निरंतरता फलन: Difference between revisions

From Vigyanwiki
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
गणित में, फलन <math>f: \mathbb{R} \to \mathbb{R} </math> एक बिंदु ''x'' पर सममित रूप से सतत है यदि
गणित में, फलन <math>f: \mathbb{R} \to \mathbb{R} </math> एक बिंदु ''x'' पर सममित रूप से सतत है यदि
:<math>\lim_{h\to 0} f(x+h)-f(x-h) = 0.</math>
:<math>\lim_{h\to 0} f(x+h)-f(x-h) = 0.</math>
निरंतरता फलन की सामान्य परिभाषा में सममित निरंतरता निहित है, लेकिन इसके विपरीत सत्य नहीं है। उदाहरण के लिए फलन <math>x^{-2}</math> सममित रूप से <math>x=0</math> पर सतत है, लेकिन निरंतरता नहीं है।
'''निरंतरता फलन''' की सामान्य परिभाषा में सममित निरंतरता निहित है, लेकिन इसके विपरीत सत्य नहीं है। उदाहरण के लिए फलन <math>x^{-2}</math> सममित रूप से <math>x=0</math> पर सतत है, लेकिन निरंतरता नहीं है।


इसके अतिरिक्त, सममित विभेदकता का अर्थ सममित निरंतरता होता है, हालांकि यह धारणा सही नहीं है, क्योंकि सामान्य निरंतरता भिन्न नहीं होती है।
इसके अतिरिक्त, सममित विभेदकता का अर्थ सममित निरंतरता होता है, हालांकि यह धारणा सही नहीं है, क्योंकि सामान्य निरंतरता भिन्न नहीं होती है।


सामान्य अदिश गुणन के साथ सममित रूप से फलनों के समूह को आसानी से <math>\mathbb{R}</math> पर एक सदिश समष्टि की संरचना के रूप में प्रदर्शित किया जा सकता है, सामान्यतः सतत फलनों के समान, जो इसके अन्तर्गत एक [[रैखिक उपस्थान]] बनाते हैं।
सामान्य अदिश गुणन के साथ सममित रूप से फलनों के समूह को आसानी से <math>\mathbb{R}</math> पर एक सदिश समष्टि की संरचना के रूप में प्रदर्शित किया जा सकता है, सामान्यतः सतत फलनों के समान, जो इसके अन्तर्गत एक [[रैखिक उपस्थान]] बनाते हैं।


== संदर्भ ==
== संदर्भ ==
Line 16: Line 16:
  | isbn= 0-8247-9230-0
  | isbn= 0-8247-9230-0
}}
}}
[[Category: अंतर कलन]] [[Category: सतत कार्यों का सिद्धांत]] [[Category: कार्यों के प्रकार]]
 


{{mathanalysis-stub}}
{{mathanalysis-stub}}


 
[[Category:All stub articles]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Mathematical analysis stubs]]
[[Category:Templates Vigyan Ready]]
[[Category:अंतर कलन]]
[[Category:कार्यों के प्रकार]]
[[Category:सतत कार्यों का सिद्धांत]]

Latest revision as of 16:32, 24 August 2023

गणित में, फलन एक बिंदु x पर सममित रूप से सतत है यदि

निरंतरता फलन की सामान्य परिभाषा में सममित निरंतरता निहित है, लेकिन इसके विपरीत सत्य नहीं है। उदाहरण के लिए फलन सममित रूप से पर सतत है, लेकिन निरंतरता नहीं है।

इसके अतिरिक्त, सममित विभेदकता का अर्थ सममित निरंतरता होता है, हालांकि यह धारणा सही नहीं है, क्योंकि सामान्य निरंतरता भिन्न नहीं होती है।

सामान्य अदिश गुणन के साथ सममित रूप से फलनों के समूह को आसानी से पर एक सदिश समष्टि की संरचना के रूप में प्रदर्शित किया जा सकता है, सामान्यतः सतत फलनों के समान, जो इसके अन्तर्गत एक रैखिक उपस्थान बनाते हैं।

संदर्भ

  • Thomson, Brian S. (1994). Symmetric Properties of Real Functions. Marcel Dekker. ISBN 0-8247-9230-0.