आयतन रूप: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 104: | Line 104: | ||
{{Riemannian geometry}} | {{Riemannian geometry}} | ||
{{Tensors}} | {{Tensors}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:अनेक गुना पर एकीकरण]] | |||
[[Category:निर्धारकों]] | |||
[[Category:रीमैनियन ज्यामिति]] | |||
[[Category:रीमैनियन मैनिफोल्ड्स]] | |||
[[Category:विभेदक ज्यामिति]] | |||
[[Category:विभेदक रूप]] |
Latest revision as of 09:51, 15 July 2023
गणित में, आयतन रूप या शीर्ष-आयामी अवकलन मैनीफोल्ड के बराबर डिग्री का अवकलक होता है। इस प्रकार मैनीफोल्ड पर आयाम का , आयतन रूप -प्रपत्र के रूप में होता है। यह लाइन बंडल के अनुभाग (फाइबर बंडल) का एक तत्व होता है, इसे , के रूप में निरूपित किया जाता है, . मैनिफोल्ड वैनिशिंग आयतन रूप को स्वीकार करता है यदि यह केवल ओरियंटेबल रूप में होता है। तो ओरिएंटेबल मैनिफोल्ड में अनंत रूप से कई आयतन रूप होते हैं, क्योंकि आयतन रूप को एक फलन द्वारा गुणा करने पर दूसरा आयतन रूप प्राप्त होता है। गैर-ओरियंटेबल मैनिफोल्ड्स पर इसके अतिरिक्त घनत्व की कमजोर धारणा को परिभाषित करता है।
एक आयतन रूप एक भिन्न मैनिफोल्ड पर एक फलन (गणित) के अभिन्न अंग को परिभाषित करने का एक साधन प्रदान करता है। दूसरे शब्दों में, एक आयतन रूप माप (गणित) को जन्म देता है जिसके संबंध में फलनों को उपयुक्त लेब्सग समाकलन द्वारा एकीकृत किया जा सकता है। आयतन रूप का निरपेक्ष मान आयतन के रूप में होता है, जिसे विभिन्न प्रकार से ट्विस्टेड आयतन रूप या प्सयूडो आयतन रूप में भी जाना जाता है। यह माप को भी परिभाषित करता है, लेकिन किसी भी अवकलक चाहे वह ओरियंटेबल हो या नहीं हो पर इसकी विविधता पर सम्मलित होता है।
काहलर मैनिफोल्ड्स, जटिल मैनिफोल्ड्स होने के कारण स्वाभाविक रूप से ओरियंटेबल होते हैं और इसलिए उनके पास आयतन रूप होता है। और अधिक सामान्यतः, सिंपलेक्टिक मैनिफ़ोल्ड पर एक्सटेरियर पावर आयतन के रूप में होती है। मैनिफोल्ड्स के कई वर्गों में कैनोनिकल आयतन होते हैं, चूंकि उनके पास अतिरिक्त संरचना होती है जो पसंदीदा आयतन रूप की चॉइस की अनुमति देती है। ओरिएंटेड प्सयूडो रीमैनियन मैनिफोल्ड में एक संबद्ध कैनोनिकल आयतन होता है।
ओरिएंटेशन
नीचे केवल अवकलनीयता मैनिफ़ोल्ड के ओरिएंटेशन के बारे में बताया जाता है, यह किसी भी टोपोलॉजिकल मैनिफोल्ड पर परिभाषित एक अधिक सामान्य धारणा है।
एक मैनिफोल्ड एडजस्टेबल होता है, यदि इसमें एक निर्देशांक एटलस होता है, जिसके सभी ट्रांजीशन फलनों में धनात्मक जैकोबियन डीटरमीनेट होते हैं। ऐसे अधिकतम एटलस का चयन एक ओरिएंटेशन के रूप में होता है, एक आयतन रूप पर निर्देशांक चार्ट के एटलस के रूप में प्राकृतिक विधि से एक ओरिएंटेशन को जन्म देता है, जिससे कि वह यूक्लिडियन आयतन रूप के धनात्मक गुणक के लिए के रूप में होते है।
आयतन रूप पर फ्रेम के पसंदीदा वर्ग के विनिर्देशन की भी अनुमति देता है और इस प्रकार स्पर्शरेखा सदिश के आधार को दाएँ हाथ से कॉल करते है यदि यह इस रूप में होते है
सभी दाएं हाथ के फ़्रेमों के संग्रह पर धनात्मक डीटरमीनेट के साथ आयामों में सामान्य रैखिक मैपिंग के समूह द्वारा कार्य किया जाता है और इस प्रकार सामान्य रैखिक समूह मानचित्रण में धनात्मक डीटरमीनेट के साथ आयाम के रूप में सिद्धांत बनाते हैं के रैखिक फ्रेम बंडल का उप-बंडल के रूप में होता है और इसलिए आयतन रूप से जुड़ा ओरिएंटेशन फ्रेम बंडल की कैनोनिकल कमी देता है, जो कि संरचना समूह के साथ एक उप-बंडल में होते है का तात्पर्य यह है कि आयतन रूप G संरचना को जन्म देता है संरचना पर फ़्रेमों पर विचार करके कमी स्पष्ट रूप से संभव है,
-
(1)
इस प्रकार एक आयतन रूप एक संरचना को भी जन्म देता है। इसके विपरीत एक दिया गया संरचना विशेष रैखिक फ़्रेमों के लिए (1) लगाकर और फिर आवश्यक n रूप को हल करके आयतन रूप को पुनर्प्राप्त कर सकती है और इस प्रकार अपने तर्कों में एकरूपता की आवश्यकता होती है।
मैनिफोल्ड ओरिएंटेबल यदि इसमें कहीं भी गायब होने वाला आयतन रूप न हो तो वास्तव में, के रूप में एक विरूपण प्रत्यावर्तन होता है, जहां धनात्मक वास्तविकताएं अदिश आव्यूह के रूप में अंतर्निहित हैं। इस प्रकार प्रत्येक संरचना को कम किया जा सकता है और इस प्रकार संरचना,और संरचनाएँ ओरिएंटेशन के साथ मेल खाती हैं, चूंकि अधिक ठोस रूप से, डीटरमीनेट बंडल की ट्रिवियल ओरिएंटेबिलिटी के बराबर होती है और एक लाइन बंडल ट्रिवियल के रूप में होता है यदि केवल इसमें कहीं भी गायब होने वाला अनुभाग नहीं होता है। इस प्रकार, आयतन रूप का अस्तित्व ओरिएंटेबिलिटी के बराबर होता है।
मापन से संबंध
आयतन रूप दिया गया है एक ओरियंटेबल मैनिफोल्ड पर घनत्व ओरिएंटेशन को भूलकर प्राप्त नॉनओरिएंटेड मैनिफोल्ड पर एक आयतन प्सयूडो रूप के रूप में होते है। घनत्व को सामान्यतः नॉन ओरिएंटेशन मैनिफोल्ड्स पर परिभाषित किया जाता है।
कोई भी आयतन प्सयूडो रूप बोरेल सेट पर एक माप को परिभाषित करता है और इसलिए कोई भी आयतन रूप को परिभाषित करता है
इसके अतिरिक्त, सामान्य उपायों को निरंतर या सुचारू होने की आवश्यकता नहीं होती है, उन्हें आयतन रूप द्वारा परिभाषित करने की आवश्यकता नहीं होती है और इस प्रकार अधिक औपचारिक रूप से किसी दिए गए आयतन रूप के संबंध में उनके रेडॉन-निकोडिम अवकलज को बिल्कुल निरंतर होने की आवश्यकता नहीं होती है।
डिवर्जेंनेस
आयतन रूप दिया गया है पर कोई सदिश क्षेत्र के डिवर्जेंनेस को परिभाषित करता है अद्वितीय अदिश-मान फलन के रूप में, द्वारा दर्शाया गया संतोषजनक देने वाले होते है
सोलेनॉइडल सदिश क्षेत्र वे हैं जिनके साथ लाई अवकलज की परिभाषा से यह पता चलता है कि आयतन रूप को सोलेनोइडल सदिश क्षेत्र के सदिश प्रवाह के तहत संरक्षित किया जाता है। इस प्रकार सोलनॉइडल सदिश फ़ील्ड सटीक रूप से वे होते हैं जिनमें वॉल्यूम-संरक्षण प्रवाह होता है। यह तथ्य सर्वविदित है, उदाहरण के लिए, द्रव यांत्रिकी में जहां एक वेग क्षेत्र का विचलन एक तरल पदार्थ की संपीड़न क्षमता को मापता है, जो बदले में तरल पदार्थ के प्रवाह के साथ मात्रा को संरक्षित करने की सीमा को दर्शाता है।
विशेष स्थिति
लाई समूह
किसी भी लाई समूह के लिए, एक प्राकृतिक आयतन रूप को अनुवाद द्वारा परिभाषित किया जा सकता है। अर्थात यदि का एक तत्व है तब एक वाम-अपरिवर्तनीय रूप को परिभाषित किया जा सकता है जहाँ वाम-अनुवाद के रूप में होते है, परिणामस्वरूप प्रत्येक लाई समूह ओरियंटेबल होता है। यह आयतन रूप एक अदिश राशि तक अद्वितीय होता है और संबंधित माप को हार मापन के रूप में जाना जाता है।
सिंपलेक्टिक मैनिफोल्ड्स
किसी भी सिंपलेक्टिक मैनिफोल्ड या वास्तव में किसी भी लगभग सिंपलेक्टिक मैनिफोल्ड का एक प्राकृतिक आयतन रूप होता है। यदि M, सरलीकृत रूप के साथ एक 2n आयामी मैनिफोल्ड है, तब सहानुभूतिपूर्ण रूप की गैर-अपघटन के परिणामस्वरूप कहीं भी शून्य नहीं होता है और इस प्रकार परिणाम के रूप में कोई भी सिम्प्लेक्टिक मैनिफोल्ड ओरियंटेबल के रूप में होता है। यदि मैनिफोल्ड सिम्प्लेक्टिक और रीमैनियन दोनों रूप में होता है, यदि मैनिफोल्ड काहलर है तो दो आयतन रूप सहमत हैं।
रीमैनियन आयतन रूप
किसी भी ओरिएंटेशन स्यूडो रीमैनियन मैनिफोल्ड का एक प्राकृतिक आयतन रूप होता है और इस प्रकार स्थानीय निर्देशांक में, इसे इस प्रकार व्यक्त किया जा सकता है,
आयतन रूप को विभिन्न प्रकार से निरूपित किया जाता है
यद्यपि ग्रीक अक्षर आयतन रूप को दर्शाने के लिए अधिकांशतः उपयोग किया जाता है, यह नोटेशन यूनिवर्सल नहीं है और इस प्रकार प्रतीक अवकलक ज्यामिति में जैसे कि सहानुभूतिपूर्ण रूप में कई अन्य अर्थ होते हैं।
आयतन रूप के इन्वेरीअन्ट
आयतन रूप अद्वितीय नहीं हैं; वे निम्नानुसार मैनिफोल्ड पर नॉन वैनिशिंग होने वाले फलनों पर एक टॉर्सर बनाते हैं। जबकि नॉन वैनिशिंग होने वाला फलन दिया गया पर और एक आयतन रूप पर एक आयतन रूप है इसके विपरीत, दो खंड रूप दिए गए हैं उनका अनुपात एक नॉन वैनिशिंग होने वाला फलन है, यदि वे समान ओरिएंटेशन को परिभाषित करते हैं, तो धनात्मक रूप में होते है, यदि वे विपरीत ओरिएंटेशन को परिभाषित करते हैं तो ऋणात्मक रूप में होते है।
निर्देशांक में, वे दोनों केवल एक गैर-शून्य फलन समय लेब्सेग माप के रूप में होते है और उनका अनुपात फलन का अनुपात होता है, जो निर्देशांक के विकल्प के रूप में x से स्वतंत्र है। आंतरिक रूप से, यह रेडॉन-निकोडिम अवकलज इसके संबंध में एक ओरिएंटेड मैनिफोल्ड पर किन्हीं दो आयतन रूपों की आनुपातिकता को रेडॉन-निकोडिम प्रमेय के ज्यामितीय रूप में जाना जाता है।
कोई स्थानीय संरचना नहीं
मैनिफ़ोल्ड पर आयतन रूप की कोई स्थानीय संरचना नहीं होती है, इस अर्थ में कि छोटे विवृत समुच्चय पर दिए गए आयतन रूप और यूक्लिडियन स्पेस कोबायाशी 1972 पर आयतन रूप के बीच अंतर करना संभव नहीं होता है। अर्थात प्रत्येक बिंदु के लिए में एक विवृत निकटतम है का और एक भिन्नता का एक विवृत समुच्चय पर इस तरह कि आयतन बनता है और इस प्रकार का साथ में पुल बैक है।
एक परिणाम के रूप में, यदि और दो मैनिफ़ोल्ड हैं, प्रत्येक आयतन रूप के साथ फिर किसी भी बिंदु के लिए विवृत निकटतम हैं का और का और एक नक्शा के रूप में है, इस तरह कि आयतन बनता हैं, निकटतम रूप में सीमित है आयतन रूप पर वापस खींचता है निकटतम तक ही सीमित है :
एक आयाम में, कोई इसे इस प्रकार सिद्ध कर सकता है। आयतन रूप दिया गया है पर परिभाषित करना है।
ग्लोबल संरचना: आयतन
कनेक्टेड मैनिफोल्ड पर एक आयतन रूप एक एकल ग्लोबल अपरिवर्तनीय रूप में होता है अर्थात् (समग्र) आयतन, दर्शाया जाता है, जो आयतन-रूप संरक्षित मानचित्रों के अंतर्गत अपरिवर्तनीय होता है; यह अनंत रूप में हो सकता है, जैसे कि लेब्सग्यू माप के लिए डिस्कनेक्टेड मैनिफोल्ड पर, प्रत्येक जुड़े घटक का आयतन अपरिवर्तनीय होता है।
प्रतीकों में, यदि अनेक गुनाओं की एक समरूपता है, जो पीछे की ओर खींचती है को तब इसे इस प्रकार दर्शाते है,
आयतन रूप को कवरिंग मानचित्र के नीचे वापस खींचा जा सकता है, इस स्थिति में वे फाइबर की कार्डिनैलिटी औपचारिक रूप से फाइबर के साथ एकीकरण द्वारा आयतन को गुणा करते हैं और इस प्रकार अनंत शीट वाले आवरण की स्थिति के रूप में होती है, जैसे ), एक परिमित आयतन मैनिफोल्ड पर एक आयतन रूप अनंत आयतन मैनिफोल्ड पर एक आयतन रूप में वापस खींचता है।
यह भी देखें
- बेलनाकार निर्देशांक प्रणाली § रेखा और आयतन तत्व
- माप (गणित) – Generalization of mass, length, area and volume
- पोंकारे मीट्रिक जटिल तल पर आयतन रूप की समीक्षा प्रदान करता है
- गोलाकार निर्देशांक प्रणाली § गोलाकार निर्देशांक में समाकलन और अवकलन
संदर्भ
- Kobayashi, S. (1972), Transformation Groups in Differential Geometry, Classics in Mathematics, Springer, ISBN 3-540-58659-8, OCLC 31374337.
- Spivak, Michael (1965), Calculus on Manifolds, Reading, Massachusetts: W.A. Benjamin, Inc., ISBN 0-8053-9021-9.