रिसॉल्वेंट (गैलोइस सिद्धांत): Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
'''गैलोज़ सिद्धांत''' में अमूर्त बीजगणित के क्षेत्र के अंदर एक अनुशासन, क्रमपरिवर्तन समूह ''G'' के लिए एक विलायक एक बहुपद है जिसका गुणांक किसी दिए गए बहुपद ''p'' के गुणांक पर बहुपद रूप से निर्भर करता है और समान्य रूप से बोलते हुए, एक तर्कसंगत जड़ है यदि और केवल यदि गैलोज़ ''p'' के समूह को ''G'' में सम्मिलित किया गया है। अधिक स्पष्ट रूप से, यदि गैलोज़ समूह को ''G'' में सम्मिलित किया गया है, तो विलायक का एक तर्कसंगत जड़ है, और यदि तर्कसंगत मूल एक सरल जड़ है तो इसका विपरीत सत्य है। रिज़ॉल्वेंट्स को जोसेफ लुईस लैग्रेंज द्वारा प्रस्तुत किया गया था और व्यवस्थित रूप से इवेरिस्टे गैलोइस द्वारा उपयोग किया गया था। आजकल वे अभी भी गैलोज़ समूहों की गणना करने के लिए एक मौलिक उपकरण हैं। रिज़ॉल्वेंट्स के सबसे सरल उदाहरण हैं | '''गैलोज़ सिद्धांत''' में अमूर्त बीजगणित के क्षेत्र के अंदर एक अनुशासन, क्रमपरिवर्तन समूह ''G'' के लिए एक विलायक एक बहुपद है जिसका गुणांक किसी दिए गए बहुपद ''p'' के गुणांक पर बहुपद रूप से निर्भर करता है और समान्य रूप से बोलते हुए, एक तर्कसंगत जड़ है यदि और केवल यदि गैलोज़ ''p'' के समूह को ''G'' में सम्मिलित किया गया है। अधिक स्पष्ट रूप से, यदि गैलोज़ समूह को ''G'' में सम्मिलित किया गया है, तो विलायक का एक तर्कसंगत जड़ है, और यदि तर्कसंगत मूल एक सरल जड़ है तो इसका विपरीत सत्य है। रिज़ॉल्वेंट्स को जोसेफ लुईस लैग्रेंज द्वारा प्रस्तुत किया गया था और व्यवस्थित रूप से इवेरिस्टे गैलोइस द्वारा उपयोग किया गया था। आजकल वे अभी भी गैलोज़ समूहों की गणना करने के लिए एक मौलिक उपकरण हैं। रिज़ॉल्वेंट्स के सबसे सरल उदाहरण हैं | ||
* <math>X^2-\Delta</math> जहाँ <math>\Delta</math> [[विभेदक]] है जो कि [[वैकल्पिक समूह|वैकल्पिक]] समूह के लिए एक समाधानकर्ता है। [[घन समीकरण]] के स्थितियों में इस विलायक को कभी-कभी द्विघात विलायक भी कहा जाता है; इसकी जड़ें घन समीकरण की जड़ों के सूत्रों में स्पष्ट रूप से दिखाई देती हैं। | * <math>X^2-\Delta</math> जहाँ <math>\Delta</math> [[विभेदक]] है जो कि [[वैकल्पिक समूह|वैकल्पिक]] समूह के लिए एक समाधानकर्ता है। [[घन समीकरण]] के स्थितियों में इस विलायक को कभी-कभी द्विघात विलायक भी कहा जाता है; इसकी जड़ें घन समीकरण की जड़ों के सूत्रों में स्पष्ट रूप से दिखाई देती हैं। | ||
Line 45: | Line 44: | ||
* {{cite book |title=Algebraic Theories |first= Leonard E.|last=Dickson |author-link=Leonard Eugene Dickson |publisher= Dover Publications Inc|location= New York|year= 1959|isbn=0-486-49573-6 |page= ix+276}} | * {{cite book |title=Algebraic Theories |first= Leonard E.|last=Dickson |author-link=Leonard Eugene Dickson |publisher= Dover Publications Inc|location= New York|year= 1959|isbn=0-486-49573-6 |page= ix+276}} | ||
* {{Cite journal | last1 = Girstmair | first1 = K. | title = On the computation of resolvents and Galois groups | doi = 10.1007/BF01165834 | journal = Manuscripta Mathematica | volume = 43 | issue = 2–3 | pages = 289–307 | year = 1983 | s2cid = 123752910 }} | * {{Cite journal | last1 = Girstmair | first1 = K. | title = On the computation of resolvents and Galois groups | doi = 10.1007/BF01165834 | journal = Manuscripta Mathematica | volume = 43 | issue = 2–3 | pages = 289–307 | year = 1983 | s2cid = 123752910 }} | ||
[[Category: | [[Category:All articles with bare URLs for citations]] | ||
[[Category:Articles with PDF format bare URLs for citations]] | |||
[[Category:Articles with bare URLs for citations from March 2022]] | |||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गैलोइस सिद्धांत]] | |||
[[Category:समीकरण]] | |||
[[Category:समूह सिद्धांत]] |
Latest revision as of 10:40, 18 July 2023
गैलोज़ सिद्धांत में अमूर्त बीजगणित के क्षेत्र के अंदर एक अनुशासन, क्रमपरिवर्तन समूह G के लिए एक विलायक एक बहुपद है जिसका गुणांक किसी दिए गए बहुपद p के गुणांक पर बहुपद रूप से निर्भर करता है और समान्य रूप से बोलते हुए, एक तर्कसंगत जड़ है यदि और केवल यदि गैलोज़ p के समूह को G में सम्मिलित किया गया है। अधिक स्पष्ट रूप से, यदि गैलोज़ समूह को G में सम्मिलित किया गया है, तो विलायक का एक तर्कसंगत जड़ है, और यदि तर्कसंगत मूल एक सरल जड़ है तो इसका विपरीत सत्य है। रिज़ॉल्वेंट्स को जोसेफ लुईस लैग्रेंज द्वारा प्रस्तुत किया गया था और व्यवस्थित रूप से इवेरिस्टे गैलोइस द्वारा उपयोग किया गया था। आजकल वे अभी भी गैलोज़ समूहों की गणना करने के लिए एक मौलिक उपकरण हैं। रिज़ॉल्वेंट्स के सबसे सरल उदाहरण हैं
- जहाँ विभेदक है जो कि वैकल्पिक समूह के लिए एक समाधानकर्ता है। घन समीकरण के स्थितियों में इस विलायक को कभी-कभी द्विघात विलायक भी कहा जाता है; इसकी जड़ें घन समीकरण की जड़ों के सूत्रों में स्पष्ट रूप से दिखाई देती हैं।
- चतुर्थक फलन का विलायक घन जो 8 तत्वों के डायहेड्रल समूह के लिए एक विलायक है।
- क्विंटिक फलन या सॉल्वेबल क्विंटिक्स डिग्री पांच में अधिकतम पुन: घुलनशील गैलोज़ समूह के लिए एक विलायक है। यह एक बहुपद 6 की घात वाला बहुपद है।
इन तीन विलायक में "सदैव अलग होने योग्य" होने का गुण होता है जिसका अर्थ है कि यदि उनके पास एकाधिक मूल है तो बहुपद "p" अपरिवर्तनीय बहुपद नहीं है। यह ज्ञात नहीं है कि क्रमपरिवर्तन के प्रत्येक समूह के लिए सदैव एक अलग करने योग्य समाधान होता है या नहीं होता है।
प्रत्येक समीकरण के लिए जड़ों को रेडिकल के रूप में और एक पुनर्घुलनशील समूह के लिए एक विलायक की जड़ के रूप में व्यक्त किया जा सकता है क्योंकि इस जड़ द्वारा उत्पन्न क्षेत्र पर समीकरण का गैलोज़ समूह पुन: घुलनशील है।
परिभाषा
मान लीजिए n एक धनात्मक पूर्णांक है जो समीकरण की डिग्री होगी जिस पर हम विचार करेंगे और (X1, ..., Xn) अनिश्चितों की एक क्रमबद्ध सूची होगी। यह घात n के सामान्य बहुपद को परिभाषित करता है
सममित समूह Sn, Xi पर उन्हें क्रमपरिवर्तित करके कार्य करता है, और यह Xi में बहुपदों पर एक क्रिया को प्रेरित करता है। इस क्रिया के तहत किसी दिए गए बहुपद का स्टेबलाइज़र सामान्यतः तुच्छ होता है किन्तु कुछ बहुपदों में बड़ा स्टेबलाइज़र होता है। उदाहरण के लिए एक प्रारंभिक सममित बहुपद का स्टेबलाइज़र संपूर्ण समूह Sn है। यदि स्टेबलाइज़र गैर-तुच्छ है, तो बहुपद कुछ गैर-तुच्छ उपसमूह G द्वारा तय किया गया है; इसे G का एक अपरिवर्तनीय कहा जाता है। इसके विपरीत, एसएन के उपसमूह G को देखते हुए, G का एक अपरिवर्तनीय G के लिए एक विलायक अपरिवर्तनीय है यदि यह Sn के किसी भी बड़े उपसमूह का अपरिवर्तनीय नहीं है।[1]
Sn के किसी दिए गए उपसमूह G के लिए अपरिवर्तनीय खोजना अपेक्षाकृत आसान है; कोई Sn की क्रिया के तहत एकपदी की कक्षा का योग कर सकता है। चूँकि ऐसा हो सकता है कि परिणामी बहुपद एक बड़े समूह के लिए अपरिवर्तनीय हो। उदाहरण के लिए, क्रम 4 के S4 के उपसमूह G के स्थिति पर विचार करें, जिसमें (12)(34), (13)(24), (14)(23) और पहचान सम्मिलित है (नोटेशन के लिए, क्रमपरिवर्तन समूह देखें) . एकपदी X1X2 अपरिवर्तनीय 2(X1X2 + X3X4) देता है। यह G के लिए एक विलायक अपरिवर्तनीय नहीं है, क्योंकि (12) द्वारा अपरिवर्तनीय होने के कारण, यह वास्तव में बड़े डायहेड्रल उपसमूह D_4: ⟨(12), (1324)⟩ के लिए एक विलायक अपरिवर्तनीय है, और इसका उपयोग चतुर्थक समीकरण के रिसॉल्वेंट क्यूबिक को परिभाषित करने के लिए किया जाता है।
यदि P, Sn के अंदर सूचकांक m के समूह G के लिए एक विलायक अपरिवर्तनीय है, तो Sn के अंतर्गत इसकी कक्षा का क्रम m है। माना P1, ..., Pm इस कक्षा के तत्व हैं। फिर बहुपद
Sn के तहत अपरिवर्तनीय है। इस प्रकार जब विस्तारित किया जाता है, तो इसके गुणांक Xi में बहुपद होते हैं जो समरूपता समूह की गतिविधि के तहत अपरिवर्तनीय होते हैं और इस प्रकार प्रारंभिक सममित बहुपद में बहुपद के रूप में व्यक्त किए जा सकते हैं। दूसरे शब्दों में, RG, Y में एक अप्रासंगिक बहुपद है जिसके गुणांक F के गुणांक में बहुपद हैं। मूल के रूप में विलायक अपरिवर्तनीय होने पर इसे एक विलायक (कभी-कभी समाधान समीकरण) कहा जाता है।
अब एक अघुलनशील बहुपद पर विचार करें
किसी दिए गए क्षेत्र K (सामान्यतः परिमेय का क्षेत्र) में गुणांक और बीजगणितीय रूप से बंद क्षेत्र विस्तारक में जड़ों xi के साथ उपरोक्त में Xi को xi से और F के गुणांकों को f के गुणांकों से प्रतिस्थापित करने पर, हमें एक बहुपद प्राप्त होता है, जिसे अस्पष्टता के स्थिति में रिज़ॉल्वेंट या विशेष रिज़ॉल्वेंट भी कहा जाता है) . यदि f का गैलोइस समूह G में समाहित है, तो सॉल्वेंट इनवेरिएंट की विशेषज्ञता G द्वारा अपरिवर्तनीय है और इस प्रकार की एक जड़ है जो K से संबंधित है (पर तर्कसंगत है K) इसके विपरीत यदि का एक परिमेय मूल है, जो एक बहुमूल नहीं है, तो f का गैलोज़ समूह G में निहित है।
शब्दावली
शब्दावली में कुछ भिन्नताएँ हैं।
- लेखकों या संदर्भ के आधार पर, विलायक विलायक समीकरण के बजाय विलायक अपरिवर्तनीय को संदर्भित कर सकता है।
- 'गैलोइस रिज़ॉल्वेंट' एक ऐसा विलायक है, जिसकी जड़ों में विलायक अपरिवर्तनीय रैखिक होता है।
- 'लैग्रेंज रिसॉल्वेंट रैखिक बहुपद को संदर्भित कर सकता है
- जहां एकता की एक मौलिक nवीं जड़ है। यह पहचान समूह के लिए गैलोज़ रिसॉल्वेंट का रिसॉल्वेंट अपरिवर्तनीय है।
- एक सापेक्ष रिज़ॉल्वेंट को एक रिज़ॉल्वेंट के समान परिभाषित किया जाता है, किन्तु केवल Sn के दिए गए उपसमूह H के तत्वों की गतिविधि पर विचार करते हुए, गुण होने पर, यदि H के उपसमूह G के लिए एक सापेक्ष रिज़ॉल्वेंट में तर्कसंगत सरल जड़ और गैलोइस समूह होता है f का H में निहित है, तो f का गैलोइस समूह G में निहित है। इस संदर्भ में, एक सामान्य विलायक को पूर्ण समाधान कहा जाता है।
समाधान विधि
घात वाले बहुपद का गैलोज़ समूह या इसका एक उचित उपसमूह है। यदि एक बहुपद वियोज्य और अपरिवर्तनीय है, तो संबंधित गैलोज़ समूह एक संक्रमणीय उपसमूह है।
के सकर्मक उपसमूह एक निर्देशित ग्राफ़ बनाते हैं: एक समूह कई समूहों का उपसमूह हो सकता है। एक समाधानकर्ता यह बता सकता है कि क्या बहुपद का गैलोज़ समूह दिए गए समूह का एक (जरूरी नहीं कि उचित) उपसमूह है। रिसॉल्वेंट विधि समूहों को एक-एक करके जांचने का व्यवस्थित विधि है जब तक कि केवल एक समूह संभव नही हो सकता है इसका मतलब यह नहीं है कि प्रत्येक समूह की जाँच की जानी चाहिए: प्रत्येक समाधानकर्ता कई संभावित समूहों को समाप्त कर सकता है। उदाहरण के लिए, घात पाँच बहुपदों के लिए कभी भी के रिज़ॉल्वेंट की आवश्यकता नहीं होती है: और के लिए रिज़ॉल्वेंट वांछित जानकारी देते हैं।
एक विधि अधिकतम (सकर्मक) उपसमूहों से प्रारंभिक करना है जब तक कि सही उपसमूह नहीं मिल जाता है और फिर उसके अधिकतम उपसमूहों के साथ प्रसारित रखना है।
संदर्भ
- Dickson, Leonard E. (1959). Algebraic Theories. New York: Dover Publications Inc. p. ix+276. ISBN 0-486-49573-6.
- Girstmair, K. (1983). "On the computation of resolvents and Galois groups". Manuscripta Mathematica. 43 (2–3): 289–307. doi:10.1007/BF01165834. S2CID 123752910.