विभेदक अपरिवर्तनीय: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, | गणित में, '''विभेदक अपरिवर्तनीय''' स्थान पर [[झूठ समूह|असत्य समूह]] की समूह क्रिया (गणित) के लिए [[अपरिवर्तनीय सिद्धांत]] होता है जिसमें अंतरिक्ष में कार्यों के आलेख के [[ यौगिक |यौगिक]] सम्मिलित होते हैं। इस प्रकार विभेदक अपरिवर्तक [[प्रक्षेप्य विभेदक ज्यामिति]] में मौलिक होता हैं, और [[वक्रता]] का अध्ययन अधिकांशतः इस दृष्टिकोण से किया जाता है।<ref>{{harvnb|Guggenheimer|1977}}</ref> सामान्यतः सत्र 1880 के दशक के प्रारंभ में [[सोफस झूठ|सोफस असत्य]] द्वारा विशेष स्थितियों में विभेदक अपरिवर्तनीय प्रस्तुत किए गए थे और उसी समय [[जॉर्जेस हेनरी हाल्फेन]] द्वारा अध्ययन किया गया था कि {{harvtxt|असत्य|1884}} विभेदक अपरिवर्तनीय पर पहला सामान्य कार्य यह था, और विभेदक अपरिवर्तनीय, अपरिवर्तनीय विभेदक समीकरण और [[ अपरिवर्तनीय अंतर ऑपरेटर |अपरिवर्तनीय अंतर ऑपरेटरों]] के मध्य संबंध स्थापित किया था। | ||
विभेदक अपरिवर्तनीयों की तुलना ज्यामितीय अपरिवर्तनीयों से की जाती है। जबकि विभेदक अपरिवर्तकों में स्वतंत्र चर (या पैरामीटरकरण) का विशिष्ट विकल्प सम्मिलित हो सकता है, ज्यामितीय अपरिवर्तकों में ऐसा नहीं होता है। एली कार्टन की फ़्रेमों को हिलाने की विधि शोधन है, जो ले के विभेदक अपरिवर्तकों | विभेदक अपरिवर्तनीयों की तुलना ज्यामितीय अपरिवर्तनीयों से की जाती है। जबकि विभेदक अपरिवर्तकों में स्वतंत्र चर (या पैरामीटरकरण) का विशिष्ट विकल्प सम्मिलित हो सकता है, जिससे कि ज्यामितीय अपरिवर्तकों में ऐसा नहीं होता है। इस प्रकार एली कार्टन की फ़्रेमों को हिलाने की विधि शोधन होती है, जो ले के विभेदक अपरिवर्तकों की विधि की तुलना में कम सामान्य होती है, अतः फिर भी सदैव ज्यामितीय प्रकार के अपरिवर्तक उत्पन्न करती है। | ||
==परिभाषा== | ==परिभाषा== | ||
सबसे सरल | सबसे सरल स्थिति स्वतंत्र चर x और आश्रित चर y के लिए विभेदक अपरिवर्तनीयों का है। मान लीजिए G 'R<sup>2</sup>' पर कार्य करने वाला असत्य समूह होता है, अतः फिर G, स्थानीय रूप से, y = ƒ(x) फॉर्म के सभी आलेख के स्थान पर भी कार्य करता है। इस प्रकार मोटे तौर पर कह सकते है कि तब, k-वें क्रम का अंतर अपरिवर्तनीय फलन होता है। | ||
:<math>I\left(x,y,\frac{dy}{dx},\dots,\frac{d^ky}{dx^k}\right)</math> | :<math>I\left(x,y,\frac{dy}{dx},\dots,\frac{d^ky}{dx^k}\right)</math> | ||
x के संबंध में y और इसके पहले k | सामान्यतः x के संबंध में y और इसके पहले k व्युत्पन्न पर निर्भर करता है, जो कि समूह की क्रिया के अनुसार अपरिवर्तनीय है। | ||
समूह उच्च-क्रम | समूह उच्च-क्रम व्युत्पन्न पर गैर-तुच्छ तरीके से कार्य कर सकता है जिसके लिए समूह क्रिया की लम्बाई की गणना करने की आवश्यकता होती है। उदाहरण के लिए, पहले व्युत्पन्न पर G की क्रिया ऐसी होती है कि [[श्रृंखला नियम]] जारी रहता है। यदि | ||
:<math>(\overline{x},\overline{y}) = g\cdot(x,y),</math> | :<math>(\overline{x},\overline{y}) = g\cdot(x,y),</math> | ||
तब | तब | ||
:<math>g\cdot\left(x,y,\frac{dy}{dx}\right) \stackrel{\text{def}}{=} \left(\overline{x},\overline{y},\frac{d\overline{y}}{d\overline{x}}\right).</math> | :<math>g\cdot\left(x,y,\frac{dy}{dx}\right) \stackrel{\text{def}}{=} \left(\overline{x},\overline{y},\frac{d\overline{y}}{d\overline{x}}\right).</math> | ||
उच्च दीर्घावधियों की गणना के लिए भी इसी | उच्च दीर्घावधियों की गणना के लिए भी इसी प्रकार के विचार प्रयुक्त होते हैं। चूँकि, दीर्घीकरण की गणना करने की यह विधि अव्यावहारिक होती है, और G क्रिया के साथ असत्य बीजगणित और असत्य व्युत्पन्न के स्तर पर असीम रूप से कार्य करना अधिक सरल होता है। | ||
अधिक सामान्यतः, कार्टेशियन उत्पाद X×Y पर अभिनय करने वाले | अधिक सामान्यतः, कार्टेशियन उत्पाद X×Y पर अभिनय करने वाले असत्य समूह के लिए किसी भी [[ चिकनी कई गुना |चिकनी अनेक गुना]] मानचित्रण<sup>(k)</sup> जिसमें k-वें क्रम के संपर्क के संबंध में प्रत्येक बिंदु सापेक्ष से गुजरने वाले आलेख सम्मिलित होते हैं। इस प्रकार विभेदक अपरिवर्तनीय Y<sup>(k)</sup> पर फलन होता है. जो समूह क्रिया के विस्तार के अनुसार अपरिवर्तनीय होते है। | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
*समतुल्यता समस्याओं का समाधान | *समतुल्यता समस्याओं का समाधान होता है। | ||
* [[आंशिक अंतर समीकरण|आंशिक अंतर समीकरणों]] की प्रणालियों के अध्ययन के लिए विभेदक अपरिवर्तनीयों को प्रयुक्त किया जा सकता | * [[आंशिक अंतर समीकरण|आंशिक अंतर समीकरणों]] की प्रणालियों के अध्ययन के लिए विभेदक अपरिवर्तनीयों को प्रयुक्त किया जा सकता है। इस प्रकार किसी विशेष समूह की क्रिया के अनुसार अपरिवर्तनीय समानता वाले समाधानों की खोज करने से समस्या का आयाम कम हो सकता है (अर्थात् कम प्रणाली उत्पन्न हो सकती है)।<ref>{{harvnb|Olver|1995|loc=Chapter 3}}</ref> | ||
* नोएदर का प्रमेय विभिन्नताओं के कलन की प्रत्येक अवकलनीय समरूपता के अनुरूप विभेदक अपरिवर्तनीयों के अस्तित्व का तात्पर्य करता है। | * नोएदर का प्रमेय विभिन्नताओं के कलन की प्रत्येक अवकलनीय समरूपता के अनुरूप विभेदक अपरिवर्तनीयों के अस्तित्व का तात्पर्य करता है। | ||
*[[कंप्यूटर दृष्टि]] का उपयोग करके द्रव गतिकी<ref>{{cite book |first=Peter |last=Olver |first2=Guillermo |last2=Sapiro |first3=Allen |last3=Tannenbaum |title=कंप्यूटर विज़न में ज्यामिति-संचालित प्रसार|pages=255–306 |chapter=Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach |year=1994 |series=Computational Imaging and Vision |volume=1 |publisher=Springer |location=Dordrecht |doi=10.1007/978-94-017-1699-4_11 |isbn=90-481-4461-2 }}</ref> | *[[कंप्यूटर दृष्टि]] का उपयोग करके द्रव गतिकी<ref>{{cite book |first=Peter |last=Olver |first2=Guillermo |last2=Sapiro |first3=Allen |last3=Tannenbaum |title=कंप्यूटर विज़न में ज्यामिति-संचालित प्रसार|pages=255–306 |chapter=Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach |year=1994 |series=Computational Imaging and Vision |volume=1 |publisher=Springer |location=Dordrecht |doi=10.1007/978-94-017-1699-4_11 |isbn=90-481-4461-2 }}</ref> | ||
Line 36: | Line 36: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://www.physics.ucla.edu/~cwp/articles/noether.trans/english/mort186.html Invariant Variation Problems] | *[http://www.physics.ucla.edu/~cwp/articles/noether.trans/english/mort186.html Invariant Variation Problems] | ||
[[Category:All articles with dead external links]] | |||
[[Category:Articles with dead external links from December 2016]] | |||
[[Category: | [[Category:Articles with permanently dead external links]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:अपरिवर्तनीय सिद्धांत]] | |||
[[Category:प्रक्षेप्य ज्यामिति]] | |||
[[Category:विभेदक ज्यामिति]] |
Latest revision as of 08:03, 16 July 2023
गणित में, विभेदक अपरिवर्तनीय स्थान पर असत्य समूह की समूह क्रिया (गणित) के लिए अपरिवर्तनीय सिद्धांत होता है जिसमें अंतरिक्ष में कार्यों के आलेख के यौगिक सम्मिलित होते हैं। इस प्रकार विभेदक अपरिवर्तक प्रक्षेप्य विभेदक ज्यामिति में मौलिक होता हैं, और वक्रता का अध्ययन अधिकांशतः इस दृष्टिकोण से किया जाता है।[1] सामान्यतः सत्र 1880 के दशक के प्रारंभ में सोफस असत्य द्वारा विशेष स्थितियों में विभेदक अपरिवर्तनीय प्रस्तुत किए गए थे और उसी समय जॉर्जेस हेनरी हाल्फेन द्वारा अध्ययन किया गया था कि असत्य (1884) विभेदक अपरिवर्तनीय पर पहला सामान्य कार्य यह था, और विभेदक अपरिवर्तनीय, अपरिवर्तनीय विभेदक समीकरण और अपरिवर्तनीय अंतर ऑपरेटरों के मध्य संबंध स्थापित किया था।
विभेदक अपरिवर्तनीयों की तुलना ज्यामितीय अपरिवर्तनीयों से की जाती है। जबकि विभेदक अपरिवर्तकों में स्वतंत्र चर (या पैरामीटरकरण) का विशिष्ट विकल्प सम्मिलित हो सकता है, जिससे कि ज्यामितीय अपरिवर्तकों में ऐसा नहीं होता है। इस प्रकार एली कार्टन की फ़्रेमों को हिलाने की विधि शोधन होती है, जो ले के विभेदक अपरिवर्तकों की विधि की तुलना में कम सामान्य होती है, अतः फिर भी सदैव ज्यामितीय प्रकार के अपरिवर्तक उत्पन्न करती है।
परिभाषा
सबसे सरल स्थिति स्वतंत्र चर x और आश्रित चर y के लिए विभेदक अपरिवर्तनीयों का है। मान लीजिए G 'R2' पर कार्य करने वाला असत्य समूह होता है, अतः फिर G, स्थानीय रूप से, y = ƒ(x) फॉर्म के सभी आलेख के स्थान पर भी कार्य करता है। इस प्रकार मोटे तौर पर कह सकते है कि तब, k-वें क्रम का अंतर अपरिवर्तनीय फलन होता है।
सामान्यतः x के संबंध में y और इसके पहले k व्युत्पन्न पर निर्भर करता है, जो कि समूह की क्रिया के अनुसार अपरिवर्तनीय है।
समूह उच्च-क्रम व्युत्पन्न पर गैर-तुच्छ तरीके से कार्य कर सकता है जिसके लिए समूह क्रिया की लम्बाई की गणना करने की आवश्यकता होती है। उदाहरण के लिए, पहले व्युत्पन्न पर G की क्रिया ऐसी होती है कि श्रृंखला नियम जारी रहता है। यदि
तब
उच्च दीर्घावधियों की गणना के लिए भी इसी प्रकार के विचार प्रयुक्त होते हैं। चूँकि, दीर्घीकरण की गणना करने की यह विधि अव्यावहारिक होती है, और G क्रिया के साथ असत्य बीजगणित और असत्य व्युत्पन्न के स्तर पर असीम रूप से कार्य करना अधिक सरल होता है।
अधिक सामान्यतः, कार्टेशियन उत्पाद X×Y पर अभिनय करने वाले असत्य समूह के लिए किसी भी चिकनी अनेक गुना मानचित्रण(k) जिसमें k-वें क्रम के संपर्क के संबंध में प्रत्येक बिंदु सापेक्ष से गुजरने वाले आलेख सम्मिलित होते हैं। इस प्रकार विभेदक अपरिवर्तनीय Y(k) पर फलन होता है. जो समूह क्रिया के विस्तार के अनुसार अपरिवर्तनीय होते है।
अनुप्रयोग
- समतुल्यता समस्याओं का समाधान होता है।
- आंशिक अंतर समीकरणों की प्रणालियों के अध्ययन के लिए विभेदक अपरिवर्तनीयों को प्रयुक्त किया जा सकता है। इस प्रकार किसी विशेष समूह की क्रिया के अनुसार अपरिवर्तनीय समानता वाले समाधानों की खोज करने से समस्या का आयाम कम हो सकता है (अर्थात् कम प्रणाली उत्पन्न हो सकती है)।[2]
- नोएदर का प्रमेय विभिन्नताओं के कलन की प्रत्येक अवकलनीय समरूपता के अनुरूप विभेदक अपरिवर्तनीयों के अस्तित्व का तात्पर्य करता है।
- कंप्यूटर दृष्टि का उपयोग करके द्रव गतिकी[3]
- ज्यामितीय समाकलक
यह भी देखें
- कार्टन की तुल्यता विधि
टिप्पणियाँ
- ↑ Guggenheimer 1977
- ↑ Olver 1995, Chapter 3
- ↑ Olver, Peter; Sapiro, Guillermo; Tannenbaum, Allen (1994). "Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach". कंप्यूटर विज़न में ज्यामिति-संचालित प्रसार. Computational Imaging and Vision. Vol. 1. Dordrecht: Springer. pp. 255–306. doi:10.1007/978-94-017-1699-4_11. ISBN 90-481-4461-2.
संदर्भ
- गुगेनहाइमर, हेनरिक (1977), विभेदक ज्यामिति, न्यूयॉर्क: डोवर प्रकाशन, ISBN 978-0-486-63433-3.
- Lie, सोफस (1884), "Über Differentialinvarianten", गेसमेल्टे एडहैंडलुंगेन, vol. 6, लीपज़िग: बी.जी. टेबनेर, pp. 95–138; English translation: एकरमैन, M; हर्मन, R (1975), सोफस लाई का 1884 डिफरेंशियल इनवेरिएंट पेपर, ब्रुकलाइन, मास।: गणित विज्ञान प्रेस.
- ऑल्वर, पीटर जे. (1993), अंतर समीकरणों के लिए झूठ समूहों के अनुप्रयोग (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0-387-94007-6.
- ऑल्वर, पीटर जे. (1995), समतुल्यता, अपरिवर्तनीयता और समरूपता, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 978-0-521-47811-3.
- मैंसफ़ील्ड, एलिजाबेथ लुईस (2009), अपरिवर्तनीय कैलकुलस के लिए एक व्यावहारिक मार्गदर्शिका (PDF)[permanent dead link]; कैंब्रिज द्वारा 2010 प्रकाशित किया जाएगा, ISBN 978-0-521-85701-7.