कवरेज संभावना: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Use dmy dates|date=December 2013}}
{{Use dmy dates|date=December 2013}}


आंकड़ों में, कवरेज संभाव्यता एक आत्म[[विश्वास अंतराल]] की गणना करने की एक तकनीक है जो उस समय का अनुपात है जिसमें अंतराल में ब्याज का सही मूल्य होता है। <ref>Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. {{ISBN|0-19-920613-9}}</ref>
आँकड़ों में, कवरेज संभाव्यता वह संभावना है कि विश्वास अंतराल या विश्वास क्षेत्र में ब्याज का सही मूल्य सम्मलित होगा। इसे उन उदाहरणों के अनुपात के रूप में परिभाषित किया जा सकता है जहां अंतराल लंबे समय तक चलने वाली आवृत्ति द्वारा मूल्यांकन किए गए वास्तविक मूल्य को घेरता है।  


उदाहरण के लिए, मान लीजिए कि हमारी रुचि उन महीनों की [[अपेक्षित मूल्य]] संख्या में है, जब एक विशेष प्रकार के [[कैंसर]] से पीड़ित लोग [[ कीमोथेरपी | कीमोथेरपी]] के साथ सफल उपचार के बाद छूट में रहते हैं। आत्मविश्वास अंतराल का लक्ष्य किसी दी गई संभावना के साथ अज्ञात माध्य छूट अवधि को सम्मलित करना है। यह निर्मित अंतराल का आत्मविश्वास स्तर या आत्मविश्वास गुणांक है जो प्रभावी रूप से आत्मविश्वास अंतराल के निर्माण की प्रक्रिया की नाममात्र कवरेज संभावना है। नाममात्र कवरेज संभावना अधिकांशतः 0.95 पर सेट की जाती है। कवरेज संभावना वास्तविक संभावना है कि अंतराल में इस उदाहरण में वास्तविक औसत छूट अवधि सम्मलित है।
उदाहरण के लिए, मान लीजिए कि हमारी रुचि उन महीनों की [[अपेक्षित मूल्य]] संख्या में है, जब एक विशेष प्रकार के [[कैंसर]] से पीड़ित लोग [[ कीमोथेरपी | कीमोथेरपी]] के साथ सफल उपचार के बाद छूट में रहते हैं। आत्मविश्वास अंतराल का लक्ष्य किसी दी गई संभावना के साथ अज्ञात माध्य छूट अवधि को सम्मलित करना है। यह निर्मित अंतराल का आत्मविश्वास स्तर या आत्मविश्वास गुणांक है जो प्रभावी रूप से आत्मविश्वास अंतराल के निर्माण की प्रक्रिया की नाममात्र कवरेज संभावना है। नाममात्र कवरेज संभावना अधिकांशतः 0.95 पर सेट की जाती है। कवरेज संभावना वास्तविक संभावना है कि अंतराल में इस उदाहरण में वास्तविक औसत छूट अवधि सम्मलित है।
Line 7: Line 7:
यदि विश्वास अंतराल प्राप्त करने में उपयोग की जाने वाली सभी धारणाएं पूरी हो जाती हैं, तो नाममात्र कवरेज संभावना कवरेज संभावना के बराबर होगी (जोर देने के लिए इसे सही या वास्तविक कवरेज संभावना कहा जाता है)। यदि कोई भी धारणा पूरी नहीं होती है, तो वास्तविक कवरेज संभावना या तो नाममात्र कवरेज संभावना से कम या अधिक हो सकती है। जब वास्तविक कवरेज संभावना नाममात्र कवरेज संभावना से अधिक होती है, तो अंतराल को 'रूढ़िवादी (विश्वास) अंतराल' कहा जाता है, यदि यह नाममात्र कवरेज संभावना से कम है, तो अंतराल को रूढ़िवादी विरोधी, या अनुमेय कहा जाता है।
यदि विश्वास अंतराल प्राप्त करने में उपयोग की जाने वाली सभी धारणाएं पूरी हो जाती हैं, तो नाममात्र कवरेज संभावना कवरेज संभावना के बराबर होगी (जोर देने के लिए इसे सही या वास्तविक कवरेज संभावना कहा जाता है)। यदि कोई भी धारणा पूरी नहीं होती है, तो वास्तविक कवरेज संभावना या तो नाममात्र कवरेज संभावना से कम या अधिक हो सकती है। जब वास्तविक कवरेज संभावना नाममात्र कवरेज संभावना से अधिक होती है, तो अंतराल को 'रूढ़िवादी (विश्वास) अंतराल' कहा जाता है, यदि यह नाममात्र कवरेज संभावना से कम है, तो अंतराल को रूढ़िवादी विरोधी, या अनुमेय कहा जाता है।


निरंतर वितरण के साथ असतत वितरण का अनुमान लगाते समय कवरेज संभावना और नाममात्र कवरेज संभावना के बीच विसंगति अधिकांशतः होती है। [[द्विपद अनुपात विश्वास अंतराल]] का निर्माण एक उत्कृष्ट उदाहरण है जहां कवरेज संभावनाएं शायद ही कभी नाममात्र स्तर के बराबर होती हैं। <ref>{{cite journal | last = Agresti| first = Alan |author2=Coull, Brent | year = 1998 | title = द्विपद अनुपात के अंतराल अनुमान के लिए अनुमानित "सटीक" से बेहतर है| journal = The American Statistician | volume = 52 | pages = 119–126 | jstor=2685469 | doi = 10.2307/2685469 | issue = 2}}</ref><ref>{{cite journal | last=Brown | first=Lawrence | author2=Cai, T. Tony | author3=DasGupta, Anirban | title=द्विपद अनुपात के लिए अंतराल अनुमान| journal=Statistical Science | year=2001 | volume=16 | issue=2 | pages=101–117 | url=http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf | doi=10.1214/ss/1009213286 | doi-access=free | access-date=17 July 2009 | archive-date=23 June 2010 | archive-url=https://web.archive.org/web/20100623070611/http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf | url-status=live }}</ref><ref>{{cite journal | last = Newcombe| first = Robert | year = 1998 | title = Two-sided confidence intervals for the single proportion: Comparison of seven methods. | journal = Statistics in Medicine | volume = 17 | number = 2, issue 8 |pages = 857–872 | url=http://www3.interscience.wiley.com/journal/3156/abstract | archive-url=https://archive.today/20130105132032/http://www3.interscience.wiley.com/journal/3156/abstract | url-status=dead | archive-date=2013-01-05 | doi = 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E | pmid = 9595616}}</ref> द्विपद स्थितियों के लिए, अंतरालों के निर्माण की कई तकनीकें बनाई गई हैं। विल्सन या स्कोर आत्मविश्वास अंतराल सामान्य वितरण पर आधारित एक प्रसिद्ध निर्माण है। अन्य निर्माणों में वाल्ड, सटीक, एग्रेस्टी-कूल और संभावना अंतराल सम्मलित हैं। चूंकि विल्सन अंतराल सबसे रूढ़िवादी अनुमान नहीं हो सकता है, यह औसत कवरेज संभावनाएं पैदा करता है जो नाममात्र स्तरों के बराबर होती हैं जबकि अभी भी तुलनात्मक रूप से संकीर्ण आत्मविश्वास अंतराल पैदा करती हैं।
निरंतर वितरण के साथ असतत वितरण का अनुमान लगाते समय कवरेज संभावना और नाममात्र कवरेज संभावना के बीच विसंगति अधिकांशतः होती है। द्विपद विश्वास अंतराल का निर्माण एक उत्कृष्ट उदाहरण है जहां कवरेज संभावनाएं शायद ही कभी नाममात्र स्तर के बराबर होती हैं। द्विपद स्थितियों के लिए, अंतरालों के निर्माण की कई तकनीकें बनाई गई हैं। विल्सन या स्कोर आत्मविश्वास अंतराल सामान्य वितरण पर आधारित एक प्रसिद्ध निर्माण है। अन्य निर्माणों में वाल्ड, सटीक, एग्रेस्टी-कूल और संभावना अंतराल सम्मलित हैं। चूंकि विल्सन अंतराल सबसे रूढ़िवादी अनुमान नहीं हो सकता है, यह औसत कवरेज संभावनाएं पैदा करता है जो नाममात्र स्तरों के बराबर होती हैं जबकि अभी भी तुलनात्मक रूप से संकीर्ण आत्मविश्वास अंतराल पैदा करती हैं।


कवरेज संभाव्यता में "संभावना" की व्याख्या संपूर्ण डेटा संग्रह और विश्लेषण प्रक्रिया के काल्पनिक दोहराव के एक सेट के संबंध में की जाती है। इन काल्पनिक दोहरावों में, वास्तविक डेटा के समान संभाव्यता वितरण का पालन करने वाले स्वतंत्र डेटा सेटों पर विचार किया जाता है, और इनमें से प्रत्येक डेटा सेट से एक विश्वास अंतराल की गणना की जाती है; नेमैन निर्माण देखें। कवरेज संभावना इन गणना किए गए विश्वास अंतरालों का अंश है जिसमें वांछित लेकिन अप्राप्य पैरामीटर मान सम्मलित है।
कवरेज संभाव्यता में "संभावना" की व्याख्या संपूर्ण डेटा संग्रह और विश्लेषण प्रक्रिया के काल्पनिक दोहराव के एक सेट के संबंध में की जाती है। इन काल्पनिक दोहरावों में, वास्तविक डेटा के समान संभाव्यता वितरण का पालन करने वाले स्वतंत्र डेटा सेटों पर विचार किया जाता है, और इनमें से प्रत्येक डेटा सेट से एक विश्वास अंतराल की गणना की जाती है; नेमैन निर्माण देखें। कवरेज संभावना इन गणना किए गए विश्वास अंतरालों का अंश है जिसमें वांछित लेकिन अप्राप्य पैरामीटर मान सम्मलित है।
Line 24: Line 24:
== संदर्भ ==
== संदर्भ ==
<references/>
<references/>
[[Category: अनुमान सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Use dmy dates from December 2013]]
[[Category:अनुमान सिद्धांत]]

Latest revision as of 20:44, 15 July 2023

आँकड़ों में, कवरेज संभाव्यता वह संभावना है कि विश्वास अंतराल या विश्वास क्षेत्र में ब्याज का सही मूल्य सम्मलित होगा। इसे उन उदाहरणों के अनुपात के रूप में परिभाषित किया जा सकता है जहां अंतराल लंबे समय तक चलने वाली आवृत्ति द्वारा मूल्यांकन किए गए वास्तविक मूल्य को घेरता है।

उदाहरण के लिए, मान लीजिए कि हमारी रुचि उन महीनों की अपेक्षित मूल्य संख्या में है, जब एक विशेष प्रकार के कैंसर से पीड़ित लोग कीमोथेरपी के साथ सफल उपचार के बाद छूट में रहते हैं। आत्मविश्वास अंतराल का लक्ष्य किसी दी गई संभावना के साथ अज्ञात माध्य छूट अवधि को सम्मलित करना है। यह निर्मित अंतराल का आत्मविश्वास स्तर या आत्मविश्वास गुणांक है जो प्रभावी रूप से आत्मविश्वास अंतराल के निर्माण की प्रक्रिया की नाममात्र कवरेज संभावना है। नाममात्र कवरेज संभावना अधिकांशतः 0.95 पर सेट की जाती है। कवरेज संभावना वास्तविक संभावना है कि अंतराल में इस उदाहरण में वास्तविक औसत छूट अवधि सम्मलित है।

यदि विश्वास अंतराल प्राप्त करने में उपयोग की जाने वाली सभी धारणाएं पूरी हो जाती हैं, तो नाममात्र कवरेज संभावना कवरेज संभावना के बराबर होगी (जोर देने के लिए इसे सही या वास्तविक कवरेज संभावना कहा जाता है)। यदि कोई भी धारणा पूरी नहीं होती है, तो वास्तविक कवरेज संभावना या तो नाममात्र कवरेज संभावना से कम या अधिक हो सकती है। जब वास्तविक कवरेज संभावना नाममात्र कवरेज संभावना से अधिक होती है, तो अंतराल को 'रूढ़िवादी (विश्वास) अंतराल' कहा जाता है, यदि यह नाममात्र कवरेज संभावना से कम है, तो अंतराल को रूढ़िवादी विरोधी, या अनुमेय कहा जाता है।

निरंतर वितरण के साथ असतत वितरण का अनुमान लगाते समय कवरेज संभावना और नाममात्र कवरेज संभावना के बीच विसंगति अधिकांशतः होती है। द्विपद विश्वास अंतराल का निर्माण एक उत्कृष्ट उदाहरण है जहां कवरेज संभावनाएं शायद ही कभी नाममात्र स्तर के बराबर होती हैं। द्विपद स्थितियों के लिए, अंतरालों के निर्माण की कई तकनीकें बनाई गई हैं। विल्सन या स्कोर आत्मविश्वास अंतराल सामान्य वितरण पर आधारित एक प्रसिद्ध निर्माण है। अन्य निर्माणों में वाल्ड, सटीक, एग्रेस्टी-कूल और संभावना अंतराल सम्मलित हैं। चूंकि विल्सन अंतराल सबसे रूढ़िवादी अनुमान नहीं हो सकता है, यह औसत कवरेज संभावनाएं पैदा करता है जो नाममात्र स्तरों के बराबर होती हैं जबकि अभी भी तुलनात्मक रूप से संकीर्ण आत्मविश्वास अंतराल पैदा करती हैं।

कवरेज संभाव्यता में "संभावना" की व्याख्या संपूर्ण डेटा संग्रह और विश्लेषण प्रक्रिया के काल्पनिक दोहराव के एक सेट के संबंध में की जाती है। इन काल्पनिक दोहरावों में, वास्तविक डेटा के समान संभाव्यता वितरण का पालन करने वाले स्वतंत्र डेटा सेटों पर विचार किया जाता है, और इनमें से प्रत्येक डेटा सेट से एक विश्वास अंतराल की गणना की जाती है; नेमैन निर्माण देखें। कवरेज संभावना इन गणना किए गए विश्वास अंतरालों का अंश है जिसमें वांछित लेकिन अप्राप्य पैरामीटर मान सम्मलित है।

सूत्र

विश्वास अंतराल का निर्माण यह सुनिश्चित करता है कि सही पैरामीटर खोजने की संभावना है नमूना निर्भर अंतराल में कम से कम है)


यह भी देखें

संदर्भ