डेटा संचालन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Capability that enables an organization to ensure high data quality}}
{{Short description|Capability that enables an organization to ensure high data quality}}
{{Governance}}
{{Governance}}
[[आंकड़े]] गवर्नेंस एक शब्द है जिसका उपयोग विश्लेषण के दोनों स्तरों पर किया जाता है। पूर्व एक राजनीतिक अवधारणा है और अंतरराष्ट्रीय संबंधों और इंटरनेट प्र[[शासन]] का हिस्सा है; उत्तरार्द्ध एक [[डेटा प्रबंधन]] अवधारणा है और कॉर्पोरेट डेटा प्रशासन का हिस्सा है।
'''डेटा संचालन''' वह शब्द है जिसका उपयोग विश्लेषण के दोनों स्तरों पर किया जाता है। इस प्रकार यह पूर्व राजनीतिक अवधारणा होती है और अंतरराष्ट्रीय संबंधों और इंटरनेट प्र[[शासन]] का भाग होती है, अतः उत्तरार्द्ध [[डेटा प्रबंधन]] अवधारणा है और कॉर्पोरेट डेटा प्रशासन का भाग होती है।


== मैक्रो स्तर ==
वृहद स्तर पर, डेटा गवर्नेंस का तात्पर्य देशों द्वारा सीमा पार डेटा प्रवाह के संचालन से है, और इसलिए इसे अधिक त्रुटिहीन रूप से अंतर्राष्ट्रीय डेटा गवर्नेंस कहा जाता है। यह नई फ़ील्ड में विभिन्न प्रकार के डेटा को नियंत्रित करने वाले मानदंड, सिद्धांत और नियम सम्मिलित हैं।
<ref>{{cite web |url=https://datagovhub.elliott.gwu.edu/faq/ |title=सामान्य प्रश्न|work=Digital Trade and Data Governance Hub |access-date=2023-02-20}}</ref>
== सूक्ष्म स्तर ==
== सूक्ष्म स्तर ==
यहां फोकस एक व्यक्तिगत कंपनी पर है। यहां डेटा गवर्नेंस क्षमता से संबंधित एक डेटा प्रबंधन अवधारणा है जो किसी संगठन को यह सुनिश्चित करने में सक्षम बनाती है कि डेटा के पूरे जीवनचक्र में उच्च डेटा गुणवत्ता उपस्तिथ है, और डेटा नियंत्रण प्रयुक्त किए जाते हैं जो व्यावसायिक उद्देश्यों का समर्थन करते हैं। डेटा गवर्नेंस के प्रमुख फोकस क्षेत्रों में उपलब्धता, प्रयोज्यता, स्थिरता, सम्मिलित हैं।<ref>{{cite web |url=https://www.techtarget.com/searchdatamanagement/definition/data-governance |title=What is data governance and why does it matter? |website=TechTarget.com |access-date=2023-02-20}}</ref> डेटा अखंडता और डेटा सुरक्षा, मानक अनुपालन और पूरे उद्यम में प्रभावी डेटा प्रबंधन सुनिश्चित करने के लिए प्रक्रियाएं स्थापित करना सम्मिलित है जैसे कि खराब डेटा गुणवत्ता के प्रतिकूल प्रभावों के लिए उत्तरदेही और यह सुनिश्चित करना कि एक उद्यम के पास जो डेटा है उसका उपयोग पूरे संगठन द्वारा किया जा सकता है।
वृहद स्तर पर, डेटा संचालन का तात्पर्य देशों द्वारा सीमा पार डेटा प्रवाह के संचालन से होता है, और इसलिए इसे अधिक त्रुटिहीन रूप से अंतर्राष्ट्रीय डेटा संचालन कहा जाता है। इस प्रकार यह नये क्षेत्र में विभिन्न प्रकार के डेटा को नियंत्रित करने वाले मानदंड, सिद्धांत और नियम सम्मिलित होते हैं।<ref>{{cite web |url=https://datagovhub.elliott.gwu.edu/faq/ |title=सामान्य प्रश्न|work=Digital Trade and Data Governance Hub |access-date=2023-02-20}}</ref>
== सूक्ष्म स्तर ==
यहां फोकस व्यक्तिगत कंपनी पर होता है। यहां '''डेटा संचालन''' क्षमता से संबंधित डेटा प्रबंधन अवधारणा होती है जो किसी संगठन को यह सुनिश्चित करने में सक्षम बनाती है कि डेटा के पूर्ण जीवनचक्र में उच्च डेटा गुणवत्ता उपस्तिथ होती है, और डेटा नियंत्रण प्रयुक्त किए जाते हैं जो व्यावसायिक उद्देश्यों का समर्थन करते हैं। इस प्रकार डेटा संचालन के प्रमुख फोकस क्षेत्रों में उपलब्धता, प्रयोज्यता, स्थिरता, सम्मिलित होती हैं।<ref>{{cite web |url=https://www.techtarget.com/searchdatamanagement/definition/data-governance |title=What is data governance and why does it matter? |website=TechTarget.com |access-date=2023-02-20}}</ref> डेटा अखंडता और डेटा सुरक्षा, मानक अनुपालन और पूर्ण उद्यम में प्रभावी डेटा प्रबंधन सुनिश्चित करने के लिए प्रक्रियाएं स्थापित करना सम्मिलित होता है जैसे कि खराब डेटा गुणवत्ता के प्रतिकूल प्रभावों के लिए उत्तरदेही और यह सुनिश्चित करना कि उद्यम के पास जो डेटा है उसका उपयोग पूर्ण संगठन द्वारा किया जा सकता है।


[[डेटा प्रबंधक]] एक ऐसी भूमिका है जो यह सुनिश्चित करती है कि डेटा गवर्नेंस प्रक्रियाओं का पालन किया जाए और दिशानिर्देशों को प्रयुक्त किया जाए, साथ ही डेटा गवर्नेंस प्रक्रियाओं में सुधार की पक्षसमर्थन की जाए।
[[डेटा प्रबंधक]] ऐसी भूमिका होती है जो यह सुनिश्चित करती है कि डेटा संचालन प्रक्रियाओं का पालन किया जाता है और दिशानिर्देशों को प्रयुक्त किया जाता है, अतः साथ ही डेटा संचालन प्रक्रियाओं में सुधार की पक्षसमर्थन की जाती है।


डेटा गवर्नेंस में व्यावसायिक उद्यम में किसी संगठन के डेटा की सुसंगत और उचित हैंडलिंग बनाने के लिए आवश्यक लोगों, प्रक्रियाओं और सूचना प्रौद्योगिकी को सम्मिलित किया गया है। यह सभी डेटा प्रबंधन प्रथाओं को आवश्यक आधार, रणनीति और संरचना प्रदान करता है जिससे कि यह सुनिश्चित किया जा सके कि डेटा को एक संपत्ति के रूप में प्रबंधित किया जाता है और सार्थक जानकारी में बदल दिया जाता है।<ref>{{cite news |url=https://www.lightsondata.com/what-is-data-governance/ |title=What is Data Governance? A complete guide |work=LightsOnData |first=George |last=Firican |access-date=2023-02-20}}</ref> लक्ष्यों को उद्यम के सभी स्तरों पर परिभाषित किया जा सकता है और ऐसा करने से उन लोगों द्वारा प्रक्रियाओं को स्वीकार करने में सहायता मिल सकती है जो उनका उपयोग करेंगे। कुछ लक्ष्यों में सम्मिलित हैं:
डेटा संचालन में व्यावसायिक उद्यम में किसी संगठन के डेटा की सुसंगत और उचित हैंडलिंग बनाने के लिए आवश्यक लोगों, प्रक्रियाओं और सूचना प्रौद्योगिकी को सम्मिलित किया गया है। यह सभी डेटा प्रबंधन प्रथाओं को आवश्यक आधार, रणनीति और संरचना प्रदान करता है जिससे कि यह सुनिश्चित किया जा सकता है कि डेटा को संपत्ति के रूप में प्रबंधित किया जाता है और सार्थक जानकारी में परिवर्तित कर दिया जाता है।<ref>{{cite news |url=https://www.lightsondata.com/what-is-data-governance/ |title=What is Data Governance? A complete guide |work=LightsOnData |first=George |last=Firican |access-date=2023-02-20}}</ref> सामान्यतः लक्ष्यों को उद्यम के सभी स्तरों पर परिभाषित किया जा सकता है और ऐसा करने से उन लोगों द्वारा प्रक्रियाओं को स्वीकार करने में सहायता मिल सकती है जो उनका उपयोग करते है। इस प्रकार यह कुछ लक्ष्यों में सम्मिलित होते हैं।


* निर्णय लेने में निरंतरता और आत्मविश्वास बढ़ाना
* निर्णय लेने में निरंतरता और आत्मविश्वास बढ़ाया जाता है।
* नियामक जुर्माने का कठिन परिस्थिति कम करना
* नियामक जुर्माने की ठीक परिस्थिति को कम किया जाता है।
* [[सूचना सुरक्षा]] में सुधार, डेटा वितरण नीतियों के लिए आवश्यकताओं को परिभाषित और सत्यापित करना<ref>{{cite book |doi=10.1002/9781118501757.ch5 |chapter=Data Policy Definition and Verification for System of Systems Governance |title=सिस्टम इंजीनियरिंग अनुप्रयोगों के लिए मॉडलिंग और सिमुलेशन समर्थन|year=2014 |last=Gianni |first=Daniele |pages=99–130 |isbn=9781118460313}}</ref> * डेटा की आय सृजन क्षमता को अधिकतम करना
* [[सूचना सुरक्षा]] में सुधार, डेटा वितरण नीतियों के लिए आवश्यकताओं को परिभाषित और सत्यापित किया जाता है।<ref>{{cite book |doi=10.1002/9781118501757.ch5 |chapter=Data Policy Definition and Verification for System of Systems Governance |title=सिस्टम इंजीनियरिंग अनुप्रयोगों के लिए मॉडलिंग और सिमुलेशन समर्थन|year=2014 |last=Gianni |first=Daniele |pages=99–130 |isbn=9781118460313}}</ref>
* सूचना गुणवत्ता के लिए उत्तरदेही निर्धारित करना
*डेटा की आय सृजन क्षमता को अधिकतम किया जाता है।
*पर्यवेक्षी कर्मचारियों द्वारा उत्तम योजना बनाना सक्षम करें
* सूचना गुणवत्ता के लिए उत्तरदेही निर्धारित किया जाता है।
* पुनः कार्य को कम करना या समाप्त करना
*पर्यवेक्षी कर्मचारियों द्वारा उत्तम योजना बनाना सक्षम किया जाता है।
* स्टाफ प्रभावशीलता का अनुकूलन करें
* पुनः कार्य को कम करना या समाप्त करना होता है।
* सुधार प्रयासों को सक्षम करने के लिए प्रक्रिया प्रदर्शन आधार रेखा स्थापित करें
* स्टाफ प्रभावशीलता का अनुकूलन किया जाता है।
* सभी लाभों को स्वीकार करें और धारण करें
* सुधार प्रयासों को सक्षम करने के लिए प्रक्रिया प्रदर्शन आधार रेखा स्थापित की जाती है।
* सभी लाभों को स्वीकार करते है और धारण करते है।


इन लक्ष्यों को डेटा गवर्नेंस कार्यक्रमों के कार्यान्वयन, या [[परिवर्तन प्रबंधन]] विधियाें का उपयोग करने वाली पहलों द्वारा साकार किया जाता है।
इन लक्ष्यों को डेटा संचालन कार्यक्रमों के कार्यान्वयन, या [[परिवर्तन प्रबंधन]] विधियाें का उपयोग करने वाली पहलों द्वारा साकार किया जाता है।


जब कंपनियां अपने डेटा पर नियंत्रण पाने की इच्छा रखती हैं या इसकी आवश्यकता होती है, तब वह अपने लोगों को सशक्त बनाती हैं, प्रक्रियाएं स्थापित करती हैं और ऐसा करने के लिए प्रौद्योगिकी से सहायता लेती हैं।<ref name="sarsfield">{{cite book |last=Sarsfield |first=Steve |year=2009 |title=डेटा गवर्नेंस अनिवार्यता|isbn=9781849281102 |publisher=IT Governance Publishing}}</ref>
जब कंपनियां अपने डेटा पर नियंत्रण पाने की इच्छा रखती हैं या इसकी आवश्यकता होती है, तब वह अपने लोगों को सशक्त बनाती हैं, प्रक्रियाएं स्थापित करती हैं और ऐसा करने के लिए प्रौद्योगिकी से सहायता लेती हैं।<ref name="sarsfield">{{cite book |last=Sarsfield |first=Steve |year=2009 |title=डेटा गवर्नेंस अनिवार्यता|isbn=9781849281102 |publisher=IT Governance Publishing}}</ref>
==डेटा गवर्नेंस ड्राइवर==
==डेटा संचालन ड्राइवर==
जबकि डेटा प्रशासन पहल को डेटा गुणवत्ता में सुधार की इच्छा से संचालित किया जा सकता है, वह अधिकांशतः कॉर्पोरेट शीर्षक वरिष्ठ प्रबंधन|सी-स्तर के नेताओं द्वारा बाहरी नियमों का उत्तर देने से प्रेरित होते हैं। सीआईओ वाटरकूलर समुदाय द्वारा हाल ही में की गई एक सूची में, 54% ने कहा कि मुख्य चालक प्रक्रियाओं में दक्षता थी; 39% - नियामक आवश्यकताएँ; और केवल 7% ग्राहक सेवा।<ref>{{cite web |url=https://www.ciowatercooler.co.uk/the-data-governance-report-2017-your-copy/ |title=The Data Governance Report 2017 – Your Copy |website=CIOWaterCooler.co.uk |access-date=2023-02-20 |first=Daniel |last=Warburton |date=2017-03-15}}</ref> इन विनियमों के उदाहरणों में सर्बनेस-ऑक्सले अधिनियम, [[बेसल I]], बेसल II, स्वास्थ्य बीमा पोर्टेबिलिटी और उत्तरदेही अधिनियम, [[सामान्य डेटा संरक्षण विनियमन]], अच्छा विनिर्माण अभ्यास, सम्मिलित हैं।<ref>{{cite web |url=https://www.ecfr.gov/current/title-21 |title=eCFR — Code of Federal Regulations |website=eCFR.gov |access-date=2023-02-20}}</ref> और अनेक डेटा गोपनीयता नियम। इन विनियमों का अनुपालन प्राप्त करने के लिए, व्यावसायिक प्रक्रियाओं और नियंत्रणों को इन विनियमों के अधीन डेटा को नियंत्रित करने के लिए औपचारिक प्रबंधन प्रक्रियाओं की आवश्यकता होती है।<ref>{{cite web |url=https://www.rimes.com/rimes-data-governance-handbook |url-status=dead |archive-url=https://web.archive.org/web/20160305023232/http://www.rimes.com/rimes-data-governance-handbook |archive-date=2016-03-05 |title=रिम्स डेटा गवर्नेंस हैंडबुक|website=RIMES |date=2013-10-16 |access-date=2023-02-20}}</ref> सफल कार्यक्रम पर्यवेक्षी और कार्यकारी नेतृत्व दोनों के लिए सार्थक ड्राइवरों की पहचान करते हैं।
जबकि डेटा प्रशासन पहल को डेटा गुणवत्ता में सुधार की इच्छा से संचालित किया जा सकता है, वह अधिकांशतः कॉर्पोरेट शीर्षक वरिष्ठ प्रबंधन द्वारा बाहरी नियमों का उत्तर देने से प्रेरित होते हैं। इस प्रकार सीआईओ वाटरकूलर समुदाय द्वारा हाल ही में की गई सूची में, 54% ने कहा था कि मुख्य चालक प्रक्रियाओं में दक्षता थी; 39% - नियामक आवश्यकताएँ थी और केवल 7% ग्राहक सेवा होती थी।<ref>{{cite web |url=https://www.ciowatercooler.co.uk/the-data-governance-report-2017-your-copy/ |title=The Data Governance Report 2017 – Your Copy |website=CIOWaterCooler.co.uk |access-date=2023-02-20 |first=Daniel |last=Warburton |date=2017-03-15}}</ref> इन विनियमों के उदाहरणों में सर्बनेस-ऑक्सले अधिनियम, [[बेसल I]], बेसल II, स्वास्थ्य बीमा पोर्टेबिलिटी और उत्तरदेही अधिनियम, [[सामान्य डेटा संरक्षण विनियमन]], उचित विनिर्माण अभ्यास, सम्मिलित होते हैं।<ref>{{cite web |url=https://www.ecfr.gov/current/title-21 |title=eCFR — Code of Federal Regulations |website=eCFR.gov |access-date=2023-02-20}}</ref> और अनेक डेटा गोपनीयता नियम होते है। इन विनियमों का अनुपालन प्राप्त करने के लिए, व्यावसायिक प्रक्रियाओं और नियंत्रणों को इन विनियमों के अधीन डेटा को नियंत्रित करने के लिए औपचारिक प्रबंधन प्रक्रियाओं की आवश्यकता होती है।<ref>{{cite web |url=https://www.rimes.com/rimes-data-governance-handbook |url-status=dead |archive-url=https://web.archive.org/web/20160305023232/http://www.rimes.com/rimes-data-governance-handbook |archive-date=2016-03-05 |title=रिम्स डेटा गवर्नेंस हैंडबुक|website=RIMES |date=2013-10-16 |access-date=2023-02-20}}</ref> सफल कार्यक्रम पर्यवेक्षी और कार्यकारी नेतृत्व दोनों के लिए सार्थक ड्राइवरों की पहचान करते हैं।


बाहरी विनियमों के बीच सामान्य विषय कठिन परिस्थिति प्रबंधन की आवश्यकता पर केन्द्रित हैं। कठिन परिस्थिति वित्तीय गलतकथन , संवेदनशील डेटा का अनजाने में जारी होना या प्रमुख निर्णयों के लिए खराब डेटा गुणवत्ता हो सकते हैं। इन कठिन परिस्थितिों को प्रबंधित करने के तरीके भिन्न-भिन्न उद्योगों में भिन्न-भिन्न होते हैं। सामान्यतः संदर्भित सर्वोत्तम प्रथाओं और दिशानिर्देशों के उदाहरणों में [[COBIT|सीओबीआईटी]], आईएसओ/आईईसी 38500, और अन्य सम्मिलित हैं। विनियमों और मानकों का प्रसार डेटा प्रशासन कुशल ों के लिए चुनौतियां उत्पन्न करता है, खासकर जब अनेक नियम प्रबंधित किए जा रहे डेटा को ओवरलैप करते हैं। संगठन अधिकांशतः इन चुनौतियों से निपटने के लिए डेटा गवर्नेंस पहल प्रारंभ करते हैं।
बाहरी विनियमों के मध्य सामान्य विषय कठिन परिस्थिति प्रबंधन की आवश्यकता पर केन्द्रित होता हैं। इस प्रकार कठिन परिस्थिति वित्तीय गलतकथन, संवेदनशील डेटा का अनजाने में जारी होना या प्रमुख निर्णयों के लिए खराब डेटा गुणवत्ता हो सकते हैं। इन कठिन परिस्थिति को प्रबंधित करने की विधि भिन्न-भिन्न उद्योगों में भिन्न-भिन्न होते हैं। सामान्यतः संदर्भित सर्वोत्तम प्रथाओं और दिशानिर्देशों के उदाहरणों में [[COBIT|सीओबीआईटी]], आईएसओ/आईईसी 38500, और अन्य सम्मिलित होते हैं। चूँकि विनियमों और मानकों का प्रसार डेटा प्रशासन कुशल के लिए चुनौतियां उत्पन्न करता है, विशेष रूप से जब अनेक नियम प्रबंधित किए जा रहे थे, तब डेटा को ओवरलैप करते हैं। अतः संगठन अधिकांशतः इन चुनौतियों से निपटने के लिए डेटा संचालन पहल प्रारंभ करते हैं।


== डेटा प्रशासन पहल (आयाम) ==
== डेटा प्रशासन पहल (आयाम) ==
डेटा प्रशासन पहल डेटा की त्रुटिहीनता, पूर्णता, स्थिरता, समयबद्धता, वैधता और विशिष्टता के लिए जिम्मेदार टीम नियुक्त करके डेटा की गुणवत्ता में सुधार करती है।<ref>{{cite book |chapter=Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking |title=सूचना प्रौद्योगिकी, नई पीढ़ी|volume=448 |pages=439–450 |first1=Wei |last1=Dai |first2=Isaac |last2=Wardlaw |doi=10.1007/978-3-319-32467-8_39 |series=Advances in Intelligent Systems and Computing |year=2016 |isbn=978-3-319-32466-1}}</ref> इस टीम में सामान्यतः कार्यकारी नेतृत्व, [[परियोजना प्रबंधन]], [[लाइन फ़ंक्शन|लाइन फलन]]|लाइन-ऑफ-बिजनेस मैनेजर और डेटा स्टीवर्ड सम्मिलित होते हैं। टीम सामान्यतः एंटरप्राइज़ डेटा को ट्रैक करने और सुधारने के लिए कुछ प्रकार की कार्यप्रणाली का उपयोग करती है, जैसे [[सिक्स सिग्मा]], और [[डेटा मैपिंग]], [[डेटा प्रोफाइलिंग]], सफाई और डेटा की निगरानी के लिए उपकरण।
डेटा प्रशासन पहल डेटा की त्रुटिहीनता, पूर्णता, स्थिरता, समयबद्धता, वैधता और विशिष्टता के लिए जिम्मेदार समूह नियुक्त करके डेटा की गुणवत्ता में सुधार करती है।<ref>{{cite book |chapter=Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking |title=सूचना प्रौद्योगिकी, नई पीढ़ी|volume=448 |pages=439–450 |first1=Wei |last1=Dai |first2=Isaac |last2=Wardlaw |doi=10.1007/978-3-319-32467-8_39 |series=Advances in Intelligent Systems and Computing |year=2016 |isbn=978-3-319-32466-1}}</ref> इस समूह में सामान्यतः कार्यकारी नेतृत्व, [[परियोजना प्रबंधन]], लाइन-ऑफ-बिजनेस मैनेजर और डेटा स्टीवर्ड सम्मिलित होते हैं। इस प्रकार समूह सामान्यतः एंटरप्राइज़ डेटा को ट्रैक करने और सुधारने के लिए कुछ प्रकार की कार्यप्रणाली का उपयोग करती है, जैसे [[सिक्स सिग्मा]], और [[डेटा मैपिंग|डेटा मानचित्रण]], [[डेटा प्रोफाइलिंग]], सफाई और डेटा की निगरानी के लिए उपकरण होते है।


डेटा गवर्नेंस पहल का उद्देश्य अनेक उद्देश्यों को प्राप्त करना हो सकता है, जिसमें आंतरिक और बाहरी ग्राहकों (जैसे [[आपूर्ति श्रृंखला]] प्रबंधन) को उत्तम दृश्यता प्रदान करना, [[अनुपालन (विनियमन)]] का अनुपालन, तेजी से कंपनी के विकास या [[विलय और अधिग्रहण]] के पश्चात् संचालन में सुधार करना, या सहायता करना सम्मिलित है। भ्रम और त्रुटि को कम करके और उनके ज्ञान के सीमा को बढ़ाकर उद्यम ज्ञान श्रमिकों की दक्षता। अनेक डेटा गवर्नेंस पहल विभागीय स्तर पर सूचना गुणवत्ता को ठीक करने के पिछले प्रयासों से भी प्रेरित हैं, जिससे असंगत और अनावश्यक डेटा गुणवत्ता प्रक्रियाएं होती हैं। अधिकांश बड़ी कंपनियों के पास अनेक एप्लिकेशन और डेटाबेस होते हैं जो आसानी से जानकारी साझा नहीं कर सकते हैं। इसलिए, बड़े संगठनों के ज्ञान कार्यकर्ताओं के पास अधिकांशतः उस डेटा तक पहुंच नहीं होती है जिसकी उन्हें अपना काम सर्वोत्तम तरीके से करने के लिए आवश्यकता होती है। जब उनके पास डेटा तक पहुंच होगी, तब डेटा की गुणवत्ता खराब हो सकती है। डेटा गवर्नेंस प्रैक्टिस या [[कॉर्पोरेट डेटा]] अथॉरिटी (डेटा समस्या उत्पन्न होने पर व्यवसाय के सर्वोत्तम हित में आगे बढ़ने के तरीके को निर्धारित करने के लिए जिम्मेदार व्यक्ति या क्षेत्र) की स्थापना करके, इन समस्याओं को कम किया जा सकता है।
डेटा संचालन पहल का उद्देश्य अनेक उद्देश्यों को प्राप्त करना हो सकता है, जिसमें आंतरिक और बाहरी ग्राहकों (जैसे [[आपूर्ति श्रृंखला]] प्रबंधन) को उत्तम दृश्यता प्रदान करना, [[अनुपालन (विनियमन)]] का अनुपालन, तेजी से कंपनी के विकास या [[विलय और अधिग्रहण]] के पश्चात् संचालन में सुधार करना, या सहायता करना सम्मिलित होता है। इस प्रकार भ्रम और त्रुटि को कम करके और उनके ज्ञान के सीमा को बढ़ाकर उद्यम ज्ञान श्रमिकों की दक्षता अनेक डेटा संचालन पहल विभागीय स्तर पर सूचना गुणवत्ता को ठीक करने के पिछले प्रयासों से भी प्रेरित करते हैं, जिससे असंगत और अनावश्यक डेटा गुणवत्ता प्रक्रियाएं होती हैं। अधिकांशतः बड़ी कंपनियों के पास अनेक एप्लिकेशन और डेटाबेस होते हैं जो सरलता से जानकारी साझा नहीं कर सकते हैं। इसलिए, बड़े संगठनों के ज्ञान कार्यकर्ताओं के पास अधिकांशतः उस डेटा तक पहुंच नहीं होती है जिसकी उन्हें अपना कार्य सर्वोत्तम विधि से करने के लिए आवश्यकता होती है। जब उनके पास डेटा तक पहुंच होती है, तब डेटा की गुणवत्ता खराब हो सकती है। डेटा संचालन प्रैक्टिस या [[कॉर्पोरेट डेटा]] अथॉरिटी (डेटा समस्या उत्पन्न होने पर व्यवसाय के सर्वोत्तम हित में आगे बढ़ने की विधि को निर्धारित करने के लिए जिम्मेदार व्यक्ति या क्षेत्र) की स्थापना करके, इन समस्याओं को कम किया जा सकता है।


== कार्यान्वयन ==
== कार्यान्वयन ==
डेटा गवर्नेंस पहल का कार्यान्वयन सीमा के साथ-साथ मूल में भी भिन्न हो सकता है। कभी-कभी, एक उद्यम-व्यापी प्रयास प्रारंभ करने के लिए एक कार्यकारी अधिदेश उत्पन्न होगा, कभी-कभी अधिदेश एक पायलट प्रोजेक्ट या प्रोजेक्ट बनाने के लिए होगा, जो सीमा और उद्देश्यों में सीमित होगा, जिसका उद्देश्य उपस्ति था विवादों को हल करना या मूल्य प्रदर्शित करना होगा। कभी-कभी कोई पहल संगठन के पदानुक्रम में नीचे से प्रारंभ होगी, और संगठन में ऊपर के संभावित प्रायोजकों के लिए मूल्य प्रदर्शित करने के लिए एक सीमित सीमा में नियत की जाएगी। कार्यान्वयन का प्रारंभिक सीमा एक-बारगी आईटी प्रणाली की समीक्षा से लेकर एक क्रॉस-संगठन पहल तक, अधिक भिन्न हो सकता है।
डेटा संचालन पहल का कार्यान्वयन सीमा के साथ-साथ मूल में भी भिन्न हो सकता है। इस प्रकार कभी-कभी, उद्यम-व्यापी प्रयास प्रारंभ करने के लिए कार्यकारी अधिदेश उत्पन्न होता है, अतः कभी-कभी अधिदेश पायलट प्रोजेक्ट या प्रोजेक्ट बनाने के लिए होता है, जो सीमा और उद्देश्यों में सीमित होता है, जिसका उद्देश्य उपस्ति होता था, विवादों को हल करना या मूल्य प्रदर्शित करना होता है। इस प्रकार कभी-कभी कोई पहल संगठन के पदानुक्रम में नीचे से प्रारंभ होती है, और संगठन में ऊपर के संभावित प्रायोजकों के लिए मूल्य प्रदर्शित करने के लिए सीमित सीमा में नियत की जाती है। अतः कार्यान्वयन का प्रारंभिक सीमा एकल-बारगी आईटी प्रणाली की समीक्षा से लेकर क्रॉस-संगठन पहल तक, अधिक भिन्न हो सकता है।


== डेटा प्रशासन उपकरण ==
== डेटा प्रशासन उपकरण ==
सफल डेटा गवर्नेंस कार्यक्रमों के नेताओं ने दिसंबर 2006 में ऑरलैंडो, एफएल में डेटा गवर्नेंस सम्मेलन में घोषणा की कि डेटा गवर्नेंस 80 से 95 प्रतिशत संचार के बीच है।<ref>{{cite web |url=http://www.dmreview.com/issues/2007_48/10001356-1.html |title=Data Governance: One Size Does Not Fit All |last=Hopwood |first=Peter |publisher=DM Review Magazine |date=June 2008 |access-date=2023-02-20 |archive-url=https://web.archive.org/web/20080928194651/http://www.dmreview.com/issues/2007_48/10001356-1.html |archive-date=2008-09-28 |quote=At the inaugural Data Governance Conference in Orlando, Florida, in December 2006, leaders of successful data governance programs declared that in their experience, data governance is between 80 and 95 percent communication. Clearly, data governance is not a typical IT project. |url-status=dead}}</ref> जैसा कि कहा गया है, यह माना जाता है कि डेटा गवर्नेंस प्रोग्राम के अनेक उद्देश्यों को उचित उपकरणों के साथ पूरा किया जाना चाहिए। अनेक विक्रेता वर्तमान अपने उत्पादों को डेटा गवर्नेंस टूल के रूप में स्थापित कर रहे हैं; विभिन्न डेटा प्रशासन पहलों के भिन्न-भिन्न फोकस क्षेत्रों के कारण, कोई भी उपकरण उपयुक्त हो भी सकता है और नहीं भी, इसके अतिरिक्त, अनेक उपकरण जिन्हें शासन उपकरण के रूप में विपणन नहीं किया जाता है, वह शासन की जरूरतों और मांगों को संबोधित करते हैं
सफल डेटा संचालन कार्यक्रमों के नेताओं ने दिसंबर, सन्न 2006 में ऑरलैंडो, एफएल में डेटा संचालन सम्मेलन में घोषणा की थी कि डेटा संचालन 80 से 95 प्रतिशत संचार के मध्य होता है।<ref>{{cite web |url=http://www.dmreview.com/issues/2007_48/10001356-1.html |title=Data Governance: One Size Does Not Fit All |last=Hopwood |first=Peter |publisher=DM Review Magazine |date=June 2008 |access-date=2023-02-20 |archive-url=https://web.archive.org/web/20080928194651/http://www.dmreview.com/issues/2007_48/10001356-1.html |archive-date=2008-09-28 |quote=At the inaugural Data Governance Conference in Orlando, Florida, in December 2006, leaders of successful data governance programs declared that in their experience, data governance is between 80 and 95 percent communication. Clearly, data governance is not a typical IT project. |url-status=dead}}</ref> जैसा कि कहा गया है, अतः यह माना जाता है कि डेटा संचालन प्रोग्राम के अनेक उद्देश्यों को उचित उपकरणों के साथ पूर्ण किया जाता है। इस प्रकार अनेक विक्रेता वर्तमान अपने उत्पादों को डेटा संचालन टूल के रूप में स्थापित कर रहे हैं। चूँकि विभिन्न डेटा प्रशासन पहलों के भिन्न-भिन्न फोकस क्षेत्रों के कारण, कोई भी उपकरण उपयुक्त हो सकता है और नहीं भी हो सकता है, इसके अतिरिक्त, अनेक उपकरण जिन्हें शासन उपकरण के रूप में विपणन नहीं किया जाता है, अतः वह शासन की आवश्यकताओ और मांगों को संबोधित करते हैं।


==यह भी देखें==
==यह भी देखें==
* [[डेटा संप्रभुता]]
* [[डेटा संप्रभुता]]
* [[सूचना आर्किटेक्चर]]
* [[सूचना आर्किटेक्चर|सूचना वास्तुकला]]
* [[सूचना शासन]]
* [[सूचना शासन]]
* [[सूचना प्रौद्योगिकी शासन]]
* [[सूचना प्रौद्योगिकी शासन]]
Line 55: Line 55:
* [[परिचालन जोखिम प्रबंधन|परिचालन कठिन परिस्थिति प्रबंधन]]
* [[परिचालन जोखिम प्रबंधन|परिचालन कठिन परिस्थिति प्रबंधन]]
* [[बेसल II समझौता]]
* [[बेसल II समझौता]]
* [[ HIPAA ]]
* [[ HIPAA | हिपा]]
* [[Sarbanes-Oxley अधिनियम]]
* [[Sarbanes-Oxley अधिनियम|सर्बनेस-ऑक्सले अधिनियम]]
* [[सूचना प्रौद्योगिकी नियंत्रण]]
* [[सूचना प्रौद्योगिकी नियंत्रण]]
* [[डेटा सुरक्षा निर्देश]] (ईयू)
* [[डेटा सुरक्षा निर्देश]] (ईयू)
Line 68: Line 68:
{{reflist}}
{{reflist}}


बाहरी संबंध
{{wiktionary}}
[[Category: सूचना प्रौद्योगिकी शासन]] [[Category: डेटा प्रबंधन]]
[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:डेटा प्रबंधन]]
[[Category:सूचना प्रौद्योगिकी शासन]]

Latest revision as of 21:50, 15 July 2023

डेटा संचालन वह शब्द है जिसका उपयोग विश्लेषण के दोनों स्तरों पर किया जाता है। इस प्रकार यह पूर्व राजनीतिक अवधारणा होती है और अंतरराष्ट्रीय संबंधों और इंटरनेट प्रशासन का भाग होती है, अतः उत्तरार्द्ध डेटा प्रबंधन अवधारणा है और कॉर्पोरेट डेटा प्रशासन का भाग होती है।

सूक्ष्म स्तर

वृहद स्तर पर, डेटा संचालन का तात्पर्य देशों द्वारा सीमा पार डेटा प्रवाह के संचालन से होता है, और इसलिए इसे अधिक त्रुटिहीन रूप से अंतर्राष्ट्रीय डेटा संचालन कहा जाता है। इस प्रकार यह नये क्षेत्र में विभिन्न प्रकार के डेटा को नियंत्रित करने वाले मानदंड, सिद्धांत और नियम सम्मिलित होते हैं।[1]

सूक्ष्म स्तर

यहां फोकस व्यक्तिगत कंपनी पर होता है। यहां डेटा संचालन क्षमता से संबंधित डेटा प्रबंधन अवधारणा होती है जो किसी संगठन को यह सुनिश्चित करने में सक्षम बनाती है कि डेटा के पूर्ण जीवनचक्र में उच्च डेटा गुणवत्ता उपस्तिथ होती है, और डेटा नियंत्रण प्रयुक्त किए जाते हैं जो व्यावसायिक उद्देश्यों का समर्थन करते हैं। इस प्रकार डेटा संचालन के प्रमुख फोकस क्षेत्रों में उपलब्धता, प्रयोज्यता, स्थिरता, सम्मिलित होती हैं।[2] डेटा अखंडता और डेटा सुरक्षा, मानक अनुपालन और पूर्ण उद्यम में प्रभावी डेटा प्रबंधन सुनिश्चित करने के लिए प्रक्रियाएं स्थापित करना सम्मिलित होता है जैसे कि खराब डेटा गुणवत्ता के प्रतिकूल प्रभावों के लिए उत्तरदेही और यह सुनिश्चित करना कि उद्यम के पास जो डेटा है उसका उपयोग पूर्ण संगठन द्वारा किया जा सकता है।

डेटा प्रबंधक ऐसी भूमिका होती है जो यह सुनिश्चित करती है कि डेटा संचालन प्रक्रियाओं का पालन किया जाता है और दिशानिर्देशों को प्रयुक्त किया जाता है, अतः साथ ही डेटा संचालन प्रक्रियाओं में सुधार की पक्षसमर्थन की जाती है।

डेटा संचालन में व्यावसायिक उद्यम में किसी संगठन के डेटा की सुसंगत और उचित हैंडलिंग बनाने के लिए आवश्यक लोगों, प्रक्रियाओं और सूचना प्रौद्योगिकी को सम्मिलित किया गया है। यह सभी डेटा प्रबंधन प्रथाओं को आवश्यक आधार, रणनीति और संरचना प्रदान करता है जिससे कि यह सुनिश्चित किया जा सकता है कि डेटा को संपत्ति के रूप में प्रबंधित किया जाता है और सार्थक जानकारी में परिवर्तित कर दिया जाता है।[3] सामान्यतः लक्ष्यों को उद्यम के सभी स्तरों पर परिभाषित किया जा सकता है और ऐसा करने से उन लोगों द्वारा प्रक्रियाओं को स्वीकार करने में सहायता मिल सकती है जो उनका उपयोग करते है। इस प्रकार यह कुछ लक्ष्यों में सम्मिलित होते हैं।

  • निर्णय लेने में निरंतरता और आत्मविश्वास बढ़ाया जाता है।
  • नियामक जुर्माने की ठीक परिस्थिति को कम किया जाता है।
  • सूचना सुरक्षा में सुधार, डेटा वितरण नीतियों के लिए आवश्यकताओं को परिभाषित और सत्यापित किया जाता है।[4]
  • डेटा की आय सृजन क्षमता को अधिकतम किया जाता है।
  • सूचना गुणवत्ता के लिए उत्तरदेही निर्धारित किया जाता है।
  • पर्यवेक्षी कर्मचारियों द्वारा उत्तम योजना बनाना सक्षम किया जाता है।
  • पुनः कार्य को कम करना या समाप्त करना होता है।
  • स्टाफ प्रभावशीलता का अनुकूलन किया जाता है।
  • सुधार प्रयासों को सक्षम करने के लिए प्रक्रिया प्रदर्शन आधार रेखा स्थापित की जाती है।
  • सभी लाभों को स्वीकार करते है और धारण करते है।

इन लक्ष्यों को डेटा संचालन कार्यक्रमों के कार्यान्वयन, या परिवर्तन प्रबंधन विधियाें का उपयोग करने वाली पहलों द्वारा साकार किया जाता है।

जब कंपनियां अपने डेटा पर नियंत्रण पाने की इच्छा रखती हैं या इसकी आवश्यकता होती है, तब वह अपने लोगों को सशक्त बनाती हैं, प्रक्रियाएं स्थापित करती हैं और ऐसा करने के लिए प्रौद्योगिकी से सहायता लेती हैं।[5]

डेटा संचालन ड्राइवर

जबकि डेटा प्रशासन पहल को डेटा गुणवत्ता में सुधार की इच्छा से संचालित किया जा सकता है, वह अधिकांशतः कॉर्पोरेट शीर्षक वरिष्ठ प्रबंधन द्वारा बाहरी नियमों का उत्तर देने से प्रेरित होते हैं। इस प्रकार सीआईओ वाटरकूलर समुदाय द्वारा हाल ही में की गई सूची में, 54% ने कहा था कि मुख्य चालक प्रक्रियाओं में दक्षता थी; 39% - नियामक आवश्यकताएँ थी और केवल 7% ग्राहक सेवा होती थी।[6] इन विनियमों के उदाहरणों में सर्बनेस-ऑक्सले अधिनियम, बेसल I, बेसल II, स्वास्थ्य बीमा पोर्टेबिलिटी और उत्तरदेही अधिनियम, सामान्य डेटा संरक्षण विनियमन, उचित विनिर्माण अभ्यास, सम्मिलित होते हैं।[7] और अनेक डेटा गोपनीयता नियम होते है। इन विनियमों का अनुपालन प्राप्त करने के लिए, व्यावसायिक प्रक्रियाओं और नियंत्रणों को इन विनियमों के अधीन डेटा को नियंत्रित करने के लिए औपचारिक प्रबंधन प्रक्रियाओं की आवश्यकता होती है।[8] सफल कार्यक्रम पर्यवेक्षी और कार्यकारी नेतृत्व दोनों के लिए सार्थक ड्राइवरों की पहचान करते हैं।

बाहरी विनियमों के मध्य सामान्य विषय कठिन परिस्थिति प्रबंधन की आवश्यकता पर केन्द्रित होता हैं। इस प्रकार कठिन परिस्थिति वित्तीय गलतकथन, संवेदनशील डेटा का अनजाने में जारी होना या प्रमुख निर्णयों के लिए खराब डेटा गुणवत्ता हो सकते हैं। इन कठिन परिस्थिति को प्रबंधित करने की विधि भिन्न-भिन्न उद्योगों में भिन्न-भिन्न होते हैं। सामान्यतः संदर्भित सर्वोत्तम प्रथाओं और दिशानिर्देशों के उदाहरणों में सीओबीआईटी, आईएसओ/आईईसी 38500, और अन्य सम्मिलित होते हैं। चूँकि विनियमों और मानकों का प्रसार डेटा प्रशासन कुशल के लिए चुनौतियां उत्पन्न करता है, विशेष रूप से जब अनेक नियम प्रबंधित किए जा रहे थे, तब डेटा को ओवरलैप करते हैं। अतः संगठन अधिकांशतः इन चुनौतियों से निपटने के लिए डेटा संचालन पहल प्रारंभ करते हैं।

डेटा प्रशासन पहल (आयाम)

डेटा प्रशासन पहल डेटा की त्रुटिहीनता, पूर्णता, स्थिरता, समयबद्धता, वैधता और विशिष्टता के लिए जिम्मेदार समूह नियुक्त करके डेटा की गुणवत्ता में सुधार करती है।[9] इस समूह में सामान्यतः कार्यकारी नेतृत्व, परियोजना प्रबंधन, लाइन-ऑफ-बिजनेस मैनेजर और डेटा स्टीवर्ड सम्मिलित होते हैं। इस प्रकार समूह सामान्यतः एंटरप्राइज़ डेटा को ट्रैक करने और सुधारने के लिए कुछ प्रकार की कार्यप्रणाली का उपयोग करती है, जैसे सिक्स सिग्मा, और डेटा मानचित्रण, डेटा प्रोफाइलिंग, सफाई और डेटा की निगरानी के लिए उपकरण होते है।

डेटा संचालन पहल का उद्देश्य अनेक उद्देश्यों को प्राप्त करना हो सकता है, जिसमें आंतरिक और बाहरी ग्राहकों (जैसे आपूर्ति श्रृंखला प्रबंधन) को उत्तम दृश्यता प्रदान करना, अनुपालन (विनियमन) का अनुपालन, तेजी से कंपनी के विकास या विलय और अधिग्रहण के पश्चात् संचालन में सुधार करना, या सहायता करना सम्मिलित होता है। इस प्रकार भ्रम और त्रुटि को कम करके और उनके ज्ञान के सीमा को बढ़ाकर उद्यम ज्ञान श्रमिकों की दक्षता अनेक डेटा संचालन पहल विभागीय स्तर पर सूचना गुणवत्ता को ठीक करने के पिछले प्रयासों से भी प्रेरित करते हैं, जिससे असंगत और अनावश्यक डेटा गुणवत्ता प्रक्रियाएं होती हैं। अधिकांशतः बड़ी कंपनियों के पास अनेक एप्लिकेशन और डेटाबेस होते हैं जो सरलता से जानकारी साझा नहीं कर सकते हैं। इसलिए, बड़े संगठनों के ज्ञान कार्यकर्ताओं के पास अधिकांशतः उस डेटा तक पहुंच नहीं होती है जिसकी उन्हें अपना कार्य सर्वोत्तम विधि से करने के लिए आवश्यकता होती है। जब उनके पास डेटा तक पहुंच होती है, तब डेटा की गुणवत्ता खराब हो सकती है। डेटा संचालन प्रैक्टिस या कॉर्पोरेट डेटा अथॉरिटी (डेटा समस्या उत्पन्न होने पर व्यवसाय के सर्वोत्तम हित में आगे बढ़ने की विधि को निर्धारित करने के लिए जिम्मेदार व्यक्ति या क्षेत्र) की स्थापना करके, इन समस्याओं को कम किया जा सकता है।

कार्यान्वयन

डेटा संचालन पहल का कार्यान्वयन सीमा के साथ-साथ मूल में भी भिन्न हो सकता है। इस प्रकार कभी-कभी, उद्यम-व्यापी प्रयास प्रारंभ करने के लिए कार्यकारी अधिदेश उत्पन्न होता है, अतः कभी-कभी अधिदेश पायलट प्रोजेक्ट या प्रोजेक्ट बनाने के लिए होता है, जो सीमा और उद्देश्यों में सीमित होता है, जिसका उद्देश्य उपस्ति होता था, विवादों को हल करना या मूल्य प्रदर्शित करना होता है। इस प्रकार कभी-कभी कोई पहल संगठन के पदानुक्रम में नीचे से प्रारंभ होती है, और संगठन में ऊपर के संभावित प्रायोजकों के लिए मूल्य प्रदर्शित करने के लिए सीमित सीमा में नियत की जाती है। अतः कार्यान्वयन का प्रारंभिक सीमा एकल-बारगी आईटी प्रणाली की समीक्षा से लेकर क्रॉस-संगठन पहल तक, अधिक भिन्न हो सकता है।

डेटा प्रशासन उपकरण

सफल डेटा संचालन कार्यक्रमों के नेताओं ने दिसंबर, सन्न 2006 में ऑरलैंडो, एफएल में डेटा संचालन सम्मेलन में घोषणा की थी कि डेटा संचालन 80 से 95 प्रतिशत संचार के मध्य होता है।[10] जैसा कि कहा गया है, अतः यह माना जाता है कि डेटा संचालन प्रोग्राम के अनेक उद्देश्यों को उचित उपकरणों के साथ पूर्ण किया जाता है। इस प्रकार अनेक विक्रेता वर्तमान अपने उत्पादों को डेटा संचालन टूल के रूप में स्थापित कर रहे हैं। चूँकि विभिन्न डेटा प्रशासन पहलों के भिन्न-भिन्न फोकस क्षेत्रों के कारण, कोई भी उपकरण उपयुक्त हो सकता है और नहीं भी हो सकता है, इसके अतिरिक्त, अनेक उपकरण जिन्हें शासन उपकरण के रूप में विपणन नहीं किया जाता है, अतः वह शासन की आवश्यकताओ और मांगों को संबोधित करते हैं।

यह भी देखें

संदर्भ

  1. "सामान्य प्रश्न". Digital Trade and Data Governance Hub. Retrieved 2023-02-20.
  2. "What is data governance and why does it matter?". TechTarget.com. Retrieved 2023-02-20.
  3. Firican, George. "What is Data Governance? A complete guide". LightsOnData. Retrieved 2023-02-20.
  4. Gianni, Daniele (2014). "Data Policy Definition and Verification for System of Systems Governance". सिस्टम इंजीनियरिंग अनुप्रयोगों के लिए मॉडलिंग और सिमुलेशन समर्थन. pp. 99–130. doi:10.1002/9781118501757.ch5. ISBN 9781118460313.
  5. Sarsfield, Steve (2009). डेटा गवर्नेंस अनिवार्यता. IT Governance Publishing. ISBN 9781849281102.
  6. Warburton, Daniel (2017-03-15). "The Data Governance Report 2017 – Your Copy". CIOWaterCooler.co.uk. Retrieved 2023-02-20.
  7. "eCFR — Code of Federal Regulations". eCFR.gov. Retrieved 2023-02-20.
  8. "रिम्स डेटा गवर्नेंस हैंडबुक". RIMES. 2013-10-16. Archived from the original on 2016-03-05. Retrieved 2023-02-20.
  9. Dai, Wei; Wardlaw, Isaac (2016). "Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking". सूचना प्रौद्योगिकी, नई पीढ़ी. Advances in Intelligent Systems and Computing. Vol. 448. pp. 439–450. doi:10.1007/978-3-319-32467-8_39. ISBN 978-3-319-32466-1.
  10. Hopwood, Peter (June 2008). "Data Governance: One Size Does Not Fit All". DM Review Magazine. Archived from the original on 2008-09-28. Retrieved 2023-02-20. At the inaugural Data Governance Conference in Orlando, Florida, in December 2006, leaders of successful data governance programs declared that in their experience, data governance is between 80 and 95 percent communication. Clearly, data governance is not a typical IT project.