) प्रत्येक पूर्णांक मान के लिए एक अद्वितीय प्रतिनिधित्व का दायित्व करता है। हालाँकि यह केवल पूर्णांक मानों के लिए प्रयुक्त होता है। उदाहरण के लिए एनएएफ में निम्नलिखित दोहराई जाने वाली बाइनरी संख्याओं पर विचार करें:
यह भी देखें
- संतुलित त्रिआधारी पद्धति
- ऋणात्मक आधार
- निरर्थक द्विआधारी प्रतिनिधित्व
नोट्स और संदर्भ
- ↑ Dhananjay Phatak, I. Koren (1994) Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant Number Representations with Bounded Carry Propagation Chains
- ↑ Augustin-Louis Cauchy (16 November 1840) "Sur les moyens d'eviter les erreurs dans les calculs numerique", Comptes rendus 11:789. Also found in Oevres completes Ser. 1, vol. 5, pp. 434–42.
- ↑ Cajori, Florian (1993) [1928-1929]. गणितीय संकेतन का इतिहास. Dover Publications. p. 57. ISBN 978-0486677668.
- ↑ Eduard Selling (1887) Eine neue Rechenmachine, pp. 15–18, Berlin
- ↑ Rudolf Mehmke (1902) "Numerisches Rechen", §4 Beschränkung in den verwendeten Ziffern, Klein's encyclopedia, I-2, p. 944.
- ↑ Hirschfeld, J. W. P. (1979). परिमित क्षेत्रों पर प्रक्षेप्य ज्यामिति. Oxford University Press. p. 8. ISBN 978-0-19-850295-1.
- ↑ Punjabi numbers from Quizlet
- ↑ J. Matthew Harrington (2016) Synopsis of Ancient Latin Grammar
- ↑ [1] from English Wiktionary
- ↑ [2] from Kielitoimiston sanakirja
- जे. पी. बैलेंटाइन (1925) ए डिजिट फॉर नेगेटिव वन, अमेरिकी गणितीय मासिक 32:302।
- विद्युत विभाग से लुई हान, डोंगडोंग चेन, सेओक-बम को, खान ए वाहिद गैर-सट्टा दशमलव हस्ताक्षरित अंक योजक कंप्यूटर इंजीनियरिंग, सस्केचेवान विश्वविद्यालय।
श्रेणी:गैर-मानक स्थितीय अंक प्रणाली
श्रेणी:संख्या सिद्धांत
श्रेणी:रिंग सिद्धांत
श्रेणी:अंकगणितीय गतिशीलता
श्रेणी:कोडिंग सिद्धांत
श्रेणी:औपचारिक भाषाएँ